УДК 548.736

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ __ СОЕДИНЕНИЙ

НОВЫЕ СИЛИКАТЫ СВИНЦА: СТРУКТУРЫ И ТОПОЛОГО-СИММЕТРИЙНЫЙ АНАЛИЗ

© 2021 г. Е. Л. Белоконева^{1,*}, Т. А. Еремина¹, О. В. Димитрова¹, А. С. Волков¹

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия *E-mail: elbel@geol.msu.ru

Поступила в редакцию 28.06.2020 г. После доработки 28.07.2020 г. Принята к публикации 28.07.2020 г.

В гидротермальных условиях получены кристаллы нового сложного слоевого силиката-карбоната свинца $Pb_{19,4}Na_{1,9}[Si_{10}O_{25}](CO_3)_9(OH)_{12.7} \cdot 1.3H_2O$ и силиката-германата свинца $Pb_{4.37}[(Ge_{0.7}Si_{0.3})_2O_7]$ [($Ge_{0.6}Si_{0.4}O_{2.74}(OH)_{1.26}$], родственного ганомалиту. Соединения кристаллизуются в пр. гр. *P*31*m* и

 $P\overline{6}$ соответственно. Для новых соединений, как и для многих силикатов и силикатов-германатов свинца, характерны разупорядочение, широкий изоморфизм и дефекты в позициях, которые заселяют крупные катионы, а также изоморфизм замещений атомов Ge и Si в тетраэдрах. Сходство и различие новых соединений свинца с исследованными ранее выявлено в рамках традиционного кристаллохимического и тополого-симметрийного анализа строения. Описаны структурные взаимосвязи плюмбонакрит—новый силикат-карбонат—синтетический борат-силикат свинца и апатит—назонит—ганомалит—синтетический силикат свинца. Выявлены политипный характер, гомологические ряды и предложена буквенная символика, передающая симметрийные законы строения.

DOI: 10.31857/S0023476121010021

введение

Строение силикатов, основных минералов земной коры, детально проанализировано в отношении комбинаций кремнекислородных тетраэдров от простейших изолированных группировок до сложнейших каркасов [1, 2]. Соединения данного класса многочисленны, разнообразны по составу и не только известны в природе, но и получены синтетическим путем. Высокая термическая устойчивость и механическая прочность, а также проявление кристаллами важных в приложении свойств вызывают большой интерес и делают их перспективными материалами.

Германий — аналог кремния, однако вследствие большего ионного радиуса демонстрирует не только тетраэдрическую, но и октаэдрическую координацию, которая для кремния, как правило, достижима лишь при высоких давлениях [1]. Исключением являются минералы группы эттрингита, в структурах которых атомы кремния координированы в октаэдре гидроксильными группами. Они относятся к классам сульфатовкарбонатов (таумасит, Ca₃[Si(OH)₆](SO₄)(CO₃) · · 12H₂O), сульфатов (коттенхеймит, Ca₃[Si(OH)₆](SO₄)₂ · · 12H₂O), и сульфатов-сульфитов (хильшерит, Ca₃[Si(OH)₆](SO₄)(SO₃) · 11H₂O) [3]. Для пары элементов Si–Ge типичны изоморфные замещения в общей тетраэдрической позиции, такие соединения относятся к силикатам-германатам. Их число невелико по сравнению с силикатами, они повторяют их структуры, а также структуры фосфатов и арсенатов с тетраэдрическими группами. Известны, например, аналоги минералов санборнита, миларита, альбита, перриерита, фармакосидерита, рихтерита, апатита, граната, сфена, а также разнообразных цеолитов согласно базе данных [3].

В последнее время получены и исследованы новые смешанные германаты-силикаты свинца с преобладанием кремния: представители структурного семейства $Cs_2Pb_2[(Si_{0.6}Ge_{0.4})_2O_7]$ [4], $Rb_2Pb_2[(Si_{0.67}Ge_{0.33})_2O_7]$, $Li_6Pb_2[(Si_{0.6}Ge_{0.4})O_4]_2(OH)_2$ [5]; германат-силикатный аналог назонита $Pb_8K_{1.68}Na_{0.32}[(Si_{0.65}\ Ge_{0.35})_2O_7]$ [6]; полярный германат-силикат с волластонитовой цепочкой и широким изоморфизмом замещений во многих позициях каркасной структуры $K_{1.46}Pb_{1.54}Ca[(Si_{0.77}Ge_{0.23})_3O_9](OH)_{0.54} \cdot 0.46H_2O$ [7].

Силикаты свинца не столь многочисленны, к ним следует отнести: аламозит Pb[SiO₃] [8] с двенадцатичленной витой цепочкой; синтетические Pb₂[SiO₃]O с четверными кольцами [9, 10] и Pb₁₁Si₃O₁₇ = Pb₁₁O₆[SiO₄][Si₂O₇] [11] с орто- и диорторадикалами; Pb₃[Si₂O₇], изоструктурный барисилиту Pb₈Mn[Si₂O₇] [12, 13]; плюмбофиллит Pb₂[Si₄O₁₀] [14] со слоевым радикалом; синтетический $Pb_7Si_6O_{19} = Pb_{21}[Si_7O_{22}]_2[Si_4O_{13}]$ [15] со сложными изолированными силикатными группировками, а также новый кубический ортосиликат $\{Pb_4O(OH)_2\}[SiO_4]$ [16]. Весьма распространены соединения свинца с комплексными радикалами алюмосиликаты, боросиликаты, имеющие дополнительные анионы и катионы. К ним можно отнести ортосиликат $Pb_4[SiO_4]Cl_4(Br_4)$ [17], каркасный Pb[Al₂Si₂O₈] [18], слоевые сложные структуры хиттшеита Ba₂Ca₅Mn₂Fe₂Pb₁₈[Si₃₀O₉₆]Cl · 6H₂O [19], синтетического (Pb_{4.8}Na_{1.2})[Si₈(Si_{1.2} B_{0.8})O₂₅] [20], бритвинита Pb₁₅Mg₉[Si₁₀O₂₈](CO₃)₂ (BO₃)₄(OH)₁₂O₂ [21], молибдофиллита (Pb₄O)₂Mg₉ [Si₁₀O₂₈](OH)₈(CO₃)₃ · · H₂O [22] и роймиллерита Pb₂₄Mg₉[Si₉AlO₂₈] [SiO₄](BO₃)(CO₃)₁₀(OH)₁₄O₄ [23].

Представляло интерес продолжить поиск новых сложных силикатов и силикатов-германатов свинца, а также исследовать их структуры и перспективы дальнейших возможных применений. В настоящей работе приведены результаты синтеза и исследования нового сложного слоевого силиката-карбоната свинца и силиката-германата свинца, родственного ганомалиту. Проведен традиционный и тополого-симметрийный кристаллохимический анализ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез, состав и свойства кристаллов. Кристаллы Pb_{19.4}Na_{1.9}[Si₁₀O₂₅](CO₃)₉(OH)_{12.7} · 1.3H₂O (I) получены в гидротермальных условиях. Массовые соотношения оксидов в системе составляли PbO : $SiO_2 = 1$: 1. Синтез проводили в высококонцентрированных растворах Na₂CO₃ (20 мас. %) в стандартных автоклавах объемом 5-6 см³, футерованных фторопластом, при $T = 270 - 280^{\circ}$ С и *P* = ~70-90 атм. Нижний предел температуры ограничен кинетикой гидротермальных реакций, верхний - возможностями аппаратуры. Коэффициент заполнения автоклава выбирали таким образом, чтобы давление оставалось постоянным. Время взаимодействия составляло 18-20 сут, что было необходимо для полного завершения реакции, после чего продукты эксперимента промыли водой. Кристаллы Pb_{4.37}[(Ge_{0.7}Si_{0.3})₂O₇][(Ge_{0.6}Si_{0.4}) O₃(OH)] (II) были получены в тех же условиях при массовых соотношениях оксидов в системе PbO : SiO₂ : GeO₂ = 1 : 1 : 2 в высококонцентрированных растворах Cs₂CO₃ (20 мас. %). В белой и светло-серой массе в первом опыте основную фазу (~60% выхода) представляли ограненные серые и бесцветные блестящие кристаллы в виде крупных сростков, оказавшиеся кристаллами синтетического церуссита РbCO₃ согласно параметрам ромбической ячейки. Кристаллы I были

второй морфологической разновидностью, их выход ~10%. Они представляли собой блестящие, плоские, тонкие (иногда слюдоподобные) пластинки гексагонального облика, прозрачные и бесцветные. Кристаллы II были бесцветные и слегка розоватые, прозрачные и полупрозрачные, в форме гексагональных призм и пластинок, их выход составлял ~20%.

Параметры решеток определяли на дифрактометре XCalibur S с CCD-детектором. По параметрам соединение I близко к $Na_5Ti(PO_4)_3$ и другим прелставителям группы NASICON. Соелинение II родственно минералу ганомалиту и его синтетическому аналогу Pb₅[Si₂O₇][SiO₄] [3, 24]. Состав кристаллов был определен с помощью рентгеноспектрального анализа. выполненного в лаборатории локальных методов исследования вещества МГУ на микрозондовом комплексе на базе растрового электронного микроскопа Jeol JSM-6480LV. Он показал присутствие в соединении I атомов Pb, Si, Na, а в соединении II - Pb, Si, Ge. Тест на генерацию второй оптической гармоники (ГВГ) [25] выявил слабый сигнал в случае соединения I и близкий к нулевому в случае II.

Рентгеноструктурное исследование. Параметры ячейки фазы I сопоставляли с тригональным фосфатом и другими представителями NASI-CON, однако аналогия состава вызывала сомнение, в связи с чем была проведена структурная расшифровка. Для съемки выбран небольшой по размеру и наиболее совершенный прозрачный тонкий уплощенный монокристалл (табл. 1). Трехмерный экспериментальный набор для определения структуры получен в полной сфере обратного пространства на дифрактометре Bruker SMART APEX DUO c CCD-детектором при температуре 100 K, использовали Мо K_{α} -излучение и графитовый монохроматор. Обработка данных выполнена по программе Bruker APEX2 [26]. Структура расшифрована прямыми методами с помощью программы SHELXS [27] без предварительного знания химической формулы. Предложенная пр. гр. РЗ противоречила наблюдаемому, хотя и небольшому, сигналу ГВГ. Анализ погасаний не выявил элементов симметрии решетки *R*, поэтому возможными были группы Р62m, Р6, Р321, Р312 по аналогии с NASICON. однако ни одна из них не давала удовлетворительного результата (исходная формула в расчетах была взята при замене сортов атомов). Наиболее низкосимметричная группа РЗ (с достоверным элементом симметрии) и увеличенное число атомов Pb в исходной формуле в расчете прямыми методами позволили получить позиции ряда тяжелых (Pb) и "полутяжелых" (Si) атомов. Их расположение в проекции на плоскость ab указывало на вероятное присутствие апофемальной зеркальной плоскости, и повторный расчет был вы-

2021

полнен уже в группе Р31т. В результате последовательных приближений найдены 11 позиций атомов Pb, четыре позиции атомов Si и ряд позиций атомов О при $R_{hkl} \sim 0.12$. Оценка поглощения показала, что оно существенно в образце. Была введена полуэмпирическая поправка по эквивалентам с использованием программы SADABS [28]. В двух позициях Рb9 и Рb11 тепловые смещения и межатомные расстояния были завышены. С учетом присутствия атомов Na в составе кристаллов в этих позициях были заданы атомы изоморфной примеси. Соотношение двух элементов определено путем пошагового варьирования и уточнения модели, включая параметры смещения. На картах разностных синтезов электронной плотности обнаружены три пика электронной плотности в треугольной координации атомов О (всего было найдено 18 атомов О) с расстояниями, характерными для связи С-О, что отвечало карбонатным группам. Заселенность позиции Pb7 существенно меньше единицы. Ее уточняли путем варьирования, контролируя параметры смещения атома свинца. Задать в данной позиции атомы другого сорта или исключить ее из модели было нельзя. Кроме того, она была расщеплена, как и позиция атомов Pb в зонтичной координации, что наблюдалось ранее [4]. Заключительное уточнение МНК позиционных параметров и тепловых смещений выполнено в анизотропном приближении для тяжелых атомов и атомов кремния и изотропном для атомов кислорода и углерода с использованием комплекса программ SHELXL [27]. Отметим, что наибольшие погрешности характерны для сильного базального рефлекса 002, что связано с анизотропией формы кристалла, поглощением и разупорядочением в структуре. Учет аномального рассеяния Мо-излучения и варьирование весовой схемы позволили снизить фактор расходимости до $R_{hkl} = 7.17\%$. Параметр Флэка составил 0.09(4), что указывало на правильно определенную абсолютную конфигурацию. Оцененный баланс валентных усилий указывал на то, что четыре позиции атомов соответствовали ОНгруппам, а одна была смешанной, в которой размещались и ОН-группа, и молекула воды, поскольку она координировала лишь один атом Pb1. С учетом кратностей позиций пр. гр. Р31т и погрешностей определения коэффициентов заключительную электронейтральную формулу можно записать как Pb_{19.4}Na_{1.9}[Si₁₀O₂₅](CO₃)₉(OH)_{12.7} · 1.3H₂O, Z = 1. Кристаллографические данные, характеристики эксперимента и результаты уточнения структуры приведены в табл. 1, координаты и тепловые смещения атомов – в табл. 2. Информация о структуре имеется в банке данных ССDС (CSD), номер депозита 2012459.

По параметрам ячейки фаза II аналогична силикату ганомалиту Pb₉Ca₅Mn[Si₂O₇]₃[SiO₄]₃ и

КРИСТАЛЛОГРАФИЯ том 66 № 1 2021

изоструктурному синтетическому германату $Pb_{5}[Ge_{2}O_{7}][GeO_{4}]$. Присутствие в составе образца и атомов Si, и атомов Ge вызывало интерес к структурному исследованию, а также к сопоставлению строения силикатов и германатов свинца в ланном структурном типе. Для съемки был выбран небольшой по размерам и наиболее совершенный кристалл в форме тригональной призмы с пинакоидом (табл. 1). Трехмерный экспериментальный набор для определения структуры получен и обработан как в случае фазы I, но при другой температуре. Структура ганомалита была решена первоначально в пр. гр. Р6 и затем уточнена с использованием образца из того же месторождения с понижением симметрии – в пр. гр. P3, что, однако, не улучшило результаты уточнения проблемных заселенностей позиций и длин связей, как это проанализировано в [24]. Структуру синтетического германата свинца также определяли в пр. гр. Рб и РЗ, для исследования использовали рентгено- и нейтрондифракционные методы, монокристаллы и порошки, метод Ритвельда [24].

Несмотря на явную структурную аналогию, первоначально расчет для фазы II был выполнен прямыми методами с использованием SHELXS в пр. гр. РЗ. Получены позиции катионов, соответствующие позициям в структуре ганомалита с учетом различия составов, структурные модели полностью совпали. Анализ расположения атомов с использованием программы WINATOM [29] показал, что имеется зеркальная плоскость m_{z} , и нет оснований для занижения симметрии. Дальнейшее уточнение структуры проводили в надгруппе P6(P3/m), переход к ней сопровождался изменением кратностей соответствующих позиций атомов. Тепловые смещения атомов и межатомные расстояния свидетельствовали о необходимости учета изоморфных замещений в тетраэдрах, занятых одновременно Si и Ge. Их соотношение подбирали описанным выше способом, анализируя фактор расходимости, тепловые смещения и межатомные расстояния. Пик вблизи атома Pb1 указывал на то, что данная позиция расшеплена. Заселенности основной и дополнительной позиций были найдены путем варьирования и уточнения, как и в предыдущем случае. В ряде позиций наблюдался дефицит атомов свинца (Pb2, Pb4 и особенно Pb6). Уточнение позиционных параметров и тепловых смещений всех атомов, кроме O1, O7 и Pb11, в анизотропном приближении выявило рацемическое двойникование, которое было введено в уточнение. Соотношение компонент двойника составило 0.528 : 0.472. В ходе уточнения варьировали весовую схему и вводили поправку на аномальное рассеяние. Оценка баланса валентных усилий показала, что неполное заселение позиций атомами

	Pb _{19.4} Na _{1.9} [Si ₁₀ O ₂₅] (CO ₃) ₉ (OH) _{12.5} .	$\frac{Pb_{4.37}[(Ge_{0.7}Si_{0.3})_2O_7]}{[(Ge_{0.6}Si_{0.4})O_3(OH)] (II)}$			
химическая формула	· 1.5H ₂ O (I)				
M	5529.64 1254.00				
Сингония, пр. гр., <i>Z</i>	Тригональная, Р31m, 1	Гексагональная, $P\overline{6}$, 3			
<i>a</i> , <i>c</i> , Å	9.149(1), 21.566(2)	10.079(3), 10.444(3)			
$V, Å^3$	1563.4(3)	918.7(5)			
D_x , г/см ³	5.765	6.800			
Излучение	Mo <i>K</i> _α , 0.71073				
μ, мм ⁻¹	52.456	64.78			
<i>Т</i> , К	100	150			
Размер образца, мм	$0.275 \times 0.125 \times 0.025$	$0.075 \times 0.075 \times 0.15$			
Дифрактометр	Bruker APEX II				
Тип сканирования	Ω				
θ_{max}	30.56	28.59			
Пределы hkl	$-13 \le h \le 13, -13 \le k \le 13, -30 \le l \le 30$	$-13 \le h \le 13, -13 \le k \le 13, -14 \le l \le 14$			
Количество рефлексов измерен-	20367/3528/2894/0.144	10671/1600/1519/0.0811			
ных/независимых/с $I \ge 1.96\sigma(I)/R_{ycp}$					
Метод уточнения	МНК по $F^2(hkl)$				
Весовая схема	$1/[\sigma^2(F_o)^2 + (0.1264P)^2 + 38.1638P],$	$1/[\sigma^2(F_o)^2 + (0.1132P)^2 + 5.6749P],$			
	$P = [\max(F_o)^2 + 2(F_c)^2]/3$	$P = [\max(F_o)^2 + 2(F_c)^2]/3$			
Число параметров	131	92			
R _{all}	0.0894	0.0642			
R_{gt}, R_{wgt}	0.0717, 0.1874	0.0613, 0.1651			
S	1.03	1.127			
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-3.63/9.75	-5.082/5.093			
Программы	SHELX				

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структур І и ІІ

Рь приводило к некоторому избыточному отрицательному заряду в формуле. По-видимому. вклад валентных усилий лишь (Ge,Si)2-тетраэдра с увеличенным расстоянием и Рb5-катиона в О2-позицию свидетельствовал, что она отвечает преимущественно (ОН)-группе, что согласуется с условиями гидротермального синтеза кристаллов. Заключительная формула образца $Pb_{4.37}[(Ge_{0.7}Si_{0.3})_2O_7][(Ge_{0.6}Si_{0.4})O_{2.74}(OH)_{1.26}], Z = 3.$ Кристаллографические данные, характеристики эксперимента и результаты уточнения структуры приведены в табл. 1, 2. Информация о структуре имеется в банке данных ССДС (CSD), номер депозита 2012462.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристаллическая структура нового силикатакарбоната I носит ярко выраженный слоистый характер (рис. 1). В ней можно выделить силикатные и карбонатные фрагменты. Силикатный радикал представлен двойным слоем, т.е. слоем из диортогрупп (средние расстояния Si–O в четырех независимых тетраэдрах 1.57, 1.60, 1.52 и 1.61 Å), схожим со слоем в (Pb_{4.8}Na_{1.2})[Si₈(Si_{1.2}B_{0.8})O₂₅], структура которого была определена в пр. гр. $R\overline{3}$ с. Она состоит из силикатных слоев, обрамленных (Si,B)-тетраэдрами, вершины которых ориентированы вовне. Их треугольные основания представляют собой грани незанятого октаэдра внутри двойного слоя, что роднит данную структуру с барисилитом, где октаэдр занят атомом свинца. Симметрия блока из октаэдра и шести тетраэдров отвечает 32, в то время как в новом полярном соединении с пр. гр. Р31*т* локальная симметрия слоя включает в себя зеркальную псевдоплоскость m_{τ} помимо реальной оси 3 (3/m = 6). Позиция Pb11 внутри слоя координирована полуикосаэдром за счет нарушающих псевдосимметрию 3/*т* двух тетраэдров Si3–Si4 (рис. 1в), в то время как остальные атомы ей подчиняются. Силикатный двухэтажный "слой", в котором располагаются изолированные группировки из диорто-

групп с одним объединяющим тетраэдром, был

найден в структуре синтетического $Pb_{21}[Si_7O_{22}]_2$

НОВЫЕ СИЛИКАТЫ СВИНЦА

Атом	s.o.f.	Позиция и симметрия	x/a	y/b	z/c	$U_{_{ m ЭKB}}, { m \AA}^2$		
Фаза І								
Pb1	1	3 <i>d</i> , <i>m</i>	0.3463(2)	0	0.24457(8)	0.0172(3)		
Pb2	1	3 <i>d</i> , <i>m</i>	0.3461(2)	0	0.45338(8)	0.0176(3)		
Pb3	1	1 <i>a</i> , 3 <i>m</i>	0	0	0.5439(2)	0.0218(6)		
Pb4	1	1 <i>a</i> , 3 <i>m</i>	0	0	0.1536(2)	0.0208(6)		
Pb5	1	2 <i>b</i> , 3	1/3	2/3	0.5676(1)	0.0165(4)		
Pb6	1	2 <i>b</i> , 3	1/3	2/3	0.1300(1)	0.0164(4)		
Pb7	0.18	1 <i>a</i> , 3 <i>m</i>	0	0	0.3463(11)	0.010(8)		
Pb7′	0.12	1 <i>a</i> , 3 <i>m</i>	0	0	0.361(3)	0.026(10)		
Pb8	1	3c, m	0.2382(2)	0	0.0202(1)	0.0310(2)		
Pb9*	1	<i>2b</i> , 3	1/3	2/3	0.3495(4)	0.0152(4)		
Pb10	1	3c, m	0	0.2381(2)	0.6777(1)	0.0311(4)		
Pb11*	1	1 <i>a</i> , 3 <i>m</i>	0	0	-0.1515(6)	0.0424(2)		
Si1	1	<i>2b</i> , 3	1/3	2/3	-0.0388(7)	0.019(3)		
Si2	1	<i>2b</i> , 3	1/3	2/3	0.7360(7)	0.0019(3)		
Si3	1	3c, m	0.6434(15)	0	-0.2222(6)	0.024(2)		
Si4	1	3c, m	0	-0.3572(2)	-0.0801(6)	0.028(3)		
01	1	6d, 1	0.330(2)	-0.525(3)	0.268(1)	0.021(4)		
O2(OH)	1	6d, 1	0.334(2)	-0.528(3)	0.439(1)	0.023(4)		
03	1	6d, 1	0.136(3)	-0.191(3)	0.122(1)	0.020(4)		
O4	1	3c, m	0	-0.1883(1)	0.2693(9)	0.020(5)		
05	1	3c, m	0.531(4)	0	0.574(2)	0.032(7)		
O6	1	6 <i>d</i> , 1	0.671(2)	-0.140(3)	0.577(1)	0.018(4)		
O7	1	3c, m	0	-0.472(3)	0.124(2)	0.025(6)		
O8	1	6d, 1	0.473(6)	-0.16(26)	-0.230(2)	0.077(12)		
09	1	2b, 3	1/3	2/3	0.663(6)	0.14(5)		
O10	1	6d, 1	0.145(7)	-0.391(8)	-0.056(2)	0.11(2)		
O11(H ₂ O,OH)*	1	3c, m	0.296(6)	0	-0.165(3)	0.066(5)		
012	1	3 <i>c</i> , <i>m</i>	0.773(4)	0	-0.264(2)	0.045(9)		
013	1	2 <i>b</i> . 3	1/3	2/3	0.029(5)	0.12(4)		
O14(OH)	1	1a, 3m	0	0	0.647(3)	0.028(1)		
O15(OH)	1	3c, m	0.337(2)	0	0.352(2)	0.013(4)		
O16(OH)	1	1 <i>a</i> , 3 <i>m</i>	0	0	0.052(3)	0.024(11)		
017	1	3 <i>c</i> , <i>m</i>	0	-0.200(7)	-0.060(3)	0.082(15)		
O18	1	3c, m	0	-0.303(8)	-0.160(3)	0.086(16)		
C1	1	6 <i>d</i> , 1	0.329(7)	-0.671(7)	0.270(3)	0.050(17)		
C2	1	3c, m	0	-0.337(3)	0.1205(17)	0.008(6)		
C3	1	3c. m	0.663(4)	0	0.579(2)	0.017(8)		
I			Фаза II	I				
Pb1	0.9	6h, 1	0.2654(4)	0.2662(3)	0.1817(1)	0.0178(3)		
Pb1'	0.1	,	0.294(5)	0.286(5)	0.186(4)	0.066(15)		
Pb2	0.6	2 <i>b</i> , 3	1/3	2/3	0.3429 (3)	0.0210(6)		
Pb3	1	2 <i>c</i> , 3	2/3	1/3	0.3226(2)	0.0219(5)		
Pb4	0.6	1 <i>b</i> , 3	1/3	2/3	0	0.0215(9)		

Таблица 2. Координаты базисных атомов и эквивалентные изотропные параметры для структур I и II

Атом	s.o.f.	Позиция и симметрия	x/a	y/b	z/c	$U_{ m _{3KB}}, { m \AA}^2$
Pb5	1	3g, m	0.2488(2)	0.9969(2)	0.5	0.0217(4)
Pb6	0.3	1 <i>c</i> , 3	2/3	1/3	0	0.019(2)
Ge1**3	1	6 <i>h</i> , 1	0.0174(3)	0.3974(4)	0.1514(3)	0.0148(6)
Ge2**	1	3g, m	0.3935(5)	0.3881(5)	0.5	0.0152(9)
01	1	3g, m	0.286(2)	0.475(2)	0.5	0.007(4)
O2**	1	3g, m	0.580(3)	0.506(3)	0.5	0.031(7)
O3	1	6 <i>h</i> , 1	0.353(2)	0.270(2)	0.376(2)	0.024(4)
O4	1	6 <i>h</i> , 1	-0.1735(2)	0.3265(2)	0.1593(2)	0.029(6)
O5	1	3g, m	0.069(3)	0.361(3)	0	0.024(6)
O6	1	6 <i>h</i> , 1	0.124)	0.5932(2)	0.1700(2)	0.029(6)
O7	1	6 <i>h</i> , 1	0.088(2)	0.326(3)	0.258(2)	0.031(5)

Таблица 2. Окончание

Примечание. s.o.f. – заселенность позиции.

* Состав позиций (I): Pb9 = $Na_{0.7}Pb_{0.3}$; Pb11 = $Pb_{0.54}Na_{0.46}$; O11 = $OH_{0.566}H_2O_{0.434}$.

** Состав позиций (II): Ge1 = Ge_{0.7}Si_{0.3}; Ge2 = Ge_{0.6}Si_{0.4}; O2 = OH_{0.5}2H₂O_{0.48}.

[Si₄O₁₃] [15] в сочетании со вторым одиночным тетраэдрическим "слоем".

В ряде других силикатов со свинцом (бритвинит, молибдофиллит, роймиллерит) топология построек иная: октаэдрический слой окружен сверху и снизу одиночными тетраэдрическими силикатными слоями, образуются трехслойные пакеты [21-23]. Такая топология характерна также для семейства родезита и титаносиликатных слюд. Во все эти структуры входят СО₃-группы, и все данные минералы относятся к силикатамкарбонатам. Для большинства из них характерно разупорядочение, особенно в карбонатных фрагментах. Сравнение показывает, что карбонатный фрагмент нового силиката-карбоната I имеет большое сходство с плюмбонакритом [30]. Сопоставление фрагментов обеих структур в боковом ракурсе (рис. 1а, 1б) обнаруживает три карбонатных слоя, они показаны отдельно в проекции на плоскость ab (рис. 1в). В трех независимых треугольниках в структуре I средние расстояния C-O 1.30, 1.28 и 1.29 Å. Между двумя близко расположенными слоями L1 и L2 межслоевое пространство практически не занято катионами, и они лишь слегка смещены из плоскостей СО₃-слоев. Третий одиночный слой L3 расположен в новой структуре несколько дальше, чем в плюмбонакрите, и межслоевое пространство заполнено в большей степени атомами Pb, в том числе с дефицитом. В новой структуре данный слоевой фрагмент, обозначенный С (carbon), чередуется со слоем силикатным S (silicon, рис. 1a), сходным с найденным ранее (рис. 1б). Можно сказать, что имеет место гибридная структура наподобие силиката-карбоната $K_2Ca[Si_2O_5](CO_3)$ [31]. Расчет

формул слоев $S = Pb_{6.5}Na_{0.46}(OH)_2[Si_{10}O_{25}]$ \cdot 1.5H₂O и C = Pb_{12.9}Na_{1.4}(CO₃)₉(OH)₉ показывает, что они практически электронейтральны и подобны соответствующим фазам. Сопряжения и варианты возможны благодаря близости параметров a, b ячеек и симметрийного соответствия (условия соседства в ОД-теории [32]). Данное семейство из трех структур есть гомологический ряд с двумя крайними членами. Рассмотрение локальной симметрии слоев S и C показывает, что присутствие зеркальной псевдоплоскости в S позволяет предсказать еще один структурный вариант, когда последовательность фрагментов отвечает не S, C, S, C..., а S, C, S, -C, т.е. слой S окружен и слоем С, и зеркально отраженным по оси с – С, что создает новую тройку. Разнообразие в последовательности троек приведет к более сложным длиннопериодическим структурам. Они могут быть описаны как C,S,C,S,-C,S,C,S,-C... или иной более сложной последовательностью, а с передачей симметрии – буквами рАрАqАрАqАq... [33]. Основой разнообразия здесь является более высокая локальная псевдосимметрия слоя S (A), нежели полярного C (p, q), что отражено в формуле Дорнбергер—Шифф Z = N/F [32].

Атомы Pb, изобилующие в структуре, имеют "неправильные" полиэдры. До ближайших атомов O на расстояниях до 3 Å их координационные числа (**KH**) и расстояния равны: у Pb1 K**H** = 6 + 1, 2.80–2.32 Å; у Pb2 K**H** = 4 + 1, 2.72–2.18 Å; Pb3, Pb4, Pb5, Pb6 имеют одинаковые K**H** = 6 + 1, 2.72– 2.05 Å; для малозаселенной позиции Pb7 K**H** = 3, 2.42 Å (зонтик, описанный ранее [15, 4]); у Pb8 K**H** = 4 + 1, 2.6–2.30 Å; для позиции Pb9, заполненной преимущественно атомами Na, K**H** = 6, октаэдр, 2.49 Å; у Pb10 K**H** = 4 + 1, 2.64–2.28 Å; у

Рис. 1. Кристаллическая структура I в боковой проекции: показаны (Ge,Si)-тетраэдры, серыми шарами – атомы Pb, группы (OH) и молекулы H₂O, связи C–O выделены темным цветом, квадратной скобкой выделен карбонатный (C) и силикатный (S) фрагменты (a). Боковая проекция независимого фрагмента C плюмбонакрита $Pb_{15}O_3(CO_3)_9(OH)_6$ (сверху) и силикатного S ($Pb_{4.8}Na_{1.2}$][Si₈(Si_{1.2}B_{0.8})O₂₅ (снизу) (б), стрелки указывают взаимосвязи. Карбонатные и силикатный слои новой фазы (сверху) и плюмбонакрита и ($Pb_{4.8}Na_{1.2}$)[Si₈(Si_{1.2}B_{0.8})O₂₅ (снизу) в проекции на плоскость *ab* (в).

Рb11 KЧ = 6 + 3, 2.88–2.68 Å. Для многих позиций характерна одна укороченная связь, обозначенная +. Весьма характерно образование оксоцентрированных тетраэдров [OPb₄], что было описано ранее для других соединений свинца, в том числе для плюмбонакрита [30]. Рассмотрение структуры I в этом аспекте показывает, что имеются два изолированных оксоцентрированных

тетраэдра [OPb₄] с центральными гидроксильными группами O14(OH) : 3Pb10 + Pb3 с расстояниями 2.28 × 3 + 2.22 Å и O16(OH) : 3Pb8 + Pb4 с расстояниями 2.30 × 3 + 2.13 Å. Их расположение подчеркивает псевдоплоскость m_z , характерную для силикатного фрагмента, описанную выше.

Силикат-германат $Pb_{4,37}[(Ge_{0,7}Si_{0,3})_2O_7][(Ge_{0,6}Si_{0,4})O_3(OH)]$ (II) соче-

КРИСТАЛЛОГРАФИЯ том 66 № 1 2021

тает в своем анионном радикале Si и Ge при его преобладании. Он представляет собой аналог природного силиката ганомалита Pb₉Ca₅Mn[Si₂O₇]₃[SiO₄]₃ и изоструктурного синтетического германата Pb₅[Ge₂O₇][GeO₄], который обладает сегнето- и пироэлектрическими свойствами, а также оптически активен, поэтому его структуру исследовали неоднократно. В [24] подтверждена его ацентричность и полярность – пр. гр. РЗ. В то же время ганомалит и его безмарганцевый аналог вайнебурнамит Pb₉Ca₆[Si₂O₇]₃ [SiO₄]₃ [34] кристаллизуются в пр. гр. $P\overline{6}$. Фаза II по своему строению ближе всего к высокотемпературной модификации германата свинца [35], пр. гр. Рб (в настоящих опытах отмечено влияние минерализаторов, позволяющее получить высокотемпературные фазы при существенно более низких температурах), но отличается изоморфным вхождением в GeO₄-тетраэдры атомов Si, что приближает ее к минералу. Во всех соединениях данного структурного типа наследуются координационные полиэдры крупных катионов Pb, Ca, Mn, характерные для ганомалита, которые заняты исключительно Pb, что определяется симметрийными законами строения. Для ближайших атомов О на расстояниях до 3 Å их KЧ, расстояния и полиэдры: Pb1 3, 2.21-2.31 Å, зонтик; то же для расщепленной позиции Pb1'; Pb2 6, 2.40-2.59 Å, октаэдр; Pb3 3, 2.37 Å, зонтик; Pb4 6, 2.57 Å, призма; Pb5 6, 2.20–2.73 Å, октаэдр; Pb6 6, 2.34 Å, призма. Оба независимых тетраэдра слегка различаются количеством примеси Ge, что коррелирует со средними межатомными расстояниями 1.71 Å в диортогруппе и 1.67 Å в изолированном тетраэдре.

Силикат-германат Pb₈K_{1.68}Na_{0.32}[(Ge_{0.65}Si_{0.35})₂O₇] [6] – аналог минерала назонита Pb₆Ca₄[Si₂O₇]₃Cl₂, в состав его тетраэдра также входят оба элемента, и реализуется несколько другое соотношение крупных катионов. Известно, что назонит – это "удвоенный" зеркальной плоскостью *m*₇ апатит (основоположник структурного типа - фосфат кальция, известны многочисленные разновидности соединений среди силикатов и германатов разнообразных катионов), его анионный радикал из ортосиликата переходит в диортосиликат с двумя тетраэдрами, имеющими общую вершину, а параметр с удваивается. Ганомалит содержит в структуре и одиночные апатитовые, и двойные назонитовые тетраэдрические слои, что позволило рассмотреть три данные структуры как полисомы [24]. Представленный в работе метод с выделением слоев нагляден, использует буквенную символику и позволяет предложить ряд гипотетических структур, однако полезно, как и в случае рассмотренной ранее фазы I, выполнить тополого-симметрийный анализ данного семейства.

В [24] рассмотрение начинается с выделения двух слоев, α и β , но это один и тот же слой α с локальной симметрией 3/т (6), размноженный центром инверсии пр. гр. Р6₃/*m*. Они не сочленяются друг с другом (апатит 2Н, рис. 2а). Расположение $\alpha \alpha$ (1H) отвечает трансляции t_{z} того же слоя. Предположена возможность сочленения тетраэдров вершинами в цепочку (подразумевается размножающая зеркальная плоскость *m*, в паре это будет диортогруппа назонита), однако она известна лишь для CuGeO₃. В силу этого вероятность реализации сложных сочетаний, рассмотренных в [24] с таким фрагментом, маловероятна. В случае апатита между слоями с одиночными тетраэдрами на тройных осях находится октаэдрическая катионная позиция, что отвечает центру инверсии, размножающему слои. Для следующего по сложности минерала назонита характерен слой, составленный из диортогрупп в результате сочленения двух апатитовых слоев зеркальной плоскостью *m*₇ (без дальнейшего продолжения до цепочки) в той же пр. гр. $P6_3/m$, что и у апатита. Параметр с увеличен, координационный полиэдр внутри тетраэдрического слоя уже призма (m_z), а между слоями, где расположены размножающие их центры инверсии, размещаются октаэдры (рис. 2б). Для ганомалита характерно сочетание обоих фрагментов, и данная структура периодическая в ОD-терминологии [32], в то время как две первые представляют собой политипы с максимальной степенью порядка (MDO). Во всех трех структурах, как это характерно для политипов, одинаковые параметры a, b, и все разнообразие происходит за счет чередования вдоль оси с (одномерный полиморфизм). Симметрия обоих двумерных фрагментов ("слоев"), обозначенных на рис. 2 как A (apatite) и N (nasonite), отвечает 3m, и в силу ее одинаковости симметрийно обусловленных вариантов нет, а возможно только изменение последовательности чередования, что характерно, в частности, для высокотемпературных проводников и ряда других структурных семейств, например Но-борокарбидов [36]. Подобный случай принято характеризовать как полисоматический [24]. По существу здесь, как и в предыдущем семействе фазы I, имеется гомологический ряд с двумя крайними членами, апатитом и назонитом. В [24] детально проанализирована имеющаяся информация о разновидностях в данном структурном семействе и обсуждена возможность реализации сложных вариантов. Как это характерно для подобных структур, они обладают и порядком, и заметным беспорядком, т.е. носят ОD-характер. Толщина двумерного слоя A ~3.55 Å, слоя N ~6.65 Å. Пара таких слоев отвечает параметру ганомалита, однако можно предвидеть структуры, в которых, например, будет чередование ANAAN... или

Рис. 2. Кристаллические структуры апатита (а), назонита (б) и ганомалита (в) (**II**) в боковой проекции: показаны SiO_4 -тетраэдры, призмы и октаэдры, обозначены фрагменты апатита A и назонита N, а также симметрия слоев и размножающие их элементы симметрии.

ААNNAA..., или наблюдается больший беспорядок — вплоть до разупорядочения вдоль направления чередования слоев. Если использовать буквы, отражающие симметрию слоев, то это могут быть, например, О и Н [36].

Рассмотренный принцип строения встречается в достаточно сложных структурах, например в синтетическом $Pb_{21}[Si_7O_{22}]_2[Si_4O_{13}]$ [15] (рис. 3), который, как упоминалось выше, имеет "двойной" слой, подобный слою в ($Pb_{4.8}Na_{1.2}$)[Si₈(Si_{1.2}B_{0.8})O₂₅]. Сопоставляя две данные структуры, можно сказать, что первая построена из слоев двух типов – "апатитового", "А", и "назонитового", "N", а вторая – только из "N". Апатитоподобный слой "А" (В в [15]), как и ранее,

Рис. 3. Кристаллическая структура синтетического $Pb_{21}[Si_7O_{22}]_2[Si_4O_{13}]$ в боковой проекции, показаны SiO_4 -тетраэдры, обозначены слои "A", "N", элементы симметрии слоев и размножающие слои.

обладает зеркальной плоскостью симметрии *m*₂ (позиция Si5 занята наполовину, и имеются статистически заселенные два тетраэдра, связанные гранью). Второй двойной слой "N" (А в [15]) не обладает, как назонит, зеркальной симметрией, а лишь осью 3. Он повторяется в структуре, будучи размноженным зеркальной плоскостью "апатитового слоя", создавая тройки слоев типа ганомалита. Буквенная симметрия для тройки будет рАq, однако в отличие от ганомалита тройки размножены центром инверсии 1, так что последовательность слоев "А", "N" нарушена. Возможна более сложная последовательность их чередования: "N", "A", "N", "N", "A", или pAqbAd.... Это отвечает увеличенному параметру структуры c == 34.23 Å по сравнению с ганомалитом. Причина

= 34.23 Å по сравнению с ганомалитом. Причина существования новой последовательности слоев лежит в отсутствии зеркальной плоскости в модифицированном "N"-слое, что снижает его симметрию по сравнению с "A"-слоем и приводит к новому варианту пар и троек слоев согласно ODтеории. Во второй структуре представлен один модифицированный "N"-слой (рис. 16), также утративший m_z , однако сохраняющий двухэтажность. Каждый из слоев не равен в точности базовым слоям, однако сохраняет с ними сходство.

выводы

Методом гидротермального синтеза получены и структурно изучены новый сложный силикат-карбонат свинца Pb_{19.32}Na_{1.86}[Si₁₀O_{24.96}](CO₃)₉

 $(OH)_{12.7}$ · 1.3H₂O (I) и силикат-германат свинца $Pb_{437}[(Ge_{07}Si_{03})_{2}O_{7}][(Ge_{06}Si_{04})O_{274}(OH)_{126}]$ (II), родственный ганомалиту, относящийся к достаточно редкой группе силикатов-германатов. Для кристаллов характерны политипная природа строения и невысокое качество в силу их разупорядочения и дефектности. Показано, что новый силикат-карбонат представляет собой гибридную структуру, состоящую из карбонатного плюмбонакритового и силикатного фрагмента. близкого к исследованному ранее Pb-боросиликату. Закон строения данных структур определен в рамках тополого-симметрийного анализа. Для ряда апатит-назонит-ганомалит также выполнен тополого-симметрийный анализ ОD-теории, показано его применение для более сложных структур, в частности для Pb₂₁[Si₇O₂₂]₂[Si₄O₁₃]. Предложена нестандартная буквенная символика, отражающая симметрию слоев. Рассмотренные минералы образуются в природе в скарново-пегматитовых процессах, что близко к гидротермальным условиям получения кристаллов в ростовых экспериментах. Апатит, ганомалит, вайнебурнамит и назонит – все существенно кальциевые и свинцовые минералы, т.е. имеют общий генезис. что характерно для образования политипов и ODструктур.

Авторы выражают благодарность Ю.В. Нелюбиной и С.М. Аксенову за помощь в получении экспериментальных данных, ЮВН за введение поглощения для фазы I, С.Ю. Стефановичу за определение сигнала ГВГ и сотрудникам лаборатории локальных методов исследования вещества МГУ за определение состава кристаллов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пущаровский Д.Ю*. Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.
- Либау Φ. Структурная химия силикатов. М.: Мир, 1988. 412 с.
- Inorganic Crystal Structure Data Base ICSD. Fachinformationzentrum (FIZ) Karlsruhe. 2011. I version.
- Belokoneva E.L., Morozov I.A., Volkov A.S. et al. // Solid. State Sci. 2018. V. 78C. P. 69. https://doi.org/10.1016/j.solidstatesciences.2018.02.012
- Belokoneva E.L., Stefanovich S.Yu., Dimitrova O.V. et al. // Solid. State Sci. 2020. P. 106106.
 - https://doi.org/10.1016/j.solidstatesciences.2019.106106
- 6. Белоконева Е.Л., Морозов И.А., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 6. С. 884.
 - https://doi.org/10.1134/s1063774518060044
- 7. Белоконева Е.Л., Морозов И.А., Димитрова О.В., Волков А.С. // Кристаллография. 2019 Т. 64. № 2. С. 228.

https://doi.org/10.1134/s1063774519020068

 Boucher M.L., Peacor D.R. // Z. Krist. 1968. B. 126. S. 98.

- Dent Glasser L.S., Howie R.A., Smert R.M. // Acta Cryst. B. 1981. V. 37. P. 303.
- 10. Kato K. // Acta Cryst. B. 1980. V. 36. P. 2539.
- 11. Kato K. // Acta Cryst. B. 1982. V. 38. P. 57.
- Petter W., Harnik A.B., Kepple I.U. // Z. Krist. 1971. B. 133. S. 445.
- 13. Lajzerovich J. // Acta Cryst. 1966. V. 20. P. 357.
- 14. *Kampf A.R., Rossman G.R., Housley R.M.* // Am. Mineral. 2009. V. 94. P. 1198.
- Siidra O.I., Zenko D.S., Krivovichev S.V. // Am. Mineral. 2014. V. 99. P. 817. https://doi.org/10.2138/am.2014.4723
- Еремина Т.А., Белоконева Е.Л., Димитрова О.В., Волков А.С. // Кристаллография. 2019. Т. 64. № 3. С. 375. https://doi.org/10.1134/s1063774519030040
- 17. *Riebe H.J., Keller H.I.* // Z. Anorg. Allg. Chem. 1989. V. 574. P. 182.
- Benna P., Tribaudino M., Bruno E. // Am. Mineral. 1996. V. 81. P. 1337.
- 19. *Grew E.S., Peacor D.R., Rouse R.C. et al.* // Am. Mineral. 1996. V. 81. P. 743.
- Белоконева Е.Л., Димитрова О.В. // Кристаллография. 2011. Т. 56. № 1. С. 116. https://doi.org/10.1134/s1063774511010056
- 21. Якубович О.В., Масса В., Чуканов Н.В. // Кристаллография. 2008. Т. 53. № 2. С. 233.
- Kolitsch U., Merlino S., Holtstam D. // Mineral. Mag. 2012. V. 76. P. 494. https://doi.org/10.1180/minmag.2012.076.3.04
- Chukanov N.V., Jonsson E., Aksenov S.M. et al. // Phys. Chem. Minerals. 2017. V. 44. P. 685. https://doi.org/10.1007/s00269-017-0893-2
- 24. Baikie T., Pramana S.S., Ferraris C. et al. // Acta Cryst. B. 2010. V. 66. P. 1. https://doi.org/10.1107/s0108768109053981
- Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798.
- APEX2, Bruker AXS Inc., Madison, Wiskonsin, USA, 2009.
- 27. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 28. Programs SAINT and SADABS, Bruker AXS Inc.: Madison, WI-53719, USA, 1999.
- 29. *Dowty E*. Atoms 3.2 A computer program for displaying atomic structures. Kingpost, TN 37663, 1995.
- Krivovichev S.V., Burns P.C. // Mineral. Mag. 2000. V. 64. P. 1069.
- Belokoneva E.L, Stefanovich S.Yu., Volkov A.S., Dimitrova O.V. // Solid State Sci. 2016. V. 60. P. 23. https://doi.org/10.1016/j.solidstatesciences.2016.08.003
- 32. Dornberger-Schiff K. Grundzüge einer Theorie von OD-Strukturen aus Schichten. Berlin: Abh. Deutsch. Akad. Wiss., 1964. B. 3. S. 1.
- Белоконева Е.Л. // Кристаллография. 2008. Т. 53. № 3. С. 431. https://doi.org/10.1134/s1063774508030061
- Kampf A.R., Housley R.M., Rossman G.R. // Am. Mineral. 2016. V. 101. P. 2423. https://doi.org/10.2138/am-2016-5844
- 35. Newnham R.E., Wolfe R.W., Darlington C.N.W. // J. Solid State Chem. 1973. V. 6. P. 378.
- Belokoneva E.L., Mori T. // Cryst. Res. Technol. 2009.
 V. 44. № 1. P. 19. https://doi.org/10.1002/crat.200800395

КРИСТАЛЛОГРАФИЯ том 66 № 1 2021