УДК 548.736

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

СТРУКТУРА И ФИЗИЧЕСКИЕ СВОЙСТВА Mg-СОДЕРЖАЩИХ ОКСИМОЛИБДАТОВ La₂MoO₆

© 2020 г. Е. И. Орлова¹, Е. П. Харитонова¹, Н. И. Сорокина², Т. А. Сорокин², А. М. Антипин², В. И. Воронкова^{1,*}

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: voronk@polly.phys.msu.ru* Поступила в редакцию 04.03.2020 г. После доработки 22.04.2020 г. Принята к публикации 24.04.2020 г.

Оксимолибдаты La₂MoO₆, чистые и легированные магнием, получены кристаллизацией из раствора в расплаве и методом твердофазного синтеза в виде монокристаллов и поликристаллических образцов соответственно. Соединения охарактеризованы методами рентгенофазового, рентгеноструктурного анализа, термогравиметрии, дифференциальной сканирующей калориметрии, исследованы их проводящие свойства. Получена модель структуры монокристаллов La₂MoO₆, легированных магнием. Внедрение атомов двухвалентного магния в позиции атомов шестивалентного молибдена в структуре La₂MoO₆ приводит к образованию кислородных вакансий и незначительному увеличению проводимости легированных образцов по сравнению с беспримесными кристаллами. Исследованные соединения обладают гигроскопическими свойствами.

DOI: 10.31857/S0023476120050161

введение

Бинарные системы Ln_2O_3 -MoO₃ (Ln = La, Pr, Nd) в области 25-50 мол. % Ln₂O₃ перспективны для исследований, поскольку в них образуется ряд соединений с интересными свойствами. Соединения с составом 1:3 (соотношение молярных концентраций оксидов) обладают прекрасными люминесцентными свойствами. большими показателями преломления, среди них были впервые обнаружены несобственные сегнетоэлектрики [1]. Обширное семейство LAMOX на основе молибдата La₂Mo₂O₉, открытое в 2000 г. [2], отличается высокой кислородной проводимостью 10^{-2} См/см при 800° С, которая носит вакансионный характер. Столь высокой проводимостью обладают и соединения с составом 5:6. хотя характер проводимости у них иной, интерстиционный (межузельный) [3]. Наконец, соединения Ln_2MoO_6 состава 1 : 1, так называемые оксимолибдаты, обладают сложным полиморфизмом, зависящим от размера ионного радиуса редкоземельного катиона и от температуры синтеза [4-6].

Рентгеновское исследование беспримесных оксимолибдатов выявило два типа полиморфов в зависимости от величины ионного радиуса [4–7]. В случае крупных катионов La–Nd при температуре синтеза 1200°С соединения кристаллизова-

лись в тетрагональной фазе. Исключение составляло только соединение Nd_2MoO_6 , которое до $1000^{\circ}C$ существовало в моноклинной фазе, в этой же фазе при низких и высоких температурах существовали все соединения Ln_2MoO_6 с редкоземельными катионами с меньшими ионными радиусами. Выше температуры $1010^{\circ}C$ соединение Nd_2MoO_6 необратимо переходило в тетрагональную фазу [4–8].

Структуру оксимолибдатов с крупными катионами La. Pr. Nd исследовали в ряде работ [9–12]. Впервые структура монокристаллов La₂MoO₆, полученных при температуре 800°С, изучена в [9], для них была установлена полярная пр. гр. $I\overline{4}2m$. Структура каждого монокристалла Nd₂MoO₆ и La₂MoO₆, полученного кристаллизацией из раствора в расплаве при 1250°С, была решена в неполярной пр. гр. $I4_1/acd$ и в ее нецентросимметричной подгруппе $I\overline{4}c2$ [10]. Расположение атомов Мо в обеих моделях структуры одинаково, тогда как позиции атомов Nd(La) и кислорода незначительно различаются. Следует отметить, что для монокристалла La₂MoO₆ было проведено уточнение четырех ацентричных моделей – $I\overline{4}c2$, $I\overline{4}2d$, *I*4₁*cd* и *I*4₁22. При сопоставлении полученных результатов авторы [10] выбрали пр. гр. І4с2. Структура Ln_2MoO_6 (Ln = La, Nd) оказалась слоистой, в которой два слоя редкоземельных полиэдров Nd(La)O₈ чередуются с одним слоем тетраэдров MoO₄, не связанных между собой. Проводимость беспримесных образцов оксимолибдатов Ln_2MoO_6 (Ln = La, Pr, Nd) невелика и составляет 10⁻⁴ См/см [13].

Имеются работы, в которых оксимолибдаты были легированы двухвалентными катионами, такими как Pb [8, 14] и Mg [15]. Допирование Nd₂MoO₆ и La₂MoO₆ свинцом привело к весьма неожиданным результатам. В области 800°С наблюдался обратимый фазовый переход. Выше этой температуры проводимость возрастала скачком на два порядка величины. Переход был обнаружен с помощью калориметрии и исследования электрофизических свойств. Интересно отметить, что при фазовом переходе обнаружены те фазы, которые были определены в [9, 10]: высокотемпературная фаза $I4_1/acd$ и низкотемпературная фаза $I\overline{4}2m$.

Что касается магния, то его введение не повышало проводимость Nd_2MoO_6 , и заметного изменения свойств этого соединения не наблюдалось. Однако в [15] выявлены гигроскопические свойства образцов Nd_2MoO_6 с примесями двухвалентного магния, что свидетельствует о возможности существования определенной доли протонной проводимости в таких соединениях.

Таким образом, легирование редкоземельных оксимолибдатов приводит к существенному изменению их физических свойств, что имеет как фундаментальное, так и практическое значение. В настоящей работе получены моно- и поликристаллические образцы в разрезе La_2MoO_6-MgO тройной системы $La_2O_3-MoO_3-MgO$, изучены их атомная структура и связь структуры с особенностями свойств соединений, в частности гигроскопических и электрофизических.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Поликристаллические образцы в системе $(MgO)_x(La_2MoO_6)_{(1-x)/2}$ (x — мольная доля оксида магния, x = 0, 0.03, 0.05, 0.10, 0.125, 0.15) получены методом твердофазного синтеза на воздухе из оксидов чистоты 99.99%. Оксид лантана La_2O_3 предварительно обжигали при температуре 1000°C в течение 1 ч с целью удаления воды и углекислого газа. Таблетку нужного состава прессовали с помощью гидравлического пресса с нагрузкой до 0.01 ГПа. Далее использовали двухстадийный обжиг образцов при температурах 800 и 1250°C в течение суток с промежуточным их растиранием и прессованием таблеток. Скорость нагрева и охлаждения составляла 5 град/мин.

Беспримесные монокристаллы La₂MoO₆ выращивали методом кристаллизации из раствора в расплаве в системе Li₂O-MoO₃-La₂O₃. Оксид лития был добавлен в систему для снижения температуры кристаллизации. Оптимальный состав расплава для выращивания беспримесных кристаллов найден методом высокотемпературной микроскопии и составляет: $La_2O_3 = 12.5$, $Li_2O =$ $= 30, MoO_3 = 57.5$ мол. %. Для получения легированных магнием кристаллов в указанный состав добавляли 40 мол. % MgO. Состав нагревали до температуры 1350°С. Кристаллы были беспветными, имели пластинчатую форму размером порядка 3 × 5 мм. Плотность синтезированных поликристаллических образцов оценена гидростатическим взвешиванием в толуоле.

Рентгенофазовый анализ проводили при комнатной температуре с помощью дифрактометра Rigaku Miniflex 600 (Си K_{α} -излучение) в интервале углов 2 θ = 20°-60° с шагом 0.02°. Параметры элементарных ячеек рассчитаны методом наименьших квадратов.

Интенсивности дифракционных отражений от монокристаллов La₂MoO₆, беспримесного и с примесью магния, размером не более 0.5 мм, измеряли при комнатной температуре на рентгеновском дифрактометре Xcalibur Eos S2 (Rigaku Oxford Diffraction). Экспериментальные данные обработаны с помощью программы CrysAlisPro [16]. Поглощение в кристаллах учитывали аналитически по огранке [17]. Программа Jana2006 [18] использована для поиска и уточнения параметров структурной модели. Координаты атомов найдены методом charge flipping по программе Superflip [19]. Основные кристаллографические параметры, данные экспериментов и результаты уточнения структур кристаллов La₂MoO₆, беспримесного и с примесью магния, приведены в табл. 1, значения координат, заселенностей позиций и эквивалентных тепловых параметров – в табл. 2, основные межатомные расстояния – в табл. 3.

Дифференциальную сканирующую калориметрию (ДСК) и термогравиметрию (ТГ) проводили на оборудовании NETZSCH STA 449С в интервале температур 20–1250°С на воздухе при скорости нагрева и охлаждения 10 град/мин.

Для электрофизических измерений на поликристаллические образцы были нанесены платиновые электроды путем вжигания платиновой пасты при 800°С. Проводимость измеряли двухконтактным методом при помощи моста TESLA BM 431 Е на частоте 1 МГц в интервале температур от комнатной до 900°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены порошковые дифрактограммы поликристаллических образцов

Химическая формула	La ₂ MoO ₆	$La_2Mo_{0.957}Mg_{0.043}O_{5.83}$		
Сингония, пр. гр., <i>Z</i>	Тетрагональная, <i>I</i> 4с2, 8			
<i>a</i> , <i>c</i> , Å	5.7982(1), 32.0425(6)	5.7969(1), 32.0371(4)		
$V, Å^3$	1077.24(3)	1076.58(3)		
D_x , г/см ³	5.793	5.748		
Излучение; λ, Å	0.71073			
μ, мм ⁻¹	17.78	16.79		
Т, К	293			
Размер образца, мм	$0.37 \times 0.199 \times 0.14$	$0.415 \times 0.361 \times 0.051$		
Дифрактометр	Xcalibur Eos S2			
Тип сканирования	Ω			
T_{\min}, T_{\max}	0.065, 0.326	0.031, 0.508		
θ _{max} , град	74.45	74.39		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-15 \le h \le 14,$ $-15 \le k \le 14,$ $-84 \le l \le 82$	$-15 \le h \le 15,$ $-12 \le k \le 13,$ $-86 \le l \le 86$		
Число отражений: измеренных/неза- висимых $(N_1)/I > 3\sigma(I)$ (N_2)	40331/4604/1200	40384/4464/1183		
Метод уточнения	МНК по F^2			
Число уточняемых параметров	43	58		
$R(F)/wR2(F)$ по N_1	5.93/3.75	6.03/3.80		
$R(F)/wR2(F)$ по N_2	1.67/1.77	1.81/1.89		
S	2.11	2.08		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-1.14/1.04	-1.18/1.42		
Программы	CrysAlis [16], Jana2006 [18]			

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структурных параметров

 $(MgO)_x(La_2MoO_6)_{(1-x)/2}$ (x = 0, 0.03, 0.05, 0.10, 0.125, 0.15). Образец с *x* = 0.03 изоструктурен беспримесному La_2MoO_6 , при $x \ge 0.05$ появляется пик второй фазы, MgO ($\theta = 43^{\circ}$). Интенсивность этого пика невысока, процентное соотношение второй фазы и основной фазы оксимолибдата не превышает 1.5% в соответствии с количественным рентгенофазовым анализом, данные которого представлены в табл. 4. Там же приведены параметры элементарной ячейки беспримесного и легированных магнием образцов. Параметр с заметно уменьшается с увеличением x вплоть до x == 0.10, что согласуется с данными рентгеноструктурного анализа беспримесного и легированных магнием монокристаллов La₂MoO₆. Плотность поликристаллических образцов, измеренная гидростатическим взвешиванием в толуоле, составила в среднем 95% от рентгенографической плотности (табл. 1).

Беспримесные и легированные магнием монокристаллы La_2MoO_6 имели пластинчатую форму роста и размеры порядка 3—5 мм. На порошковых дифрактограммах (рис. 2), полученных от растертых монокристаллических образцов, значительное увеличение интенсивности рефлекса 0012 (рис. 2) указывает на слоистое строение кристаллов, поскольку наиболее развита в кристаллах грань (001), перпендикулярная оси *с*. Исследование образцов с помощью метода ДСК не выявило каких-либо аномалий во всей исследуемой области температур.

Уточнение структурных параметров беспримесного монокристалла La_2MoO_6 и с примесью магния проведено в анизотропном приближении тепловых смещений атомов в рамках пр. гр. $I\overline{4}c2$,

Sittle	-	2 0 -	-		
Атом	x/a	y/b	<i>z/c</i>	q	$U_{ m _{3KB}}, { m \AA}^2$
La1	0	0	0.163(1)	1	0.00502(2)
	0	0	0.164(1)	0.948(1)	0.00421(3)
La2	0.5	0	0.086(1)	1	0.00528(2)
	0.5	0	0.087(1)	0.975(1)	0.00468(3)
Mo1	0.5	0	0.25	1	0.00842(3)
	0.5	0	0.25	0.927(7)	0.00707(6)
Mo2	0	0	0	1	0.00853(3)
	0	0	0	0.987(4)	0.00883(4)
O1	0.744(1)	0.241(1)	0.125(1)	1	0.0062(1)
	0.745(2)	0.259(2)	0.125(1)	0.936(1)	0.00512(13)
O2	0.334(1)	0.168(1)	0.215(1)	1	0.0147(3)
	0.333(1)	0.168(1)	0.215(1)	1	0.0128(2)
O3	0.668(1)	0.331(1)	0.535(1)	1	0.0127(2)
	0.666(1)	0.331(1)	0.535(1)	1	0.0130(2)
Mg1	0.543(1)	-0.025(7)	0.255(1)	0.073	0.00707
Mg2	0	0	0.012(5)	0.013	0.00883
La1_1	-0.001(1)	0.029(1)	0.160(1)	0.052	0.00421
La2_1	0.448(2)	0.0009(9)	0.0848(3)	0.025	0.00468

Таблица 2. Координаты атомов, заселенности позиций (q) и эквивалентные параметры атомных смещений (U_{3KB}) в структурах монокристаллов La₂MoO₆, беспримесного и с примесью магния

Примечание. Первая строка для атомов La1, La2, Mo1, Mo2, O1, O2 и O3 соответствует La2MoO6, вторая – La2Mo0 957 Mg0 043 O5 83.

установленной ранее авторами [10]. Результаты уточнения структурной модели представлены в табл. 2 и 3. В структуре монокристаллов La₂MoO₆ установлена 100%-ная заселенность атомами La и Мо своих кристаллографических позиций. При изучении строения монокристаллов La₂MoO₆ с примесью магния выявлены вакансии в позициях атомов La и Mo. На разностных картах Фурье вблизи этих позиций на расстоянии ~0.5 и ~0.3 Å соответственно обнаружены остаточные пики электронной плотности. При уточнении параметров атомов Mg1 и Mg2, замещающих атомы Мо1 и Мо2 и смещенных относительно их положений вдоль оси четвертого порядка на расстояние ~0.3 Å, были наложены условия равенства параметров тепловых смещений атомов Мg и Мо, а также суммарной заселенности позиции 100% (табл. 2). При внедрении магния в структуру исходной матрицы La₂MoO₆ решетки атомы лантана подстраиваются под расположение атомов примеси, что приводит к их разупорядочению. При уточнении параметров дополнительных атомов La1 1 и La2 1 были наложены аналогичные условия (табл. 2). На данном этапе уточнения

структурной модели построены разностные синтезы электронной плотности вблизи всех позиций атомов кислорода. Однако локализовать и уточнить параметры позиций атомов кислорода, которые окружают атомы Mg, La1_1 и La2_1, не удалось. Невозможность локализации расщепленных позиций атомов кислорода в структуре связана с маленькой концентрацией атомов магния в кристалле (~4%) и, возможно, недостаточно высоким качеством экспериментального материала. Уточненная химическая формула исследованного монокристалла La2Mo_{0.957}Mg_{0.043}O_{5.83}.

Структура исследуемой тетрагональной модификации беспримесного монокристалла La_2MoO_6 составлена из LaO_8 - и MoO_4 -полиэдров (рис. 3, табл. 3). Атомы La расположены в восьмивершиннике, представляющем собой слегка скрученный по оси четвертого порядка куб. Атомы Мо находятся в вытянутых вдоль оси *с* и не взаимодействующих друг с другом кислородных тетраэдрах. Структура слоистая. Перпендикулярно оси [001] расположены два слоя LaO_8 -полиэдров, проложенных одним слоем MoO_4 -тетраэдров. Позиции атомов La и Mo в ячейке беспримесного кристалла La_2MoO_6 представлены на рис. 4а. Воображаемая ячейка с атомами магния, замещающими атомы молибдена, показана на рис. 4б. Позиции Mg, как и позиции La, расщеплены. Так как концентрация магния в кристалле невелика (~4%), таких замещений мало, и трудно судить о распределении магния в кристалле. Ясно лишь, что внедрение в структуру La_2MoO_6 атомов Mg приводит к разупорядочению решеток атомов La и кислорода.

Следует отметить, что процесс вхождения атомов магния в структуру La_2MoO_6 аналогичен процессу вхождения атомов магния в структуру Nd_2MoO_6 [15]. Внедрение атомов Mg в структуру монокристалла Nd_2MoO_6 привело к расщеплению позиций атомов Mo, Nd и O. Атомы Mg, частично замещающие в структуре атомы Mo, располагаются на расстоянии ~0.3 Å от атома Mo.

Для проверки гигроскопичных свойств нелегированных и легированных магнием соединений $(MgO)_x(La_2MoO_6)_{(1-x)/2}$ (x = 0, 0.03, 0.05, 0.10, 0.125, 0.15) образцы были выдержаны около недели в дистиллированной воде при комнатной температуре. Затем было проведено два последовательных цикла нагрева—охлаждения в интервале температур от комнатной до 1250°C на воздухе.

Потери массы вплоть до 1250° С после первого цикла нагрева и охлаждения указаны в табл. 4. На рис. 5 приведены кривые потери массы для образцов с x = 0, 0.05 и 0.10. Потеря воды при высоких температурах порядка 1000° С указывает на наличие воды не только в порах керамики, но и в кри-

Таблица 3. Межатомные расстояния (Å) в структурах монокристаллов La_2MoO_6 , беспримесного и с примесью магния

Химическая связь	Расстояние, Å		
	La ₂ MoO ₆	La ₂ Mo _{0.957} Mg _{0.043} O _{5.83}	
La1 $-O1 \times 2$	2.403(1)	2.445(1)	
La1 $-O1 \times 2$	2.381(1)	2.346(1)	
La1 $-O2 \times 2$	2.722(2)	2.712(1)	
La1 $-O2 \times 2$	2.708(2)	2.701(1)	
Среднее	2.558	2.213	
La2 $-O1 \times 2$	2.343(1)	2.407(1)	
La2 $-O1 \times 2$	2.446(1)	2.376(1)	
La2 $-O3 \times 2$	2.705(1)	2.724(1)	
La2 $-O3 \times 2$	2.708(1)	2.703(1)	
Среднее	2.550	2.553	
$Mo1-O2 \times 4$	1.776(2)	1.780(1)	
Среднее	1.776	1.780	
$Mo2-O3 \times 4$	1.787(1)	1.779(1)	
Среднее	1.787	1.779	

Примечание. Расстояния между расщепленными позициями: La1–La1_1 = 0.208(5), La2–La2_1 = 0.304(13), Mo1– Mg1 = 0.330(1), Mo2–Mg2 = 0.400(2) Å.

сталлической структуре образца [20]. При повторном нагреве потери массы образцами близки к нулю (табл. 4). Отметим, что существенные по-

Рис. 1. Порошковые рентгеновские дифрактограммы измельченных поликристаллических образцов $(MgO)_x(La_2MoO_6)_{(1-x)/2}, x: 0 (1), 0.03 (2), 0.05 (3), 0.10 (4), 0.125 (5), 0.15 (6). Звездочками отмечены рефлексы примесной фазы MgO.$

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

Таблица 4. Состав, соотношение кристаллических фаз La_2MoO_6/MgO , параметры элементарной ячейки, потери массы после двух циклов нагрева—охлаждения для оксимолибдатов $(MgO)_x(La_2MoO_6)_{(1-x)/2}$, полученных при температуре синтеза $1250^{\circ}C$

x	La ₂ MoO ₆ /MgO, %	<i>a</i> , Å	<i>c</i> , Å	Потери массы в циклах 1/2, %
0	100/0	5.795(7)	32.054(4)	0.20/0.04
0.030	100/0	5.791(2)	32.03(1)	0.17/0.04
0.050	99.6(5)/0.43(5)	5.796(1)	32.030(7)	0.25/0.03
0.100	94.4(6)/0.64(7)	5.800(3)	32.01(2)	0.26/0.04
0.125	99.1(5)/0.86(6)	5.798(1)	32.047(9)	0.38/0.07
0.150	98.4(4)/1.58(8)	5.799(1)	32.030(8)	0.43/0.03

тери массы при первом нагреве наблюдались как в случае беспримесного образца, так и в случае легированных магнием. Вклад в гигроскопические свойства изучаемых соединений дала также примесь сильно поглощающей воду второй фазы MgO, в незначительных количествах присутствующей в исследуемых образцах (табл. 4).

Рис. 2. Порошковые рентгеновские дифрактограммы измельченных монокристаллических образцов La₂MoO₆: беспримесных (1) и с примесью магния (2).

Температурные зависимости электропроводности беспримесного La₂MoO₆ и легированного образца (MgO)_{0.03}(La₂MoO₆)_{0.485}, измеренные при нагреве на частоте 1 МГц, приведены на рис. 6. На кривых проводимости нет ярко выраженных аномалий. Она монотонно возрастает с температурой и при 900°С близка к 10⁻⁴ См/см для нелегированного образца и примерно на четверть порядка выше в случае образца, содержащего магний. Температурные зависимости электропроводности соединений La₂MoO₆ и (MgO)_{0.03}(La₂MoO₆)_{0.485} нелинейны. Участки, соответствующие области высоких (800-900°С) температур, могут быть аппроксимированы законом Аррениуса. Энергия активации для нелегированного и Mg-содержащего образцов составила 0.87 и 0.97 эВ соответственно, что типично для многих известных материалов с кислородной проводимостью. Незначительное по сравнению с содержащими свинец оксимолибдатами [8, 14] увеличение электропроводности легированного магнием образца можно объяснить образованием кислородных вакансий при вхождении двухвалентного магния в позиции шестивалентного молибдена в структуре оксимолибдата лантана.

Рис. 3. Структурная модель беспримесного монокристалла La_2MoO_6 .

Рис. 4. Катионная модель структуры монокристалла La_2MoO_6 с примесью магния: ячейка основной матрицы La_2MoO_6 (а) и ячейка, в которой атомы молибдена замещены атомами магния (б).

ЗАКЛЮЧЕНИЕ

Методами кристаллизации из раствора в расплаве и твердофазного синтеза на воздухе получены моно- и поликристаллические образцы оксимолибдатов La₂MoO₆, легированные магнием. Рентгеноструктурные исследования монокристаллов La₂MoO₆, беспримесных и с примесью магния, показали, что атомы магния замещают в структуре атомы молибдена, смещаясь относительно их положений на расстояние ~0.3 Å вдоль оси четвертого порядка. Обнаружено разупорядочение решетки атомов лантана и кислорода. Вхожление атомов двухвалентного магния в позиции атомов шестивалентного молибдена в структуре La₂MoO₆ приводит к незначительному увеличению проводимости легированных образцов. Обнаружены гигроскопические свойства исследованных соединений как беспримесных, так и допированных магнием.

Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Министерства науки и высшего образования РФ (проект RFMEFI62119X0035) в рамках Государственного задания ФНИЦ "Кри-

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

Рис. 5. Кривые термогравиметрии поликристаллических образцов $(MgO)_x(La_2MoO_6)_{(1-x)/2}$: x = 0 после экспозиции в дистиллированной воде в течение семи дней (1); x = 0, повторный нагрев (2); x = 0.05 после экспозиции в дистиллированной воде в течение семи дней (3); x = 0.05 повторный нагрев образца (4); x = 0.10 после экспозиции в дистиллированной воде в течение семи дней (5); x = 0.10, повторный нагрев образца (6).

Рис. 6. Температурные зависимости электропроводности поликристаллических образцов $(MgO)_x(La_2MoO_6)_{(1-x)/2}$, измеренной на частоте 1 МГц, *x*: 0 (*1*), 0.03 (*2*).

сталлография и фотоника" РАН в части изучения особенностей строения и Российского фонда фундаментальных исследований (проект № 18-29-12005) в части выращивания кристаллов и исследования их свойств.

СПИСОК ЛИТЕРАТУРЫ

- Nassau K., Levinstein H.J., Loiacono G.M. // J. Phys. Chem. Solids. 1965. V. 26. P. 1805.
- Lacorre P., Goutenoire F., Bohnke O. et al. // Nature. 2000. V. 404. P. 856.
- Tsai M., Greenblatt M., McCarroll W.H. // Chem. Mater. 1989. V. 1. P. 253.
- Blasse G. // J. Inorgan. Nucl. Chem. 1966. V. 28. P. 1488.
- Brixner L.H., Sleight A.W., Licis M.S. // J. Solid State Chem. 1973. V. 5. P. 186.
- 6. Покровский А.Н., Рыбаков В.К., Трунов В.К. // Журн. неорган. химии. 1969. Т. 4. С. 2344.
- Клевцов П.В., Харченко Л.Ю., Клевцова Р.Ф. // Кристаллография. 1975. Т. 20. Вып. 3. С. 571.
- Voronkova V., Orlova E., Kazakov S. et al. // Eur. J. Inorg. Chem. 2016. P. 1022.
- Sillen L.G., Lundburg K. // Z. Anorg. Chem. 1943. B. 252. S. 2.

- 10. Ефремов В.А., Тулин А.В., Трунов В.К. // Координац. химия. 1987. Т. 13. С. 1276.
- 11. Xue J.S., Antonio M.R., Soderholm L. // Chem. Mater. 1995. V. 7. P. 333.
- 12. Антипин А.М., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2017. Т. 62. № 4. С. 551.
- Yanovskii V.K., Voronkova V.I. // Solid State Phys. 1977. V. 19. P. 3318.
- 14. Voronkova V., Kharitonova E., Orlova E. et al. // Eur. J. Inorg. Chem. 2017. P. 5582.
- Voronkova V.I., Kharitonova E.P., Orlova E.I. et al. // J. Alloys Compd. 2019. V. 803. P. 1045.
- Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.39.46. 2018. Rigaku Corporation, Oxford, UK.
- 17. Clark R.C., Reid J.S. // Acta Cryst. A. 1995. V. 51. P. 887.
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. № 5. S. 345.
- 19. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604.
- 20. Colomban Ph. // Fuel Cells. 2013. V. 13. № 1. P. 6.