—— КРИСТАЛЛОХИМИЯ —

УЛК 548.32

ОЦЕНКА ВХОЖДЕНИЯ ИОНОВ Ті⁴⁺ В СОСТАВ МАНТИЙНЫХ ГРАНАТОВ: РЕЗУЛЬТАТЫ АТОМИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ

© 2021 г. Н. Н. Еремин^{1,*}, Н. Д. Гостищева¹, А. В. Бобров^{1,2,3}, А. А. Бенделиани^{1,2}, А. И. Бурова¹

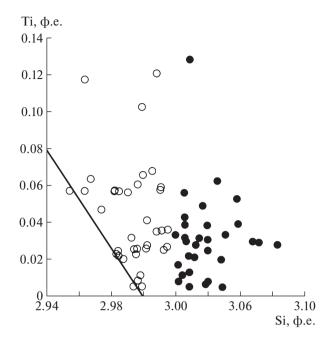
¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия ³ Институт экспериментальной минералогии РАН им. Д.С. Коржинского, Черноголовка, Россия *E-mail: neremin@geol.msu.ru

Поступила в редакцию 22.06.2020 г. После доработки 06.07.2020 г. Принята к публикации 06.07.2020 г.

На основании данных атомистического моделирования проанализированы схемы изоморфного вхождения ионов Ti^{4+} в кристаллические структуры гранатов $\mathrm{Mg_3Al_2(SiO_4)_3}$ и $\mathrm{MgSiO_3}$ в диапазоне давлений 7—25 ГПа и температур 1713—1913 К.

DOI: 10.31857/S0023476121010057

ВВЕДЕНИЕ


Титан является одной из наиболее значимых примесей в составе природных гранатов. Собственно титанистыми разновидностями являются шорломит $Ca_3Ti_2(SiFe_2^{3+})O_{12}$, моримотоит $Ca_3(TiFe^{2+})(SiO_4)_3$ и хатчеонит $Ca_3Ti_2(SiAl_2)O_{12}$ [1-3]. Богатые титаном гранаты характерны для различных парагенезисов. Особенно часто они встречаются в щелочных изверженных породах типа нефелиновых сиенитов и ийолитов, а также в их эффузивных аналогах — фонолитах, нефелинитах и так далее. Обогащенные титаном гранаты известны также в скарновых месторождениях, а хатчеонит был обнаружен в составе углистого хондрита Allende [3].

Содержание TiO_2 в описанных разностях гранатов достигает 17-20 мас. %, а в хатчеоните превышает 25 мас. %. Считается [4-6], что атомы Ti^{4+} занимают октаэдрическую позицию в структуре граната, что возможно только при сопряженном вхождении в эту позицию ионов двухвалентного металла, чаще всего железа $(2^{VI}Fe^{3+} \rightarrow {}^{VI}Ti^{4+} + {}^{VI}Fe^{2+})$, либо при реализации более сложного механизма типа $2^{VI}Fe^{3+} + 2^{IV}Si^{4+} \rightarrow 2^{VI}Ti^{4+} + 2^{IV}Fe^{3+}$, при котором количество кремния в тетраэдрах становится значительно ниже 3 **ф.е.** (формульных единиц). В литературе рассматривается также вхождение атомов титана в тетраэдрическую позицию, занимаемую кремнием [7, 8].

ОБЗОР ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ И ДАННЫХ О СОСТАВЕ ПРИРОДНЫХ ГРАНАТОВ

Согласно результатам изучения природных и синтетических титансодержащих гранатов с помощью метода XAFS [6] вхождение титана в структуры этих минералов и одновременное появление этого элемента в октаэдрических и тетраэдрических позициях можно контролировать сразу несколькими схемами. В этих случаях, помнению авторов цитируемой работы, соотношение VITi и IVTi может быть использовано для термобарометрических оценок. В частности, намечается тенденция увеличения доли IVTi с повышением температуры при низком давлении. Из-за ограниченности экспериментальной и расчетной информации подобные сведения о гранатах мантийных минеральных ассоциаций пока отсутствуют.

Вместе с тем вхождение титана в структуру граната влияет на кристаллохимические и физические свойства данных соединений, а также на физико-химические параметры равновесий, что в свою очередь может смещать границы фазовых переходов в мантии, а следовательно, требует детального изучения механизмов вхождения примесного титана в структуру высокобарных гранатов при мантийных P-T-параметрах. В мантийных ассоциациях титансодержащие гранаты, в том числе мэйджоритового типа, встречаются в ксенолитах эклогитов, а также в виде включений в кристаллах алмаза эклогитового парагенезиса [9—11]. Источником вещества в данном случае

Рис. 1. Представительные составы титансодержащих гранатов из включений в алмазах из кимберлитов Южной Африки и Канады [14—18]. Залитыми кружками показаны гранаты мэйджоритового типа (Si > 3.02 ф.е.), а пустыми — гранаты второго типа (Si < 3.02 ф.е.) по критерию [19]. Наклонная линия характеризует линию $Mg_3Al_2Si_3O_{12}-Mg_4Ti_4O_{12}$.

можно считать материал океанической коры, который поступает в мантию в процессе субдукции и может достигать глубин, соответствующих нижней мантии Земли [12, 13].

На рис. 1 показана зависимость между содержанием титана и кремния в гранатах, образующих включения в алмазах Южной Африки и Канады. Среди гранатов значительная часть относится к мэйджоритовому типу (более 3.02 ф.е. Si), по критерию [19]. В гранатах второй группы количество кремния может опускаться существенно ниже 3 ф.е., в этом случае содержание титана и

Таблица 1. Результаты моделирования кристаллических структур гипотетических кубических соединений

, F, F						
	Mg ₃ (MgSi)Si ₃ O ₁₂	Mg ₃ (MgTi)Ti ₃ O ₁₂				
a, Å	11.54	12.31				
V, Å ³	1537.16	1866.35				
$d(^{ m VIII}{ m Mg-O}), { m \AA}$	2.24	2.36				
$d(^{VI}Mg-O), Å$	1.93	2.02				
$d(^{\text{VI}}\text{Si}(\text{Ti})-\text{O}), \text{Å}$	1.93	2.02				
$d(^{\text{IV}}\text{Si}(\text{Ti})-\text{O}), \text{Å}$	1.61	1.75				

кремния в них ограничивается линией тренда $Mg_3Al_2Si_3O_{12}-Mg_4Ti_4O_{12}$.

РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ

Главной целью настоящей работы было выявление закономерностей распределения примесного титана в структурах мантийных гранатов методами атомистического компьютерного моделирования в термодинамических условиях мантии Земли. Для оценки механизмов вхождения титана в состав мантийных гранатов, а именно в состав пиропа и мэйджорита, были смоделированы гипотетический упорядоченный кубический мэйджорит и гипотетический кубический титановый гранат, параметры которых представлены в табл. 1. Для расчетов использовали оптимизированную модель потенциалов межатомного взаимодействия для пар атомов Mg-O. Si-O. O-O. Al-O. Ті-О из [20], корректность которой применительно к задачам настоящего исследования была проверена в ходе первичных тестовых расчетов.

Расчеты изоморфного вхождения ионов Ti⁴⁺ осуществляли методом межатомных потенциалов [21] с использованием программы GULP [22] в сверхъячейках размерностью 2 × 2 × 2 (1280 атомов) со снятой нетрансляционной симметрией в диапазоне давлений 7—25 ГПа и температур 1713—1913 К. Для расчетов дефектов в исследуемых структурах использовали две геометрические модели: изолированные друг от друга на значительные расстояния дефекты в сверхъячейке и локальные ассоциаты.

В настоящей работе тестировали следующие схемы вхождения Ti^{4+} в $Mg_3Al_2(SiO_4)_3$ и $MgSiO_3$ с кубической структурой граната:

$$2AI^{3+} + Si^{4+} \rightarrow Mg^{2+} + {}^{IV}Ti^{4+} + {}^{IV}Ti^{4+},$$
 (1)

$$^{IV}Si^{4+} + ^{IV}Si^{4+} \rightarrow ^{IV}Ti^{4+} + ^{IV}Ti^{4+}.$$
 (2)

Расчеты показали, что вхождение титана в структуру пиропа более предпочтительно, чем в структуру мэйджорита (табл. 2). Разница значений

Таблица 2. Энергия вхождения титана в $Mg_3Al_2(SiO_4)_3$ и $MgSiO_3$ (эВ)

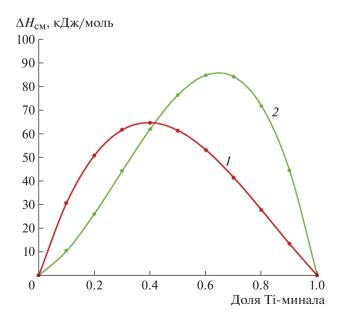

	$2Al^{3+} + Si^{4+} \rightarrow \rightarrow Mg^{2+} + {}^{VI}Ti^{4+} + + {}^{IV}Ti^{4+}$	$V^{I}Si^{4+} + V^{I}Si^{4+} \rightarrow V^{I}Ti^{4+} + V^{I}Ti^{4+}$
Локальный ассоциат	19.31	24.39
Изолированные дефекты	19.29	24.36

Таблица 3. Энергия вхождения титана в диапазоне давлений и температур, соответствующих геотерме мантии

<i>P</i> , ГПа	<i>T</i> , K	Энергия ассоциата дефекта, эВ				
		Пироп		Мэйджорит		
		$2Al^{3+} \rightarrow$ $\rightarrow Mg^{2+} + Ti^{4+}$		$ \begin{array}{c} ^{VI}Si^{4+} \rightarrow \\ \rightarrow {}^{VI}Ti^{4+} \end{array} $	$ \begin{array}{c} ^{IV}Si^{4+} \rightarrow \\ \rightarrow {}^{IV}Ti^{4+} \end{array} $	
7	1713	7.28	13.13	12.14	13.01	
10	1748	7.52	13.29	12.27	13.17	
14	1773	7.81	13.49	12.43	13.35	
20	1853	8.22	13.78	12.68	13.58	
24	1873	8.46	13.97	12.80	13.80	
25	1913	8.52	14.01	12.86	13.81	

энергии локальных ассоциатов и дефектов, изолированных друг от друга на значительных расстояниях, в обеих схемах оказалась крайне незначительной. В исследуемом диапазоне давлений и температур вхождение титана в структуру пиропа также остается энергетически более выгодным (табл. 3).

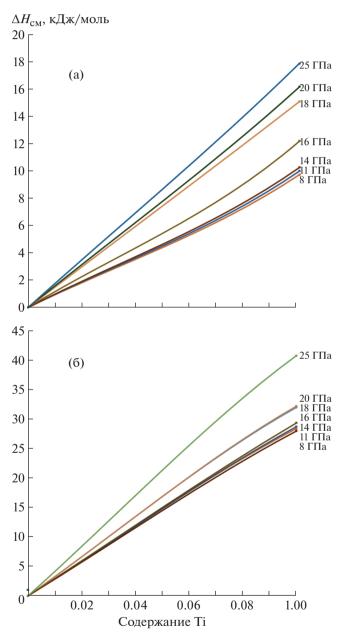

Отметим, что вхождение титана в октаэдр оказалось энергетически более предпочтительным, чем в тетраэдр, как в структуре пиропа, так и в структуре мэйджорита. Для пиропа выигрыш в энергии составляет 5.49—5.85 эВ, для мэйджорита — 0.87—0.95 эВ. Кроме того, с погружением на глу-

Рис. 2. Зависимость энтальпии смешения от состава твердых растворов мэйджорита (I) и пиропа (2) с гипотетическим Ті-миналом.

бину, а следовательно, с увеличением давления и температуры, вхождение титана в структуры данных гранатов становится менее предпочтительным.

Энтальпия смешения в системах пироп—титановый гранат и мэйджорит—титановый гранат была оценена в приближении бесконечного разбавления. На рис. 2 представлена зависимость энтальпии смешения от состава твердых растворов исследуемых гранатов с гипотетическим титановым гранатом, откуда можно сделать вывод, что

Рис. 3. Изменения зависимостей энтальпии смешения от состава твердых растворов в диапазоне давлений 7-25 ГПа: а — пиропа с гипотетическим Ті-миналом, 6 — мэйджорита с гипотетическим Ті-миналом.

титан в малых концентрациях преимущественно аккумулируется в структуре пиропа. Такое поведение титана может быть объяснено близостью ионных радиусов титана, магния и алюминия, в то время как радиус кремния значительно меньше.

При повышении давления прослеживается строгая тенденция увеличения значений энтальпии смешения. По данным, представленным на рис. 3, можно сделать вывод о невозможности вхождения титана в структуры мантийных гранатов в условиях повышенного давления.

ЗАКЛЮЧЕНИЕ

Полученные данные позволяют оценить особенности вхождения титана в структуру мантийных гранатов на качественном уровне, а также рассмотреть особенности изоморфизма в минералах группы граната на больших глубинах. В представленной расчетной модели при анализе изоморфизма титана впервые учтено вхождение в гранат мэйджоритового компонента, что является характерной особенностью многих включений в природных алмазах эклогитового парагенезиса. Принципиально важным результатом проведенной работы следует считать установление отрицательной корреляции вхождения титана в состав граната с давлением, что может быть использовано для усовершенствования существующих термобарометрических оценок условий образования минеральных ассоциаций нижних частей верхней мантии и переходной зоны Земли. Для более точного анализа механизмов вхождения ионов Ti⁴⁺ в рассматриваемые минералы требуется сопоставление результатов компьютерного моделирования с экспериментальными данными, которые пока носят несколько ограниченный характер.

Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова по плану научных исследований Лаборатории глубинных геосфер геологического факультета МГУ им. М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- Henmi C., Kusachi I., Henmi K. // Mineral. Mag. 1995.
 V. 59. P. 115.
- Grew E.S., Locock A.J., Mills S.J. et al. // Am. Mineral. 2013. V. 98. P. 785.
- 3. Ma C., Krot A.N. // Am. Mineral. 2014. V. 99. P. 667.
- 4. Gwalani L.G., Rock N.M.S., Ramasamy R. et al. // J. Asian Earth Sci. 2000. V. 18(2). P. 163.
- 5. Chakhmouradian A.R., McCammon C.A. // Phys. Chem. Miner. 2005. V. 32. P. 277.
- 6. Ackerson M.R., Tailby N.D., Watson E.B. // Am. Mineral. 2017. V. 102. № 1. P. 173.
- 7. Armbruster T., Birrer J., Libowitzky E., Beran A. // Eur. J. Mineral. 1998. № 10.P. 907.
- 8. Schingaro E., Scordari F., Pedrazzi G., Malitesta C. // Annali di Chimica. 2004. V. 94. P. 185.
- Tappert R., Foden J., Stachel T. et al. // Geology. 2009.
 V. 37. P. 43.
- 10. Tappert R., Stachel T., Harris J.W. et al. // Contrib. Mineral. Petr. 2005. V. 150. P. 505.
- Harte B., Cayzer N. // Phys. Chem. Miner. 2007. V. 34. P. 647
- Fukao Y., Obayashi M. // J. Geophys. Res.: Solid Earth. 2013. V. 118. P. 5920.
- 13. Fukao Y., Obayashi M., Nakakuki T. // Annu. Rev. Earth Planet. Sci. 2009. V. 37. P. 19.
- 14. *Daniels L.R.M.* Diamonds and Related Minerals from the Dokolwayo Kimberlite, Kingdom of Swaziland. PhD Thesis, Dept. Geochemistry, University of Cape Town, South Africa, 1991.
- 15. Davies R.M., Griffin W.L., O'Reilly S.Y., McCandless T.E. // Lithos. 2004. V. 77. P. 99.
- Gillet P., Sautter V., Harris J. et al. // Am. Mineral. 2002. V. 87. P. 312.
- 17. Gress M.U., Howell D., Chinn I.L. et al. // Mineralogy and Petrology. 2018. V. 112. P. 219.
- Stachel T., Aulbach S., Brey G.P. et al. // Lithos. 2004.
 V. 77. P. 1.
- 19. Gasparik T. // Phys. Chem. Miner. 2002. V. 29. P. 170.
- Pedone A., Malavasi G., Menziani M.C. et al. // J. Phys. Chem. B. 2006. V. 110. P. 11780.
- 21. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. М.: ГЕОС, 2012. 428 с.
- 22. *Gale J.D., Rohl A.L.* // Mol. Simulation. 2003. V. 29. № 5. P. 291.