КРИСТАЛЛОГРАФИЯ, 2020, том 65, № 5, с. 756-769

_____ СТРУКТУРА ОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 547.1'185'56'74 + 548.737 + 543.42

КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ ФАЗ И ПРИРОДА КООРДИНАЦИОННОЙ СВЯЗИ В СИСТЕМЕ $[Cu_xNi_{(1-x)}{N(CH_2PO_3)_3}]Na_4 \cdot nH_2O (x = 0-1)$

© 2020 г. Н. В. Сомов^{1,*}, Ф. Ф. Чаусов^{2,**}, Н. В. Ломова², В. Л. Воробьёв², И. С. Казанцева², Г. В. Сапожников³, Р. М. Закирова⁴

¹ Национальный исследовательский университет им. Н.Н. Лобачевского, Нижний Новгород, Россия

² Удмуртский Федеральный исследовательский центр УрО РАН, Ижевск, Россия

³ Научно-исследовательский институт металлургической технологии, Ижевск, Россия

⁴ Удмуртский государственный университет, Ижевск, Россия

E-mail: somov@phys.unn.ru* *E-mail: chaus@udman.ru* Поступила в редакцию 29.11.2019 г. После доработки 29.11.2019 г. Принята к публикации 28.02.2020 г.

Исследованы особенности структуры фаз, образующихся при кристаллизации смешанных комплексов меди и никеля с нитрило-*трис*-метиленфосфоновой кислотой [Cu_xNi_(1-x){N(CH₂PO₃)₃]]Na₄ · $\cdot nH_2O$ (x = 0-1), и координационной связи $M \leftarrow O(P)$. Для фазы с преобладанием меди [(Cu,Ni){N(CH₂PO₃)₃}]Na₄ · 13H₂O (пр. гр. $P\overline{1}$, Z = 2, a = 10.0096(2)-10.0118(2), b = 11.0311(3)-11.0330(2), c = 12.2893(2)-12.3038(3) Å, $\alpha = 84.7180(10)-84.785(2)^\circ$, $\beta = 79.504(2)-79.544(2)^\circ$, $\gamma = 66.971(2)-67.058(2)^\circ$) характерна тригонально-бипирамидальная координация атома металла; в плоскости основания пирамиды лежат атомы кислорода трех различных PO₃-групп молекулы лиганда, в одной вершине – атом азота, в противоположной вершине – атом кислорода соседней молекулы лиганда. Никельсодержащая фаза [Ni(H₂O){N(CH₂PO₃)₃}]Na₄ · 11H₂O (пр. гр. C2/c, Z = 4, a = 11.9924(2)-12.05510(10), b = 18.6049(3)-18.7152(2), c = 21.0724(4)-21.1266(2) Å, $\beta = 104.096(2)-$ 104.4960(10)°) характеризуется октаэдрической координацией атома Ni; в трех меридионально расположенных вершинах октаэдра находятся атомы кислорода различных PO₃-групп молекулы лиганда, а в трех других вершинах – атом азота, молекула воды и атом кислорода соседней молекулы лиганда. Изучена зависимость межатомных расстояний и валентных углов в координационной сфере атома металла от отношения Cu:Ni и показано, что переход от тригонально-бипирамидальной к октаэдрической координации сопровождается резким увеличением степени ионности координационной связи $M \leftarrow O(P)$.

DOI: 10.31857/S0023476120050215

ВВЕДЕНИЕ

Комплексы нитрило-*трис*-метиленфосфоновой кислоты $H_6{N(CH_2PO_3)_3}$ (H_6NTP) с металлами являются объектами пристального внимания как за рубежом [1–4], так и в России [5–16]. С типичными *s*-элементами NTP образует комплексные соединения, в которых отдельные связи металл—лиганд носят ковалентный характер [12, 13]. Практическое значение NTP и ее комплексов обусловлено их способностью ингибировать процессы коррозии металлов в водных средах [17–19].

Известно мнение, что "за редким исключением, стереохимические требования иона металла играют менее важную роль в циклообразовании, чем стереохимические свойства лиганда" [20]. Поэтому представляет несомненный фундаментальный интерес поиск таких "редких исключений" — структур, в которых симметрия координации иона металла одним и тем же лигандом изменяется при замене металла.

Во многих случаях Ni(II) и Cu(II) образуют изоморфные кристаллические структуры [21–23]. Однако в комплексе NTP с медью(II) [Cu{N(CH₂ PO₃)₃]Na₄ · 8½H₂O координационный полиэдр (**KII**) атома Cu – искаженная тригональная бипирамида [6], а в комплексе NTP с никелем(II) [Ni(H₂O){N(CH₂PO₃)₃]Na₄ · 11H₂O КП атома Ni [7] – слабо искаженный октаэдр, включающий в себя дополнительную молекулу воды.

Геометрия координационного окружения атома металла в этих комплексах описывается классической теорией кристаллического поля [24, 25]. Расщепление Cu3d⁹-подуровня в тригональнобипирамидальном (**ТБП**) поле приводит к значению $E_{\text{SCF}(\text{Cu},\text{TБП})} \approx -0.71\Delta_{\text{NTP}}$, а в октаэдрическом – $E_{\text{SCF}(\text{Cu},\text{окт})} = -0.6\Delta_{\text{NTP}}$, где Δ_{NTP} – параметр расщепления кристаллическим полем, характерный для молекулы NTP. Минимум электронной энергии системы, включающей в себя ион Cu²⁺, стабилизирует симметрию комплекса $C3_v$. Расщепление Ni3d⁸-подуровня в октаэдрическом поле приводит к минимальному значению $E_{\text{SCF}(\text{Ni},\text{окт})} =$ $= -1.2\Delta_{\text{NTP}}$, в то время как в ТБП-координации $E_{\text{SCF}(\text{Ni},\text{TБП})} = -0.63\Delta_{\text{NTP}}$.

Показано, что в системе, содержащей ионы Ni^{2+} и Cu^{2+} и NTP, в результате конкуренции ионов Ni^{2+} и Cu^{2+} за энергетически выгодное координационное окружение могут образовываться в зависимости от отношения Cu:Ni комплексы как с ТБП, так и с октаэдрической координацией [26].

В настоящей работе описаны кристаллохимические особенности и характер координационной связи $M \leftarrow O(P)$ для различных фаз, образующихся при кристаллизации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

смешанных комплексов Синтез ряда $[Cu_xNi_{(1-x)}{N(CH_2PO_3)_3}]Na_4 \cdot nH_2O$ вели в соответствии с ранее описанной методикой [26]. Кристаллы смешанных комплексов выращивали из смеси вода-диметилсульфоксид (ДМСО) (отношение объемов 3:1) при комнатной температуре при медленном испарении растворителя. Отбирали первую фракцию образовавшихся кристаллов – около 10% общего содержания комплексов в растворе. Кристаллы промывали смесью вода-ДМСО (отношение объемов 1:1), безводным ДМСО, диэтиловым эфиром и высушивали на воздухе.

Рентгеноструктурный анализ. Кристаллографические характеристики. параметры рентгеноструктурных экспериментов и результаты уточнения структуры полученных образцов приведены в табл. 1. Для исследования были выбраны визуально однородные кристаллы приблизительно изометричной формы. Начальные фрагменты структур найдены прямым методом. Положения всех атомов, кроме атомов водорода, определены из разностного синтеза электронной плотности и уточнены в анизотропном приближении методом наименьших квадратов по $|F|^2$. Положения атомов водорода были также определены из разностного синтеза электронной плотности. Результаты рентгеноструктурных исследований депонированы в Кембриджский банк структурных данных.

Элементный анализ полученных кристаллов проводили рентгенофлуоресцентным методом с

использованием рентгенофлуоресцентного спектрометра Innov-X Alpha-2000 (США), спектрофотометрическим безреагентным методом с помощью спектрофотометра СФ-56 по методике [31] и комплексонометрическим титрованием по ГОСТ 10398-76. За результат количественного анализа принимали среднее значение концентраций, полученных тремя независимыми методами [26].

Рентгенофазовый анализ проводили на дифрактометре ДРОН-6 (Fe K_{α} -излучение, $\lambda_{K\alpha 1} = 1.93597$, $\lambda_{K\alpha 1} = 1.93991$ Å). Содержание триклинной и моноклинной кристаллических фаз определяли методом Ритвельда.

Рентгенофотоэлектронные (РФЭ) спектры слабосвязанных электронов получали на отечественном рентгеноэлектронном спектрометре ЭМС-3 (УдмФИЦ УрО РАН) [32] с магнитным энергоанализатором при возбуждении AlK_a-излучением (hv = 1486.6 эВ). Тонкие слои порошков (размер зерен менее 10 мкм) кристаллических продуктов наносили на подложку из пиролитического графита. Калибровку шкалы энергии связи проводили по центру тяжести линии C1s (энергия связи $E_{cB} = 284.5$ эВ). Спектры электронов остовных уровней получали на спектрометре SPECS с полусферическим электростатическим энергоанализатором Phoibos-150 (Deutschland) при возбуждении излучением MgK_{α} (*h*v = 1253.6 эВ). Калибровку прибора осуществляли по спектру золота (99.9%), ширина на половине высоты каждой линии дублета Au4f составила 1.2 эВ. Образцы измельченных кристаллических продуктов впрессовывали в подложку из индия (99.9%). Регистрировали спектры остовных уровней Ni3s, Cu3s, P2p, P2s, N1s, O1s, Ni2p и Cu2p. Калибровку шкалы энергии связи проводили по линии In3d_{5/2} (энергия связи $E_{cb} = 444$ эВ). Для статистической обработки полученных спектров использовали программу Fityk 0.9.8 [33].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Полученные кристаллические продукты можно отнести к двум фазам: триклинной (с высоким содержанием меди) и моноклинной (с высоким содержанием никеля). В табл. 2 приведены результаты элементного и фазового анализов, полученные разными методами. Фаза, богатая медью, соответствует формуле [(Cu,Ni){N(CH₂PO₃)₃}]Na₄ · 13H₂O и обнаруживается в образцах при атомной доле меди в общем содержании металлов-комплексообразователей (меди и никеля) в растворе $x_{Cu(p-p)}$ в диапазоне 7/32–1. Основные межатомные расстояния и валентные углы триклинных фаз, полученных в серии опытов, приведены в табл. 3.

Строение внутренней координационной сферы металла в этой фазе (рис. 1а) сходно с ранее исследованным комплексом [Cu{N(CH₂PO₃)₃]]Na₄ · 8¹/₂H₂O

Таблица 1. Кристаллографические характеристики, данные экспериментов и результаты уточнения структур

Опыт	1	2 3		4			
Атомная доля Си в растворе	1	3/4 1/2		3/8			
Формула	$CuC_3H_{32}NNa_4O_{22}P_3$	$\begin{array}{c} Cu_{0.65}Ni_{0.35}C_{3}H_{32}N\\ Na_{4}O_{22}P_{3} \end{array}$	$\begin{array}{c} Cu_{0.54}Ni_{0.46}C_{3}H_{32}N\\ Na_{4}O_{22}P_{3} \end{array}$	$\begin{array}{c} Cu_{0.66}Ni_{0.34}C_{3}H_{32}N\\ Na_{4}O_{22}P_{3} \end{array}$			
Μ	682.7	680.99	680.5	681.07			
Сингония, пр. гр., <i>Z</i>	Триклинная, $P\overline{1}$, 2	Триклинная, $P\overline{1}$, 2	Триклинная, $P\overline{1}$, 2	Триклинная, $P\overline{1}$, 2			
<i>Т</i> , К	100(2)	293(2)	293(2)	100(2)			
<i>a</i> , <i>b</i> , <i>c</i> , Å	10.0096(2), 11.0330(2), 12.2893(2)	10.0125(3), 11.0434(3), 12.3372(3)	10.0266(3), 11.0676(4), 12.3608(3)	10.0469(4), 11.1061(6), 12.3910(6)			
$\alpha, \beta, \gamma,$ град	84.7180(10), 79.544(2), 67.058(2)	85.014(2), 79.532(2), 67.061(2)	84.999(2), 79.582(2), 67.001(3)	84.945(4), 79.426(4), 67.038(5)			
$V, Å^3$	1228.73(4)	1235.17(6)	1241.63(7)	1251.23(11)			
D_x , $r \cdot cm^{-3}$	1.845	1.831	1.820	1.808			
μ, мм ⁻¹	1.247	1.206	1.190	1.192			
T_{\min}, T_{\max}	0.41915, 1	0.74, 0.92	0.715, 0.862	0.81287, 1			
Учет поглощения	Эмпирическое	, CrysAlisPro 1.171.39	.8e (Rigaku Oxford D	iffraction, 2015)			
<i>F</i> (000)	702	701	701	701			
Размер кристалла, мм	$0.489 \times 0.253 \times 0.088$	$0.327 \times 0.157 \times 0.068$	$0.398 \times 0.301 \times 0.158$	$0.304 \times 0.177 \times 0.073$			
Дифрактометр	XtaLAB Pro: Kappa single	Oxf	ord Diffraction Gemi	ni S			
Излучение; λ, Å/монохроматор	Излучение; λ , Å/монохроматор Мо K_{α} ; 0.			.073/графит			
Тип сканирования		(υ				
θ, град	2.589-30.508	3.359-30.507	3.359-30.507	3.346-30.508			
Пределы h, k, l	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-17 \le l \le 16$	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-17 \le l \le 17$	$-14 \le h \ge 14,$ $-15 \le k \le 15,$ $-17 \le l \le 17$	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-17 \le l \le 17$			
Измерено рефлексов:							
всего	17235	24115	23409	241 16			
независимых	7430	7536	7565	7624			
$c I > 2\sigma(I)$	6891	7066	7181	7049			
<i>R</i> _{int}	0.0248	0.022	0.0165	0.02			
Число параметров	421	452	451	436			
S	0.985	1.074	1.107	1.055			
R -факторы: для $F^2 > 2 \sigma(F^2)$							
R_1, wR_1	0.0235, 0.0719	0.0200, 0.0525	0.0203, 0.0536	0.0206, 0.0540			
R_2, wR_2	0.0257, 0.0734	0.0220, 0.0535	0.0216, 0.0542	0.0234, 0.0553			
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im Å^{-3}$ CCDC	-0.680/0.532 1908001	-0.374/0.422 1908007	-0.705/0.408 1908008	-0.365/0.408 1908009			
Степень подобия КП атома металла эталонным полиэдрам:							
Тригональная бипирамида	0.31554(11)	0.33942(11)	0.36099(11)	0.38278(13)			
Тетрагональная пирамида	0.17706(6)	0.17543(6)	0.18082(6)	0.18793(6)			
Октаэдр							
Программы	CrysAlisPro [27], SHELX2014 [28], WinGX [29], VESTA3.0 [30]						

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

Таблица 1. Продолжение

•						
Опыт	5	6		7		
Атомная доля Си в растворе	5/16	9/32	1,	/4		
Формула	$\frac{Cu_{0.55}Ni_{0.45}C_{3}H_{30}N}{Na_{4}O_{21}P_{3}}$	$\begin{array}{c} Cu_{0.35}Ni_{0.65}C_{3}H_{30}N\\ Na_{4}O_{21}P_{3} \end{array}$	$\begin{array}{c} Cu_{0.23}Ni_{0.77}C_{3}H_{32}N\\ Na_{4}O_{22}P_{3} \end{array}$	$\begin{array}{c} Cu_{0.23}Ni_{0.77}C_{3}H_{30}N\\ Na_{4}O_{21}P_{3} \end{array}$		
Μ	662.5	661.53	678.97	660.95		
Сингония, пр. гр., Z	Моноклинная, <i>C</i> 2/ <i>c</i> , 8	Моноклинная, <i>C</i> 2/ <i>c</i> , 8	Триклинная, <i>Р</i> 1, 2	Моноклинная, <i>C</i> 2/ <i>c</i> , 8		
<i>Т</i> , К	293(2)	293(2)	100(2)	100(2)		
<i>a</i> , <i>b</i> , <i>c</i> , Å	12.0625(3), 18.7047(4), 21.1297(6)	12.0489(2), 18.7052(3), 21.1450(4)	10.0118(2), 11.0311(3), 12.3038(3)	11.9924(2), 18.6049(3), 21.0724(4)		
α, β, γ, град	90, 104.464(3), 90	90, 104.335(2), 90	84.785(2), 79.504(2), 66.971(2)	90, 104.096(2), 90		
$V, Å^3$	4616.3(2)	4617.22(14)	1229.34(5)	4560.05(14)		
D_x , г·см ⁻³	1.906	1.903	1.834	1.925		
μ , mm ⁻¹	1.274	1.253	1.170	1.256		
T_{\min}, T_{\max}	0.94943, 1	0.94052, 1	0.57542, 1	0.67257, 1		
Учет поглощения	Эмпирическое	, CrysAlisPro 1.171.39	8e (Rigaku Oxford D	iffraction, 2015)		
<i>F</i> (000)	2724	2723	700	2722		
Размер кристалла, мм	$0.128 \times 0.098 \times 0.066$	$0.172 \times 0.115 \times 0.093$	$0.143 \times 0.124 \times 0.066$	$0.162 \times 0.121 \times 0.068$		
Дифрактометр	Xcalibur, Sapp	hire3, Gemini	XtaLAB Pro: Kappa single			
Излучение; λ, Å/монохроматор	Мо <i>К</i> _α ; 0.71073/графит					
Тип сканирования		~ (D			
θ, град	3.489-33.036	3.49-33.039	2.648-30.507	2.557-30.506		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-17 \le h \le 17,$ $-28 \le k \le 28,$ $-32 \le l \le 31$	$-18 \le h \le 18,$ $-28 \le k \le 28,$ $-31 \le l \le 30$	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-17 \le l \le 17$	$-17 \le h \le 17,$ $-26 \le k \le 26,$ $-30 \le l \le 30$		
Измерено рефлексов:						
всего	49083	47 316	38565	70324		
независимых	8106	8173	7512	6952		
$c I > 2\sigma(I)$	6364	6952	6583	6173		
R _{int}	0.0528	0.0345	0.0514	0.0544		
Число параметров	395	395	448	413		
S	1.077	1.080	1.013	1.062		
R -факторы: для $F^2 > 2 \sigma(F^2)$						
R_1, wR_1	0.0426, 0.0838	0.0325, 0.0729	0.0250, 0.0584	0.0260, 0.0574		
R_2, wR_2	0.0636, 0.091	0.0436, 0.0775	0.0315, 0.0606	0.0327, 0.0594		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im Å^{-3}$	-0.565/0.552	-0.414/0.549	-0.386/0.598	-0.415/0.475		
CCDC	1908017	1908013	1908014	1908015		
Степень подобия КП атома металла эталонным полиэдрам:						
Тригональная бипирамида			0.37877(14)			
Тетрагональная пирамида			0.19451(7)			
Октаэдр	0.5966(3)	0.5920(2)		0.5838(3)		
Программы	CrysAlisPro [27], SHELX2014 [28], WinGX [29], VESTA3.0 [30]					

Таблица 1. Окончание

Опыт	8	9	10	11			
Атомная доля Си в растворе	7/32	2 3/16 1/8		0			
Формула	$\frac{Cu_{0.09}Ni_{0.91}C_{3}H_{32}N}{Na_{4}O_{22}P_{3}}$	$\begin{array}{c c} Cu_{0.06}Ni_{0.94}C_{3}H_{30}N & Cu_{0.02}Ni_{0.98}C_{3}H_{30}N \\ Na_{4}O_{21}P_{3} & Na_{4}O_{21}P_{3} \end{array}$		$\rm NiC_3H_{30}NNa_4O_{21}P_3$			
Μ	678.33	660.15	659.98	659.86			
Сингония, пр. гр., Z	Триклинная, <i>Р</i> 1, 2	Моноклинная, <i>C</i> 2/ <i>c</i> , 8	Моноклинная, <i>C</i> 2/ <i>c</i> , 8	Моноклинная, <i>C</i> 2/ <i>c</i> , 8			
<i>Т</i> , К	100(2)	293(2)	293(2)	293(2)			
<i>a</i> , <i>b</i> , <i>c</i> , Å	10.01420(10), 11.03280(10), 12.3015(2)	12.0509(2), 18.6980(2), 21.1310(3)	11.9957(2), 18.6120(2), 21.0688(3)	12.05510(10), 18.7152(2), 21.1266(2)			
α, β, γ, град	84.7570(10), 79.5430(10), 66.9910(10)	90, 104.4080(10), 90	90, 104.0840(10), 90	90, 104.4960(10), 90			
$V, Å^3$	1229.91(3)	4611.65(11)	4562.50(11)	4614.71(8)			
D_x , г·см ⁻³	1.832	1.902	1.922	1.900			
μ, мм ⁻¹	1.156	1.224	1.233	1.217			
T_{\min}, T_{\max}	0.7735, 1	0.93926, 1	0.317, 1	0.95091, 1			
Учет поглощения	Эмпирическое	, CrysAlisPro 1.171.39	.8e (Rigaku Oxford D	oiffraction, 2015)			
<i>F</i> (000)	700	2720	2720	2720			
Размер кристалла, мм	$0.382 \times 0.185 \times 0.165$	$0.135 \times 0.116 \times 0.065$	$0.183 \times 0.139 \times 0.082$	$0.267 \times 0.215 \times 0.163$			
Дифрактометр	XtaLAB Pro: Kappa single	Xcalibur, Sapphire3, Gemini	XtaLAB Pro: Kappa single	Xcalibur, Sapphire3, Gemini			
Излучение; λ, Å/монохроматор		MoK_{α} ; 0.71	073/графит	1			
Тип сканирования		(Û				
θ, град	2.662-30.508	3.249-30.183	2.961-32.926	3.491-37.966			
Пределы h, k, l	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-17 \le l \le 17$	$-17 \le h \le 16,$ $-25 \le k \le 25,$ $-29 \le l \le 29$	$-17 \le h \le 17,$ $-28 \le k \le 27,$ $-31 \le l \le 32$	$-20 \le h \le 20,$ $-32 \le k \le 31,$ $-35 \le l \le 36$			
Измерено рефлексов:							
всего	37932	36039	72027	78814			
независимых	7507	6427	7941	12059			
$c I > 2\sigma(I)$	7302	5652	7384	10279			
<i>R</i> _{int}	0.0274	0.0304	0.0323	0.0326			
Число параметров	447	395	398	396			
S	1.054	1.072	1.065	1.158			
R -факторы: для $F^2 > 2 \sigma(F^2)$							
R_1, wR_1	0.0173, 0.0447	0.0286, 0.0684	0.0222, 0.0582	0.0382, 0.0866			
R_2, wR_2	0.0179, 0.0450	0.0356, 0.0714	0.0252, 0.0592	0.0488, 0.0910			
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im Å^{-3}$	-0.433/0.509	-0.408/0.508	-0.596/0.521	-0.641/0.954			
CCDC	1908018	1908016	1908019	1908022			
Степень подобия КП атома металла эталонным полиэдрам:							
Тригональная бипирамида	0.36364(10)						
Тетрагональная пирамида	0.19053(5)						
Октаэдр		0.5954(2)	0.58295(16)	0.5873(2)			
Программы	CrysAlisPro [27], SHELX2014 [28], WinGX [29], VESTA3.0 [30]						

Опыт	1	2	3	4	5	6	7	8	9	10	11
Элементный состав ком- плекса в растворе, ат. %											
Cu	100.00	75.00	50.00	37.50	31.25	28.13	25.00	21.88	18.75	12.50	0.00
Ni	0.00	25.00	50.00	62.50	68.75	71.87	75.00	78.12	81.25	87.50	100.00
Атомная доля Си в растворе	1	3/4	1/2	3/8	5/16	9/32	1/4	7/32	3/16	1/8	0
Элементный состав кристал- лического продукта, ат. %											
По данным рентгенофлуо- ресцентного анализа											
Cu	100.00	92.61	81.93	67.44	55.04	36.11	21.77	13.22	6.52	5.19	0.00
Ni	0.00	7.39	18.07	32.56	44.96	63.89	78.23	86.78	93.48	94.81	100.00
По данным спектрофотометрического определения											
Cu	100.0	93.2	80.4	66.2	54.7	34.6	22.6	9.4	6.1	2.5	0.0
Ni	0.0	6.8	19.6	33.8	45.3	65.4	77.4	90.6	93.9	97.5	100.0
По данным комплексоно- метрического определения											
Cu	100.0	92.5	76.6	63.4	54.2	33.3	22.0	11.9	7.8	2.9	0.0
Ni	0.0	7.5	23.4	36.6	45.8	66.7	78.0	88.1	92.2	97.1	100.0
Средние значения											
Cu	100.0	92.8	79.6	65.7	54.7	34.7	22.1	11.5	6.8	3.5	0.0
Ni	0.0	7.2	20.4	34.3	45.3	65.3	77.9	88.5	93.2	96.5	100.0
Фазовый состав кристалли- ческого продукта, мол. %											
Триклинная	100.0	95.0	94.5	83.8	81.3	45.3	37.8	4.2	5.6	8.0	0.0
Моноклинная	0.0	5.0	5.5	16.2	18.7	54.7	62.2	95.8	94.4	92.0	100.0
Элементный состав три- клинной фазы, ат. % (расчет)											
Cu	100.0	97.7	84.3	78.4	67.2						
Ni	0.0	2.3	15.7	21.6	32.8						

Таблица 2. Результаты анализа кристаллических продуктов, образующихся при различной атомной доле меди в растворе

[6], но имеет некоторые характерные особенности. Координационный полиэдр атома металла – ТБП; в плоскости ее основания находятся атомы кислорода различных PO₃-групп молекулы лиганда, в одной вершине – атом азота, в противоположной – атом кислорода соседней молекулы лиганда. Конформация молекулы NTP псевдотригональная; межатомные расстояния и валентные углы во всех трех ее CH₂PO₃-ветвях близки друг к другу: N–C = 1.4877(12)–1.4973(14), C–P = = 1.8207(9)–1.8513(9), P–O(M) = 1.5413(7)– 1.5533(9) Å, N–C–P = 109.39(8)–112.64(8)°. Эта конформация близка к конформации молекулы свободной NTP [34].

В триклинной фазе, содержащей примесь Ni, атомы кислорода O1, O2 и O3 одной из PO₃-групп молекулы лиганда заселяют по две разупорядоченные позиции, отличающихся поворотом РО₃группы вокруг связи Р–С на угол в среднем 26.5°; заселенность позиций А и В для этих атомов приведена в табл. 3. Геометрический параметр тригональности τ [35] координационной сферы атома металла для триклинной фазы при заселении кислородом позиции А составляет в среднем 0.573, а при заселении кислородом позиции В – 0.773 (значение $\tau = 0$ соответствует тетрагонально-пирамидальной конфигурации, а $\tau = 1 - T \overline{D} \overline{D}$). Для чисто медного комплекса (по данным [6] и в настоящем исследовании при $x_{Cu(p-p)} = 1$) $\tau = 0.509$. Таким образом, замещение части атомов Cu атомами Ni приводит к повороту одной из РО3-групп, смещению части атомов кислорода и формированию конфигурации, более близкой к ТБП, чем конфигурация, присущая чисто медному комплексу.

Опыт	1	2	3	4	7	8
Содержание Ni, ат. %	0.0	2.3	15.7	21.6	_	_
Связь	·		<i>d</i> ,	Å		
<i>M</i> –N1	2.0111(10)	2.0117(8)	2.0218(7)	2.0322(8)	2.0318(11)	2.0268(7)
М-ОЗА	2.0088(8)	2.0076(8)	2.0101(7)	2.0166(8)	2.0091(9)	2.0122(6)
<i>M</i> -O4*	1.9263(8)	1.9285(7)	1.9397(6)	1.9541(7)	1.9560(9)	1.9474(6)
<i>M</i> -O4	2.1933(8)	2.1708(7)	2.1511(6)	2.1329(7)	2.1272(8)	2.1428(6)
М-О9	1.9730(8)	1.9722(7)	1.9767(6)	1.9831(7)	1.9777(8)	1.9770(6)
N–C	1.4944(14)– 1.4973(14)	1.4877(12)— 1.4900(11)	1.4879(11)– 1.4916(11)	1.4932(13)— 1.4966(12)	1.4924(15)— 1.4962(15)	1.4921(11)– 1.4957(10)
C-P	1.8239(12)- 1.8501(12)	1.8207(9)— 1.8409(10)	1.8236(9)— 1.8446(9)	1.8290(10)- 1.8502(11)	1.8272(13)— 1.8492(12)	1.8273(8)— 1.8513(9)
P–O(<i>M</i>)	1.5455(9)— 1.5533(9)	1.5413(7)– 1.5435(8)	1.5450(7)— 1.5478(8)	1.5498(8)— 1.5505(7)	1.5480(10)— 1.5521(9)	1.5490(6)— 1.5523(6)
Р-О	1.5104(8) - 1.5246(8)	1.5024(7)- 1.5149(7)	1.474(15) - 1.525(14)	1.474(14) - 1.5226(8)	1.5104(8) - 1.5251(9)	1.5157(7) - 1.5250(7)
Na1–O	2.3802(9) - 2.5428(11)	2.3503(8) - 2.6037(11)	2.3549(8) - 2.6083(11)	2.3978(9) - 2.5858(13)	2.3806(10) - 2.5471(11)	2.3812(7) - 2.5469(8)
Na2–O	2.3427(10) - 2.5762(10)	2.3895(8) - 2.5740(12)	2.3909(8) - 2.5814(12)	2.3867(12) - 2.6314(14)	2.3456(10) - 2.5766(11)	2.3438(7) - 2.5776(8)
Na3–O	2.3092(11) - 2.4886(9)	2.3089(11) - 2.4162(12)	2.3127(11) - 2.4189(11)	2.3208(11) - 2.4203(13)	2.3044(11) - 2.4198(11)	2.3068(8) - 2.4186(8)
Na4–O	2.3726(10) - 2.6208(11)	2.3737(11) - 2.6201(13)	2.3784(10) - 2.6238(13)	2.3632(9) - 2.6128(12)	2.3775(11) - 2.6252(11)	2.3756(8) - 2.6236(8)
Углы			ω, ι	рад	· · ·	
N1- <i>M</i> -O4*	168.59(4)	168.67(3)	168.96(4)	169.24(4)	169.73(4)	169.43(4)
O3 <i>A</i> - <i>M</i> -O4	101.55(3)	102.54(4)	102.40(4)	102.24(5)	100.98(4)	101.20(3)
O4- <i>M</i> -O9	120.43(3)	121.35(3)	122.33(3)	123.06(4)	123.36(4)	122.58(3)
O3 <i>A</i> - <i>M</i> -O9	137.20(3)	135.30(4)	134.50(4)	133.93(4)	134.88(4)	135.45(3)
O3 <i>A</i> - <i>M</i> -O3 <i>B</i>	_	18.9(9)	20.6(6)	21.3(5)	_	_
Позиции атомов О1, О2, О3			D,	%		
A	100.00	95.6	94.3	93.3	100.00	100.00
R		4.4	57	67		

Таблица 3. Основные межатомные расстояния d, валентные углы ω и заселенность разупорядоченных позиций D в структурах триклинных фаз [(Cu,Ni){N(CH₂PO₃)₃}]Na₄ ·13H₂O с различным содержанием Ni

* Симметрично-эквивалентная позиция: -x, -y, -z.

Кристаллическая структура комплекса $[(Cu,Ni){N(CH_2PO_3)_3}]Na_4 \cdot 13H_2O$ в триклинной фазе островная (рис. 16). Внешняя координационная сфера представлена трехмерной связью КП ионов Na⁺, в вершинах которых находятся молекулы кристаллизационной воды. Полиэдры ионов Na1, Na2 и Na4 близки к октаэдрам (степень подобия, рассчитанная по методике [9, 36], составляет $\Phi = 0.38-0.48$). Координационный полиэдр иона Na3 – искаженная тетрагональная пирамида ($\Phi = 0.5480(5)$); с учетом атома кислорода O6 (Na3-O6 = 3.0224(14) Å) КП Na3 может

быть достроен до сильно искаженного октаэдра ($\Phi = 0.043(3)$). Одна из молекул кристаллизационной воды (O13) заселяет две близкие разупорядоченные позиции. Две молекулы воды (O21 и O22) являются сольватными.

Вторая фаза, никельсодержащая, соответствует формуле [Ni(H₂O){N(CH₂PO₃)₃}]Na₄ · 11H₂O, относится к моноклинной сингонии и содержит лишь незначительную примесь меди; количественно определить содержание меди в моноклинной фазе $x_{Cu(M)}$ не удалось. Эта фаза обнару-

Рис. 1. Структура внутренней координационной сферы (а) и кристаллическая упаковка (б) комплекса в триклинной фазе (с преобладанием меди). Атомы кислорода O1, O2, O3 заселяют разупорядоченные позиции. Звездочкой отмечена симметрично-эквивалентная позиция *–x*, *–y*, *–z*.

живается в образцах, полученных при $x_{Cu(p-p)}$ в интервале 0—5/16. Основные межатомные расстояния и валентные углы полученных триклинных фаз приведены в табл. 4.

Структура никельсодержащей моноклинной фазы очень близка к структуре ранее изученного нитрило-*трис*-метиленфосфонатного комплекса Ni [7]. Координационный полиэдр никеля — октаэдр, в трех меридионально расположенных вершинах которого находятся атомы кислорода различных РО₃-групп молекулы лиганда, а в трех других вершинах – атом азота, молекула воды и атом кислорода соседней молекулы лиганда (рис. 2а). Молекула NTP имеет плоскость псевдосимметрии: две ее CH₂PO₃-ветви зеркально симметричны относительно плоскости, в которой лежит третья CH₂PO₃-ветвь. Межатомные расстояния и валентные углы в CH₂PO₃-ветвях заметно различаются: в крайних ветвях N-C = 1.487(2)-1.4900(17), C-P = 1.8217(17) - 1.8254(13), P-O(M) == 1.5269(12) - 1.5343(10) Å, N-C-P = 111.12(9)-111.93(8)°, а в средней ветви N-C = 1.503(3)-1.5085(13), C-P = 1.8473(17) - 1.8536(10), P-O(M) == 1.5447(11) - 1.5488(8) Å, N-C-P = 117.49(7)-117.73(11)°.

Кристаллическая упаковка слоистая (рис. 26); во внешней координационной сфере присутствуют ионы Na+, в вершинах КП находятся молекулы кристаллизационной воды, связывающие их в двумерные слои. Координационный полиэдр иона Na1 – слабо искаженный тетраэдр ($\Phi =$ = 0.6435(2)), ионов Na2 и Na5 – искаженные октаэдры с $\Phi = 0.12912(9)$ и 0.27398(13) соответственно, иона Na4 – искаженная тетрагональная пирамида ($\Phi = 0.5792(8)$). Координационный по-

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

лиэдр иона Na3 — асимметричный семивершинник, который можно рассматривать как сильно искаженную пентагональную бипирамиду ($\Phi =$ = 0.04077(3)). Ионы Na1 и Na5 находятся в положениях с кратностью 1/2, вследствие чего общее количество ионов Na⁺ на одну формульную единицу равно четырем. Сольватные молекулы воды в моноклинной фазе отсутствуют.

На рис. 3 графически представлена зависимость характерных межатомных расстояний, валентных углов и степеней подобия Ф КП атома металла эталонным полиэдрам от *x*_{Cu(p-p)} для триклинной и моноклинной фаз. Можно видеть, что при изменении $x_{Cu(p-p)}$ от 1 до 7/32 структурные параметры триклинной фазы претерпевают существенные изменения. Это обусловлено, по-видимому, замещением части атомов Си с ионным радиусом (при KH = 5) 0.65 Å атомами Ni с ионным радиусом 0.63 Å [37]. Однако только расстояние М-О4 существенно уменьшается (от 2.1933(8) до 2.1272(8) Å), а остальные расстояния металл-лиганд, напротив, увеличиваются. Валентные углы при атоме металла при частичном замещении меди никелем изменяются противоположным образом. Структурные параметры моноклинной фазы при изменении x_{Си(p-p)}, напротив, изменяются незначительно. Это свидетельствует об отсутствии существенного замещения Ni на Cu в структуре моноклинной фазы. Степень подобия Ф КП атома металла эталонным полиэдрам существенно зависит от $x_{Cu(p-p)}$ как в случае триклинной, так и моноклинной фаз. В окрестности точки перехода ($x_{Cu(p-p)} = 1/4$) степени по-добия максимальны для обеих фаз. Интересно, что для КП атома металла в триклинной фазе при

	2 3/3/1 4	2						
Опыт	5	6	7	9	10	11		
Связь	d, Å							
<i>M</i> –N1	2.1025(16)	2.1008(12)	2.1027(12)	2.0986(13)	2.1056(9)	2.1077(11)		
<i>M</i> -O2*	2.0474(14)	2.0471(11)	2.0440(10)	2.0472(11)	2.0472(8)	2.0525(9)		
М-О2	2.0742(14)	2.0746(11)	2.0775(10)	2.0728(12)	2.0713(8)	2.0645(10)		
<i>M</i> -O4	2.0893(14)	2.0817(11)	2.0825(10)	2.0818(12)	2.0821(7)	2.0854(10)		
М-О9	2.0823(14)	2.0881(11)	2.0798(10)	2.0858(12)	2.0843(8)	2.0909(10)		
M-O10 ^W	2.1012(17)	2.1043(14)	2.1065(12)	2.1013(14)	2.1006(8)	2.0958(12)		
N–C	1.487(2)-	1.4885(19)-	1.4900(17)-	1.488(2)-	1.4897(13)-	1.4850(17)-		
	1.503(3)	1.5045(19)	1.5084(18)	1.505(2)	1.5085(13)	1.5034(16)		
C-P	1.824(2)-	1.8238(15)-	1.8225(14)-	1.8217(17)-	1.8251(10)-	1.8254(13)-		
	1.847(2)	1.8520(16)	1.8517(15)	1.8473(17)	1.8536(10)	1.8521(13)		
P-O(M)	1.5274(16)-	1.5283(12)-	1.5331(11)-	1.5269(12)-	1.5330(8)-	1.5303(11)-		
	1.5449(15)	1.5447(11)	1.5486(10)	1.5439(12)	1.5488(8)	1.5462(10)		
P–O	1.5108(15)-	1.5107(12)-	1.5185(10)-	1.5103(12)-	1.5191(8)-	1.5140(11)-		
	1.5264(15)	1.5256(12)	5310(11)	1.5261(12)	1.5337(8)	1.5282(11)		
Na1–O	2.3488(17)-	2.3472(13)-	2.3402(12)-	2.3473(14)-	2.3424(9)-	2.3473(12)-		
	2.7127(18)	2.7133(14)	2.7184(12)	2.7127(14)	2.7175(9)	2.7011(13)		
Na2–O	2.3411(17)-	2.3418(13)-	2.3380(12)-	2.3403(13)-	2.3390(9)-	2.3401(12)-		
	2.5937(18)	2.5964(14)	2.5793(12)	2.5954(15)	2.5773(9)	2.5972(13)		
Na3–O	2.3449(17)-	2.3427(13)-	2.3301(11)-	2.3402(14)-	2.3441(9)-	2.3424(13)-		
	2.823(2)	2.8180(17)	2.7805(13)	2.8194(17)	2.7826(10)	2.8222(16)		
Na4–O	2.3221(17)-	2.3259(13)-	2.3224(11)-	2.3235(14)-	2.3228(9)-	2.3202(12)-		
	2.369(2)	2.3710(17)	2.3557(13)	2.3700(17)	2.3566(10)	2.3739(16)		
Na5–O	2.361(2)-	2.3659(17)-	2.3562(12)-	2.3623(18)-	2.3592(9)-	2.3616(17)-		
	2.618(2)	2.6140(19)	2.5935(14)	2.615(2)	2.5922(10)	2.6078(19)		
Углы	ω, град							
N1- <i>M</i> -O2*	167.91(8)	167.86(6)	167.37(6)	167.92(6)	167.34(5)	167.97(5)		
O4– <i>M</i> –O9	172.02(6)	172.04(5)	172.28(5)	171.98(5)	172.24(4)	172.07(4)		
O2- <i>M</i> -O10 ^W	178.95(7)	178.89(6)	178.94(5)	178.97(6)	178.89(4)	178.78(5)		
O2- <i>M</i> -O2*	80.18(7)	79.96(6)	79.65(6)	80.10(6)	79.66(5)	80.09(5)		

Таблица 4. Основные межатомные расстояния d и валентные углы ω в структуре моноклинной фазы $[Ni(H_2O){N(CH_2PO_3)_3}]Na_4 \cdot 11H_2O$

* Симметрично эквивалентная позиция: -x, -y, -z.

^W Молекула воды.

приближении к точке перехода возрастает степень подобия как ТБП, так и тетрагональной пирамиде.

Анализ данных табл. 2 показывает, что при $x_{Cu(p-p)} = 0-3/16$ мольная доля триклинной фазы x_{T} не превосходит погрешности метода и продукт представлен практически индивидуальной моноклинной фазой. В области $x_{Cu(p-p)} = 1/2-1$, напротив, мольная доля моноклинной фазы x_{M} пренебрежимо мала. В интервале $x_{Cu(p-p)} 5/32-3/8$ продукт содержит существенные доли обеих фаз. Благодаря тому что замещение никеля медью в моноклинной фазе пренебрежимо мало ($x_{Cu(M)} \approx \infty$), можно найти атомную долю Си в триклинной фазе $x_{Cu(T)}$. Атомная доля Ni в триклинной фазе $x_{Ni(T)} = 1 - x_{Cu(T)}$ изменяется от $x_{Ni(T)} = 0$ при $x_{Cu(p-p)} = 1$ до $x_{Ni(T)} = 32.8$ ат. % при $x_{Cu(p-p)} = 5/16$; при меньших значениях $x_{Cu(p-p)}$ вычислить $x_{Cu(T)}$ и $x_{Ni(T)}$ с приемлемой погрешностью не удалось.

На рис. 4 представлены РФЭ-спектры триклинной (кривая *I*) и моноклинной (кривая *2*) фаз. В области спектра слабосвязанных электронов при $E_{cB} = 0-8$ эВ наблюдаются занятые, сильно делокализованные электронные состояния, которые можно рассматривать как комбинацию преимущественно *M3d*, N2*p* и O2*p*. При $E_{cB} = 10-$ 13 эВ наблюдается вклад N2*s*-состояний, в области $E_{cB} = 15-18$ эВ – вклад P3*s*-состояний. Спек-

Рис. 2. Структура внутренней координационной сферы (а) и кристаллическая упаковка (б) никелевого комплекса в моноклинной фазе. Звездочкой отмечена симметрично-эквивалентная позиция *-x*, *-y*, *-z*.

Рис. 3. Зависимость структурных параметров триклинной и моноклинной фаз от $x_{Cu(p-p)}$: а – межатомные расстояния для триклинной фазы: M–O4 (1), M–N (2),M–O3A (3), M–O9 (4), M–O4* (5); для моноклинной фазы: M–N (6), M–O10^W (7), M–O9 (8), M–O4 (9), M–O2 (10), M–O2* (11); б – валентные углы для триклинной фазы: N–M–O4* (1), O3A–M–O9 (2), O4–M–O9 (3), O3A–M–O4 (4); для моноклинной фазы: O2–M–O10^W (5), O4–M–O9 (6), N–M–O2* (7); в – степени подобия Ф координационного полиэдра атома металла эталонным полиэдрам: октаэдру в моноклинной фазе (1), тригонально-бипирамидальному в триклинной фазе (2), тетрагональной пирамиде в триклинной фазе (3).

тры O2*s*-состояний ($E_{cB} = 20-28$ эВ) заметно различаются для триклинной (кривая *1*) и моноклинной (кривая *2*) фаз. Для триклинной фазы со средней длиной связи M–O = 2.02 Å существенное перекрывание электронных состояний атомов металла и кислорода приводит к возникнове-

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

Рис. 4. РФЭ-спектры кристаллов триклинной (*1*) (опыт 4, $x_{Cu(p-p)} = {}^{3}/_{8}$) и моноклинной (*2*) (опыт 10, $x_{Cu(p-p)} = {}^{1}/_{8}$) фаз: а – наиболее характерные фрагменты спектров, б – область спектра Ni3*s*.

нию плеча в области $E_{\rm cB} = 20 - 22$ эВ. В структуре моноклинной фазы со средней длиной связи M-O = 2.08 Å заметное перекрывание электронных состояний отсутствует, что приводит к смещению спектра O2s в область $E_{cB} = 25-28$ эВ. Спектр Ni2p обеих фаз представлен спин-орбитальным дублетом с составляющими Ni $2p_{3/2}$ (E_{cb} = = 855.9 эВ) и Ni2 $p_{1/2}$ (E_{cB} = 873.4 эВ), Δ_{Ni2p} = 17.5 эВ, что характерно для координационных соединений Ni(II), например, с ацетилацетоном и биуретом [38, 39]. В спектре Ni2p моноклинной фазы (кривая 2) наблюдается сателлит "встряски" (*shake-up*) с максимумом при $E_{cb} = 864.3$ эВ, а в спектре триклинной фазы (кривая 1) сателлитная структура не наблюдается. Спектр Cu2p триклинной фазы (кривая 1) содержит спин-орбитальный дублет с составляющими Cu2 $p_{3/2}$ ($E_{\rm cB}$ = = 933.4 эВ) и Cu2 $p_{1/2}$ ($E_{\rm cB}$ = 953.3 эВ), $\Delta_{\rm Cu2p}$ = = 19.9 эВ, что типично для координационных соединений Cu(II), в частности, с ацетилацетоном и биуретом [40, 41]. Сателлит "встряски" наблюдается в спектре Cu2p триклинной фазы (кривая 1) при $E_{cB} = 944.4$ эВ. В спектре моноклинной фазы (кривая 2) присутствуют лишь следы меди.

Спектр Ni3s-состояний (рис. 46) характеризуется мультиплетным расщеплением, обусловленным взаимодействием образующегося в результате ионизации неспаренного Ni3s-электрона с неспаренными электронами незаполненного Ni3dподуровня. Основная линия Ni3s в спектрах обеих фаз наблюдается при $E_{\rm cB} = 111.3$ эВ. В спектре триклинной фазы наблюдается двойное мультиплетное расщепление с максимумами при $E_{\rm cB} =$ = 113.3 эВ ($\Delta_{\rm Ni3s} = 2.0$ эВ) и 115.3 эВ ($\Delta_{\rm Ni3s} = 4.0$ эВ). Вероятно, это соответствует двум возможным вариантам окружения атома Ni в структуре триклинной фазы:

В спектре моноклинной фазы для линии Ni3s наблюдается только составляющая с максимумом $E_{\rm CB} = 113.4$ эВ ($\Delta_{\rm Ni3s} = 2.1$ эВ), что указывает на единственное возможное окружение атома Ni. Это согласуется с выводом о практически полном отсутствии замещения атомов Ni на Cu в моно-клинной фазе.

Карты распределения разностной электронной плотности в окрестности атома металла в структурах триклинной и моноклинной фаз приведены на рис. 5. Можно наблюдать различный характер химической связи $M \leftarrow O(P)$ в фазах с различной структурой. В триклинной фазе (рис. 5а, 5б) область повышенной электронной плотности охватывает не менее 60% межатомного расстояния М-О, а максимум разностной электронной плотности локализован в средней части межатомной оси М-О, что свидетельствует о значительном вкладе ковалентной составляющей химической связи. В моноклинной фазе (рис. 5в, 5г), напротив, область повышенной электронной плотности атомов О и N охватывает не более 50% длины связи $M \leftarrow O(P)$, а максимум разностной электронной плотности соответствует положению центральной части атома кислорода, что указывает на больший вклад ионной связи. Это со-

Рис. 5. Карты распределения разностной электронной плотности $\Delta \rho = \rho_{3\kappa cn} - \rho_{pac4}$ по данным рентгеноструктурного анализа в кристаллах: а, б – триклинной фазы (опыт 4, $x_{Cu(p-p)} = 3/8$); в, г – моноклинной фазы (опыт 10, $x_{Cu(p-p)} = 1/8$). Шаг изолиний 0.05 э/Å³; положительная электронная плотность – сплошные линии, отрицательная – штриховые.

гласуется с отмеченными выше различиями РФЭ-спектров в области O2*s*-состояний. В то же время по обе стороны от линии связи $M \leftarrow O(P)$ в структуре моноклинной фазы находятся области повышенной электронной плотности (*a* и *a*' на рис. 5в), которые могут свидетельствовать о вкладе ковалентного π -связывания M–О вследствие некоторого перекрывания $M3d_{xy}$ - и O2*p*-состояний.

Графики распределения электронной плотности вдоль M-O (рис. 6), построенные в проекционной связи со схемой расположения атомных радиусов [37, 42], подтверждают отмеченные раз-

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

личия в природе координационной связи $M \leftarrow O(P)$ в структурах триклинной и моноклинной фаз. Связь $M \leftarrow O(P)$ в триклинной фазе (рис. 6а) может быть охарактеризована как ковалентная, о чем свидетельствует максимум разностной электронной плотности в области сближения ковалентных радиусов атомов металла и кислорода [42]. В структуре моноклинной фазы (рис. 6б) наблюдается минимум разностной электронной плотности в области контакта ионных радиусов [37], что позволяет характеризовать связь $M \leftarrow O(P)$ как ионную. По-видимому, это различие

Рис. 6. Профили разностной электронной плотности $\Delta \rho = \rho_{3\kappa c \Pi} - \rho_{pac q}$ по данным рентгеноструктурного анализа вдоль межатомных связей: а – *M*–O4 триклинной фазы (опыт 4, $x_{Cu(p-p)} = 3/8$); б – Ni–O2 моноклинной фазы (опыт 10, $x_{Cu(p-p)} = 1/8$). Графики приведены в проекционной связи со схемами расположения ковалентных (а) и ионных (б) радиусов атомов металлов и кислорода.

в структуре химической связи $M \leftarrow O(P)$ обусловлено как различием межатомных расстояний M - O в триклинной и моноклинной фазах, так и различной симметрией ближнего окружения атома металла.

выводы

Исследована структура фаз, образующихся при кристаллизации гетерометаллических комплексов NTP [Cu_xNi_(1-x){N(CH₂PO₃)₃]Na₄ · nH₂O (x = 0-1) из водных растворов. Различия в структурах триклинной и моноклинной фаз приводят к тому, что для триклинной фазы характерна преимущественно ковалентная координационная связь $M \leftarrow O(P)$, а в случае моноклинной фазы связы ионная с небольшим вкладом ковалентного π -связывания $M3d_{xy}$ - и O2*p*-состояний.

Рентгеноструктурные исследования проведены в рамках базовой части государственного задания высшим учебным заведениям и научным организациям в сфере научной деятельности (проект № 3.6502.2017/БЧ). Спектроскопические исследования выполнены в рамках государственного задания Министерства науки и высшего образования РФ (№ гос. регистрации АААА-А19-119093090055-2) с использованием оборудования ЦКП "Центр физических и физико-химических методов анализа, исследования свойств и характеристик поверхности, наноструктур, материалов и изделий" УдмФИЦ УрО РАН, поддержанного Минобрнауки в рамках ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы" (проект RFMEFI62119X0035).

СПИСОК ЛИТЕРАТУРЫ

- Cabeza A., Ouyang X., Sharma C.V.K. et al. // Inorg. Chem. 2002. V. 41. P. 2325. https://doi.org/10.1021/ic0110373
- Demadis K.D., Katarachia S.D., Koutmos M. // Inorg. Chem. Commun. 2005. V. 8. P. 254. https://doi.org/10.1016/j.inoche.2004.12.019
- Cunha-Silva L., Mafra L., Ananias D. et al. // Chem. Mater. 2007. V. 19. P. 3527. https://doi.org/10.1021/cm070596q
- 4. Bazaga-García M., Angeli G.K., Papathanasiou K.E. et al. // Inorg. Chem. 2016. V. 55. P. 7414. https://doi.org/10.1021/acs.inorgchem.6b00570
- 5. *Сомов Н.В., Чаусов Ф.Ф. //* Кристаллография. 2014. Т. 59. № 1. С. 71.
- Сомов Н.В., Чаусов Ф.Ф. // Кристаллография. 2015. Т. 60. № 2. С. 233.
- 7. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М., Федотова И.В. // Кристаллография. 2016. Т. 61. № 2. С. 238.
- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М., Федотова И.В. // Координац. химия. 2015. Т. 41. № 12. С. 729.
- 9. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Кристаллография. 2017. Т. 62. № 6. С. 896.
- 10. *Сомов Н.В., Чаусов Ф.Ф., Ломова Н.В. и др.* // Координац. химия. 2017. Т. 43. № 9. С. 545.
- 11. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Координац. химия. 2017. Т. 43. № 12. С. 765.
- 12. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. // Кристаллография. 2016. Т. 61. № 3. С. 400.
- 13. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. // Кристаллография. 2016. Т. 61. № 4. С. 583.
- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Координац. химия. 2017. Т. 43. С. 369.
- 15. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Кристаллография. 2018. Т. 63. № 6. С. 894.
- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Кристаллография. 2018. Т. 63. № 3. С. 415.
- 17. *Кузнецов Ю.И.* // Успехи химии. 2004. Т. 73. № 1. С. 79.

КРИСТАЛЛОГРАФИЯ том 65 № 5 2020

- 18. *Кузнецов Ю.И.* // Физикохимия поверхности и защита материалов. 2002. Т. 38. № 2. С. 122.
- 19. Ломова Н.В., Чаусов Ф.Ф., Шабанова И.Н. // Изв. РАН. Сер. физ. 2018. Т. 82. № 7. С. 975.
- 20. Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов. М.: Химия, 1988. 544 с.
- Stewart J.M., Lingafelter E.C. // Acta Cryst. 1959. V. 12. № 11. P. 842. https://doi.org/10.1107/s0365110x59002444
- 22. *McDonald J.C., Luo T.-J.M., Palmore G.T.R.* // Crystal. Growth Design. 2004. V. 4. № 6. P. 1203. https://doi.org/10.1021/cg049974j
- 23. Mao L., Rettig S.J., Thompson R.C. Et al. // Can. J. Chem. 2011. V. 74. P. 433. https://doi.org/10.1139/v96-047
- Берсукер И.Б. Электронное строение и свойства координационных соединений. Введение в теорию. Л.: Химия, 1976. 352 с.
- Бальхаузен К. Введение в теорию поля лигандов. М.: Мир, 1964. 360 с.
- Chausov F.F., Lomova N.V., Somov N.V. et al. // J. Cryst. Growth. 2019. V. 524. P. 125187. https://doi.org/10.1016/j.jcrysgro.2019.125187
- 27. Rigaku (2016). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
- 28. *Sheldrick G.M.* // Acta Cryst. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
- 29. *Farrugia L.J.* // J. Appl. Cryst. 1999. V. 32. P. 837. https://doi.org/10.1107/S0021889899006020
- 30. *Momma K., Izumi F. //* J. Appl. Cryst. 2011. V. 44. P. 1272.
 - https://doi.org/10.1107/S0021889811038970

- 31. *Свиридова Е.Н., Иванова Н.В.* // Вестн. КемГУ. 2013. Т. 3. № 3. С. 108.
- 32. *Trapeznikov V.A., Shabanova I.N., Kholzakov A.V., Ponomaryov A.G.* // J. Electron Spectrosc. Related Phenomena. 2004. V. 137. P. 383. https://doi.org/10.1016/j.elspec.2004.02.115
- Wojdyr M. // J. Appl. Cryst. 2010. V. 43. P. 1126. https://doi.org/10.1107/S0021889810030499
- 34. Daly J.J., Wheatley P.J. // J. Chem. Soc. A. 1967. P. 212. https://doi.org/10.1039/J19670000212
- 35. Addison A.W., Rao T.N., Reedijk J. et al. // J. Chem. Soc., Dalton Trans. 1984. № 7. P. 1349. https://doi.org/10.1039/dt9840001349
- 36. *Somov N.V., Andreev P.V.* // Crystallography Reports. 2018. V. 63. № 1. P. 32. https://doi.org/10.1134/S1063774518010170
- 37. *Shannon R.D.* // Acta Cryst. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Tolman C.A., Riggs W.M., Linn W.J. et al. // Inorg. Chem. 1973. V. 12. № 12. P. 2770. https://doi.org/10.1021/ic50130a006
- Yoshida T., Yamasaki K. // Bull. Chem. Soc. Jpn. 1981.
 V. 54. № 3. P. 935. https://doi.org/10.1246/bcsj.54.935
- 40. *Brand P., Freiser H.* // Analyt. Chem. 1974. V. 46. № 8. P. 1147. https://doi.org/10.1021/ac60344a010
- 41. Yoshida T., Yamasak, K., Sawada S. // Bull. Chem. Soc. Jpn. 1978. V. 51. № 5. P. 1561. https://doi.org/10.1246/bcsj.51.1561
- Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832. https://doi.org/10.1039/b801115j