КРИСТАЛЛОГРАФИЯ, 2021, том 66, № 1, с. 104–111

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ __ СОЕДИНЕНИЙ

УДК 548.736.6

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ В МИНЕРАЛАХ ГРУППЫ ЭВДИАЛИТА. IX. БЛОЧНЫЙ ИЗОМОРФИЗМ В КЛЮЧЕВЫХ ПОЗИЦИЯХ: КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Fe-ДЕФИЦИТНОГО ЭВДИАЛИТА ИЗ ХИБИНСКОГО МАССИВА

© 2021 г. Р. К. Расцветаева^{1,*}, Н. В. Чуканов^{2,3}, Д. В. Лисицин⁴

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

² Институт проблем химической физики РАН, Черноголовка, Россия

³ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

⁴ Музей Самоцветы Федерального агентства по недропользованию, Москва, Россия

**E-mail: rast@crys.ras.ru* Поступила в редакцию 02.05.2020 г. После доработки 10.05.2020 г. Принята к публикации 12.05.2020 г.

Методами рентгеноструктурного анализа, электронно-зондового микроанализа и ИК-спектроскопии исследованы кристаллическая структура и кристаллохимические особенности Fe-дефицитного высокомарганцевого эвдиалита из Хибинского массива (Кольский п-ов). Параметры элементарной тригональной ячейки минерала: a = 14.199(1), c = 30.305(1) Å, V = 5291.2(2) Å³, пр. гр. *R3m*. Кристаллическая структура уточнена до итогового фактора расходимости R = 4.46% в анизотропном приближении атомных смещений с использованием 1937 рефлексов с $F > 3\sigma(F)$. Упрощенная кристаллохимическая формула минерала (Z = 3, римскими цифрами указаны координационные числа катионов в ключевых позициях): $^{N1-5}(Na,H_3O)_{15}^{V-X}$ $^{M1}(Ca,Mn)_6^{VI}$ $^{M2}(Fe^{IV},Na^{VI},Na^{V},Mn^{VII},Mn^{V})_3$ $^{M3}(Si^{IV},Nb^{VI})$ $^{M4}Si^{IV}Z(Zr,Ti)$ $^{VI}_3[Si_{24}O_{72}]$ (OH,Cl,SO₄)₃ (H₂O,OH) · 1.5H₂O. Обсуждаются закономерности блочного изоморфизма в минералах группы эвдиалита.

DOI: 10.31857/S0023476121010173

введение

Характерной особенностью минералов с микропористыми гетерополиэдрическими структурами является разнообразие реализующихся в них механизмов гомовалентного, гетеровалентного и блочного изоморфизма [1]. Наиболее ярко эта особенность проявляется в минералах группы эвдиалита (МГЭ), уникальных по сложности кристаллических структур и кристаллохимическому разнообразию входящих в эту группу минеральных видов и разновидностей [2].

Под блочным изоморфизмом понимается способность групп атомов или ионов, имеющих различные конфигурации, замещать друг друга в кристаллических структурах [3]. В МГЭ можно выделить три ключевые позиции, в окрестностях которых такой изоморфизм проявляется наиболее ярко. Прежде всего это позиция M2, которая находится между кольцами $M1_6O_{24}$, состоящими из связанных через общие ребра октаэдров $M1O_6$ (M1 = Ca, Mn, Fe, Na, REE, Sr, Y). Позицию M2могут заселять катионы, имеющие различные радиусы и координацию — от плоского квадрата до семивершинника: $(Fe^{2+})^{IV}$, $(Fe^{2+})^V$, $(Fe^{3+})^V$, $(Fe^{3+})^{VI}$, $(Mn^{2+})^V$, $(Mn^{2+})^{VI}$, Zr^{IV} , Ta^{IV} , Na^V , Na^{VI} , Na^{VII} (римскими цифрами указаны координационные числа). В основе координационных полиэдров $M2O_5$ и $M2O_7$ находится квадрат, образуемый четырьмя атомами кислорода (ребрами двух октаэдров соседних колец $M1_6O_{24}$). Его дополняют одна или несколько OH-групп, расположенных по одну или обе стороны квадрата. Пяти- или семивершинники, если они одновременно присутствуют в структуре, заполняются статистически.

Блочный изоморфизм в МГЭ реализуется также в микрообластях в окрестности позиций M3 и M4, располагающихся вблизи центров двух неэквивалентных девятичленных колец Si₉O₂₇. Эти микрообласти могут быть заполнены как тетраэдрами SiO₄ или (реже) AlO₄, так и октаэдрами (чаще всего NbO₆ и TiO₆, редко – WO₆, MnO₆, NaO₆). [2]. Таким образом, заряд катиона в этих позициях может варьироваться от +1 (Na) до +6 (W), что

Идеализированная фор-	$[Na_{12}(H_3O)_3][Ca_5Mn_1]Zr_3$
мула	$[(Fe,Mn)_{1.7}Na_{1.3}]$
	$[Si_{26}O_{72}](OH,H_2O)_4 \cdot 1.5H_2O$
<i>a</i> , <i>c</i> , Å	14.199(1), 30.305(1)
$V, Å^3$	5291.2(2)
Сингония, пр. гр., Z	Тригональная, <i>R</i> 3 <i>m</i> , 3
Размеры кристалла, мм	$0.15 \times 0.12 \times 0.27$
Дифрактометр	Xcalibur Eos CCD Oxford
	Diffraction
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
Тип сканирования	ω
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$0 \le h \le 19, 0 \le k \le 19,$
	$0 \le l \le 48$
$(\sin\theta/\lambda)_{max}$	0.8
Общее количество/ число	29635/1937
независимых отражений	
$c F > 3\sigma F$	
Метод уточнения	МНК по <i>F</i>
<i>R</i> , %	4.6
Программа	AREN [4]

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры

возможно только при блочном изоморфизме. В настоящей работе изучен образец МГЭ с особенностями блочного изоморфизма в окрестности позиции *M*2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изученный в настоящей работе МГЭ происходит из ультраагпаитового пегматита, вскрытого подземными выработками рудника Олений Ручей. Минерал найден одним из авторов (Д.В. Лисицин) в отвалах рудника в двух различающихся по минеральному составу пегматитовых глыбах, представляющих, по всей видимости, разные зоны единого пегматитового тела. В одном случае МГЭ образует изометричные зерна коричневого и коричневато-желтого цвета размером до 30 мм. реже — четкие блестящие кристаллы размером до 5 мм в мелких полостях в ассоциации с лампрофиллитом, виллиомитом, пектолитом, джерфишеритом, эгирином и микроклином. В другом случае он образует массивные каймы (толщиной до 1 см) темно-коричневого цвета вокруг зерен красного эвдиалита обычного ("классического") состава в почти мономинеральной (с редкими включениями пластинчатых кристаллов лампрофиллита) эгириновой породе. Для рентгеноструктурного анализа (РСА) использован обломок кристалла первого типа. Минерал исследован с применением комплекса методов – микрозондового анализа, ИК-спектроскопии и РСА.

Химический состав определяли методом рентгеноспектрального микроанализа с помощью растрового электронного микроскопа Tescan Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток 400 пА) и с использованием системы регистрации рентгеновского излучения и расчета состава образца INCA Energy 450. Диаметр электронного пучка составил 157–180 нм. Пределы содержания компонентов, отражающие неоднородность состава изученного образца, следующие (в расчете на сумму Si + Nb = 26 атомов на формулу): Na_{11–13}K_{0.5–0.7}Ln_{0.1–0.3}Ca_{4.8–5.3}Mn_{1.3–1.7}Fe_{0.8–1.1} Zr_{2.3–2.7}Ti_{0.3–0.6}Hf_{0–0.05}Nb_{0.1–0.2}Si_{25.8–25.9}Cl_{0.5–0.6}S_{0.2–0.3}O_x · $n(H_3O, H_2O, OH)$.

Для сбора дифракционных данных на ССДдифрактометре Xcalibur Oxford Diffraction (Мо K_{α} излучение) использован фрагмент монокристалла изометричной формы. Характеристика кристалла и данные эксперимента приведены в табл. 1. Параметры тригональной элементарной ячейки: a = 14.199(1), c = 30.305(1) Å, V = 5291.2(2) Å³, пр. гр. *R*3*m*.

В качестве стартового набора использованы координаты атомов каркаса низкожелезистого эвдиалита [5]. Остальные позиции найдены из серии разностных синтезов электронной плотности. Состав катионов в некоторых позициях уточняли с учетом смешанных кривых атомного рассеяния. Все расчеты выполнены по системе кристаллографических программ AREN [4]. Уточненные структурные параметры и характеристики координационных полиэдров приведены в табл. 2–4.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Fe-ДЕФИЦИТНОГО ОБРАЗЦА

Основные особенности состава и строения изученного МГЭ отражены в его кристаллохимической формуле (Z = 3), которая хорошо согласуется с эмпирической: ^{N1-5}[(Na_{11.1}(H₃O)_{2.4}Ln_{0.3}] ^{N6}[K_{0.5}] ^{M1}[Ca_{4.9}(Mn_{1.1})] ^{M2}[Fe^{IV}_{0.9}Na^{VI}_{0.6}Na^V_{0.6}Mn^{VII}_{0.5} (Mn,Fe)^V_{0.3}] ^{M3,M4}[Si_{1.8}Nb_{0.2}] ^Z[Zr_{2.6}Ti_{0.4}][Si₂₄O₇₂][SO₄]_{0.25}(OH)_{2.4} Cl_{0.5}(H₂O,OH) · 1.5H₂O, где квадратными скобками выделены составы ключевых позиций структуры, а римскими цифрами обозначены координационные числа катионов. Идеализированная формула (Z = 3): [Na₁₂(H₃O)₃][Ca₅Mn₁]Zr₃[(Fe, Mn)_{1.7}Na_{1.3}][Si₂₆O₇₂](OH,H₂O)₄ · 1.5H₂O.

Кристаллическая структура изученного образца хорошо согласуется с его ИК-спектром (рис. 1). Полоса при 3488 см⁻¹ относится к О–Н-валентным колебаниям молекул воды и ОН-групп. Широкое плечо при 2950 см⁻¹ свидетельствует о присутствии в минерале кислотных групп (предполо-

_

жительно, ионов H_3O^+). Полоса при 1648 см⁻¹ относится к деформационным колебаниям молекул воды. Присутствие сульфатных анионов проявляется в виде слабо выраженного плеча при 1120 см⁻¹. Четкая полоса при 932 см⁻¹ отражает высокое содержание кремния в позициях МЗ и М4. Полосы валентных колебаний полиэдров FeO_4 и (Mn,Fe)O₅ (соответственно при 540 и 523 см^{-1}) имеют низкие интенсивности, что, очевидно, связано с низким содержанием этих полиэдров вследствие вхождения значительных количеств Na в позицию М2. Полосы ИК-спектра отнесены в соответствии с [2].

106

Особенностью химического состава изученного образца является пониженное содержание кальция, железа и циркония при высоком содержании кремния. Для построения шестичленного кольца необходимы шесть атомов кальция на формулу (Z = 3), и в данном случае при его недостатке (пять атомов) в позицию октаэдра статистически входит марганец. Центральная позиция расшеплена на лве с расстояниями межлу ними 0.207(7) Å. Са-подпозиция характеризуется расстояниями *M*1*a*-О в пределах 2.253(7)-2.419(5) Å. Для второй подпозиции с заселенностью 18% Мп расстояния M1b-O = 2.195(9)-2.439(9) Å. Расщепление позиции в октаэдре шестичленного кольца со смешанной заселенностью наблюдалось и ранее, но его уточнение выполнено впервые.

Параллельные ребра октаэдров, принадлежащих соседним шестичленным кольцам, образуют полиэдр, по своей конфигурации близкий к плоскому квадрату и координирующий ключевую позицию *M2a*. По обе стороны от квадрата локализовано 10 пиков на коротких расстояниях друг от друга, отвечающих катионам Fe, Mn и Na, а также ОН- и H₂O-группам (рис. 2). Центр квадрата занят катионами Fe с расстояниями до атомов О квадрата в пределах M2a - O = 2.10(1) - 2.15(1) Å. По одну сторону квадрата расположены две подпозиции, смещенные из его центра на расстояния M2a-M2d = 0.24(2) и M2a-M2b = 0.58(1) Å, занятые атомами Na и Mn соответственно. Их координация на основе квадрата дополнена до шести со средним расстоянием 2.35 Å и до пяти при среднем расстоянии 2.157 Å соответственно. По другую сторону квадрата находятся также две подпозиции на расстояниях M2a - M2c = 0.57(1) и M2a - M2e = 1.29(1) Å. Их координацию также составляют атомы кислорода в квадрате, в первом случае дополненную до октаэдра (статистически – семивершинника за счет Х-аниона на оси третьего порядка) со средним расстоянием M2c-O == 2.31 и во втором – до пятивершинника с расстоянием 2.54 Å. Полиэдры заселены атомами Mn (с примесью Fe) и атомами Na соответственно. С учетом заселенности этих подпозиций преоб-

Таблица 2. Координаты, кратность позиций (Q) и эквивалентные параметры смещений (*B*_{экв}) атомов каркаса

Позиция	x/a	y/b	z/c	Q	$B_{_{\rm ЭKB}}, {\rm \AA}^2$
Ζ	0.3293(1)	0.1646(1)	0.1669(1)	9	1.48(2)
Si1	0.5259(2)	0.2630(1)	0.2509(1)	9	1.5(1)
Si2	-0.0071(1)	0.6036(1)	0.0970(1)	18	1.29(7)
Si3	0.2065(1)	0.4130(2)	0.0778(1)	9	1.4(1)
Si4	0.0866(2)	0.5433(2)	0.2592(1)	9	1.6(1)
Si5	0.0554(1)	0.3256(1)	0.2359(1)	18	1.24(7)
Si6	0.1411(2)	0.0705(1)	0.0821(1)	9	1.1(1)
O1	0.4709(7)	0.2355(5)	0.2015(2)	9	2.0(4)
O2	0.2617(6)	0.0299(6)	0.2058(2)	18	2.7(2)
O3	0.4074(6)	0.3034(6)	0.1274(2)	18	2.4(3)
O4	0.6054(3)	0.3946(3)	0.2518(3)	9	1.7(4)
05	0.4391(8)	0.2191(6)	0.2884(2)	9	2.2(4)
O6	0.4086(5)	0.0349(5)	0.0454(1)	18	1.8(2)
O 7	0.0958(6)	0.3767(7)	0.1081(2)	18	2.4(2)
O 8	0.0200(8)	0.5100(5)	0.1111(2)	9	1.7(3)
O9	0.2728(5)	0.5456(7)	0.0657(4)	9	4.3(4)
O10	0.1814(4)	0.3629(6)	0.0282(3)	9	2.1(3)
O11	0.0247(7)	0.5123(5)	0.3025(3)	9	1.7(4)
O12	0.1750(4)	0.3509(6)	0.2161(2)	9	2.1(4)
O13	0.0385(6)	0.2962(6)	0.2870(2)	18	2.4(2)
O14	0.3882(6)	0.4390(5)	0.2262(2)	18	2.8(2)
O15	0.3936(4)	0.6064(4)	0.2540(4)	9	3.4(4)
O16	0.0634(4)	0.1269(6)	0.0756(3)	9	2.5(4)
O17	0.1891(9)	0.0945(6)	0.1297(3)	9	2.8(3)
O18	0.2242(7)	0.1121(5)	0.0417(3)	9	2.1(3)

Примечание. Заселенность позиций всех атомов равна единице.

ладающим катионом в М2-микрообласти является железо при его общем пониженном содержании (табл. 4).

Видообразующие позиции МЗ и М4 располагаются на оси третьего порядка вблизи центров двух неэквивалентных девятичленных кремнекислородных колец Si₉O₂₇ и расщеплены на три подпозиции, находящиеся на коротких расстояниях друг от друга: M3a - M3b = 0.79(1), M3a - M3c == 1.35(1), M3b - M3c = 0.55(1), M4a - M4b = 0.49(2),M4a - M4c = 1.66(1), M4b - M4c = 1.16(2) Å. Bce подпозиции заселены статистически и солержат атомы кремния при небольшой примеси ниобия (табл. 5).

Крупные катионы распределяются по шести цеолитоподобным полостям каркаса, в которых *N*-позиции (кроме *N*6) расщепляются на две-четыре подпозиции (табл. 3, 4). В одной полости подпозиции отстоят друг от друга на расстояниях

Позиция	x/a	y/b	z/c	Q	q	$B_{_{ m 3KB}/*_{ m H3O}}$, Å ²
M1a	0.4094(1)	0.3352(1)	0.3332(1)	18	0.82(1)	0.74(2)
M1b	0.0041(7)	0.2731(5)	-0.0022(2)	18	0.18(1)	1.09(6)
M2a	-0.0097(8)	0.4952(5)	-0.0008(3)	9	0.30(1)	1.35(6)
M2b	0.4812(4)	0.5188(4)	-0.0003(3)	9	0.10(1)	0.4(1)
M2c	0.5281(3)	0.4719(3)	-0.0038(2)	9	0.19(1)	1.51(9)
M2d	0.166(1)	0.332(2)	0.3257(5)	9	0.21(2)	3.0(4)
M2e	0.557(1)	0.443(1)	-0.005(1)	9	0.20(5)	5.6(4)
МЗа	0.3334	0.6667	0.2451(3)	3	0.49(2)	1.1(3)
M3b	0.3334	0.6667	0.2714(3)	3	0.42(2)	2.3(1)
МЗс	0.3334	0.6667	0.2897(3)	3	0.09(1)	1.9(2)
M4a	0.3334	0.6667	0.0339(7)	3	0.11(1)	2.0(2)
M4b	0.3334	0.6667	0.0504(5)	3	0.53(3)	4.3(1)
M4c	0.3334	0.6667	0.0889(7)	3	0.36(3)	2.4(1)
S	0.6667	0.3334	0.047(1)	3	0.25(5)	7.2(3)
N1a	0.1091(5)	0.2176(8)	0.1545(3)	9	0.50(2)	2.4(3)
N1b	0.0958(9)	0.192(1)	0.1664(6)	9	0.49(3)	5.3(3)
N2a	0.5586(4)	0.4414(4)	0.1801(2)	9	0.49(1)	4.88(7)
N2b	0.5898(6)	0.1797(9)	0.1640(6)	9	0.30(1)	2.4(3)
N2c	0.546(1)	0.454(1)	0.188(1)	9	0.18(2)	3.8(4)
N3a	0.225(1)	0.1125(9)	0.2823(3)	9	0.48(2)	2.8(4)
N3b	0.191(1)	0.096(1)	0.2840(5)	9	0.34(2)	2.1(2)
N3c	0.224(4)	0.112(3)	0.271(1)	9	0.18(3)	2.8(5)
N4a	0.445(1)	0.2224(8)	0.0544(5)	9	0.45(3)	2.8(3)
N4b	0.475(1)	0.2373(9)	0.0388(5)	9	0.33(1)	1.3(2)
N4c	0.433(2)	0.216(1)	0.0498(9)	9	0.26(2)	2.6(3)
N5a	0.246(2)	0.491(3)	0.172(1)	9	0.1(1)	3.8(9)*
N5b	0.415(1)	0.585(1)	0.163(1)	9	0.2(1)	6.9(9)
N5c	0.258(1)	0.515(2)	0.181(1)	9	0.1(1)	4.9(5)*
N5d	0.194(3)	0.597(2)	0.148(2)	9	0.2(1)	7.7(5)
<i>N</i> 6	0	0	0.0004(1)	3	0.5(1)	4.42(1)
O _S 1	0.619(2)	0.238(2)	0.035(3)	9	0.23(4)	7.0(5)
O _S 2	0.6667	0.3334	0.093(2)	3	0.24(6)	2.8(9)
OH1	0.3334	0.6667	0.3200(1)	3	0.4(5)	3(1)
OH2	0.3334	0.6667	0	3	0.4(5)	3(1)
OH3	0.3334	0.6667	0.1926(7)	3	0.51(4)	1(1)*
OH4	0.3334	0.6667	0.143(2)	3	0.5(1)	3.6(5)*
(H ₂ O,OH)1	0.147(6)	0.574(4)	0.006(1)	9	0.27(4)	6.2(4)
(H ₂ O,OH)2	0.208(5)	0.604(3)	0.002(1)	9	0.26(4)	5.2(4)
(H ₂ O,OH)3	0.281(3)	0.564(5)	0.325(3)	9	0.46(7)	3.8(5)*
X1a	0	0	0.2361(7)	3	0.49(4)	5.6(3)
X1b	0	0	0.262(1)	3	0.3(6)	5(1)
X1c	0	0	0.293(1)	3	0.21(6)	2.2(8)
X2a	0.6667	0.3334	0.109(1)	3	0.38(8)	4(1)*
X2b	0.6667	0.3334	0.136(2)	3	0.38(1)	3.9(8)*

Таблица 3. Координаты, кратность (Q) и заселенность (q) позиций и эквивалентные параметры смещений ато-мов ключевых и внекаркасных позиций

Примечание. X1a = C1; $X1b = H_2O$; $X1c = H_2O$; X2a, $X2b = H_2O$.

КРИСТАЛЛОГРАФИЯ том 66 Nº 1 2021

Позиция	Состав (Z = 3)	КЧ	Расстояния катион–анион, Å			
			Мин.	Макс.	Среднее	
Ζ	2.6Zr + 0.4Ti	6	2.032(7)	2.088(8)	2.054	
M1a	4.9Ca	6	2.253(7)	2.419(5)	2.356	
M1b	1.1Mn	6	2.195(9)	2.439(9)	2.338	
M2a	0.9Fe	4	2.10(1)	2.15(1)	2.12	
M2b	0.3Mn	5	2.090(9)	2.258(8)	2.157	
M2c	0.5(Mn,Fe)	7	2.14(4)	2.53(4)	2.31	
M2d	0.7Na	6	2.02(3)	2.74(7)	2.35	
M2e	0.6Na	5	2.30(3)	2.90(2)	2.54	
МЗа	0.49Si	4	1.507(9)	1.58(2)	1.525	
M3b	0.42Si	4	1.47(1)	1.574(5)	1.548	
МЗс	0.09Nb	6	1.7(1)	1.83(7)	1.77	
M4a	0.01Nb	6	1.77(1)	1.82(5)	1.80	
M4b	0.53Si	4	1.52(1)	1.56(1)	1.55	
M4c	0.36Si	4	1.64(1)	1.64(5)	1.64	
N1a	1.5Na	9	2.48(1)	2.74(1)	2.64	
N1b	1.5Na	7	2.35(1)	2.86(2)	2.53	
N2a	1.2Na + 0.3Ce	9	2.45(1)	2.96(3)	2.68	
N2b	0.9Na	8	2.43(2)	3.00(2)	2.62	
N2c	0.6Na	8	2.47(1)	2.79(1)	2.62	
N3a	1.44Na	10	2.41(1)	2.88(4)	2.69	
N3b	1.0Na	10	2.36(1)	2.90(1)	2.75	
N3c	0.56H ₃ O	9	2.45(5)	2.95(4)	2.67	
N4a	1.35Na	10	2.43(2)	2.96(3)	2.63	
N4b	1.0Na	10	2.37(3)	2.87(2)	2.64	
N4c	0.65Na	8	2.42(2)	2.76(2)	2.72	
N5a	0.3H ₃ O	7	2.18(3)	2.97(3)	2.59	
N5b	0.6H ₃ O	5	2.19(2)	2.80(3)	2.57	
N5c	0.3H ₃ O	9	2.18(4)	2.91(2)	2.47	
N5d	0.6H ₃ O	9	2.18(4)	2.96(5)	2.60	
<i>N</i> 6	0.5K	9	2.76(2)	3.02(1)	2.89	
S	0.258	4	1.22(3)	1.38(8)	1.26	

Таблица 4. Характеристики координационных полиэдров

Примечание. Расстояния для SiO₄-тетраэдров каркаса опущены в виду их стандартных значений.

N1a-N1b = 0.48(2) Å. В другой позиция расщепляется на три с расстояниями между ними N2a--N2b = 0.90(1), N2a-N2c = 0.38(2) и N2b-N2c == 1.28(2) Å. В третьей полости центральная позиция расщепляется на три, разнесенные на расстояния N3a-N3b = 0.41(2), N3a-N3c = 0.33(3) и N3b-N3c = 0.55(4) Å. Расстояния в четвертой полости N4a-N4b, N4a-N4c и N4b-N4c равны 0.59(2), 0.20(2) и 0.61(3) Å соответственно. Полость, ограниченная сверху и снизу кольцами Si₉O₂₇, содержит четыре подпозиции, разнесен-

ные на расстояния от 0.40 до 2.1 Å, а также OHгруппы в апикальных вершинах SiO₄-тетраэдров, развернутых внутрь полости. Оксониевые группы в подпозициях N1-N5 формируют пяти-, семи- и девятивершинные полиэдры, а атомы К находятся в центре шестерного кольца из M1-октаэдров в позиции N6 с KЧ = 9 и заселенностью 0.5. Все Nподпозиции заняты атомами натрия и группами H₃O. В N2a-подпозицию входят в виде примеси атомы лантаноидов.

Рис. 1. ИК-спектр МГЭ из рудника Олений Ручей.

Рис. 2. Распределение катионов и ОН(H₂O)-групп в *М*2-микрообласти.

Рис. 3. Фрагмент слоя, образованного шестичленными кольцами октаэдров и ионами Fe²⁺ в координации плоского квадрата.

Анионная позиция X1, расположенная на оси третьего порядка, расщеплена на три подпозиции. Атом хлора в X1а находится на расстояниях X1a-X1b = 0.77(4), X1a-X1c = 1.71(4) Å от подпозиций, заселенных молекулами воды. Расстояние

КРИСТАЛЛОГРАФИЯ том 66 № 1 2021

между молекулами воды X1b-X1c = 0.93(5) Å. Все три подпозиции входят в окружение полиэдров *N3a*, *N3b* и *N3c*. Позиция *X2* также расщеплена на три, находящиеся на расстояниях X2a-X2b == 0.83(8), X2a-Os = 0.49(8), X2b-Os = 1.32(9) Å друг от друга и статистически занятые атомом кислорода в вершине SO₄-тетраэдра и молекулами воды, входящими в полиэдры *N2a*, *N2b*, *N4a* и *N4b* (табл. 3, 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Катионы M2-микрообласти располагаются в плоскости шестичленных колец, перпендикулярной оси третьего порядка. Их полиэдры объединяют M1-октаэдры шестичленных колец и M3(M4)-октаэдры на осях 3. Позиция M2 находится в центре квадрата (рис. 3), образованного ребрами октаэдров соседних шестичленных колец, и может расщепляться на две и больше подпозиций, которые формируют полиэдры нескольких типов на базе квадрата с добавлением ОН-групп, принадлежащих осевым M3(M4)-октаэдрам. В высококремниевых образцах этот квадрат достраивается до M2-полиэдров при добавлении OH-групп осевых тетраэдров SiO₃(OH) и/или молекул воды.

M2-квадрат заполняется атомами Fe²⁺, реже — Na; в качестве подчиненных и примесных компонентов в этой позиции могут присутствовать также Zr, Hf и Ta. Двухвалентное железо в квадратной координации – "визитная карточка" эвдиалита sensu stricto [6], а аналогичная координация натрия – специфическая особенность структуры аллуайвита [7]. Элементы в центре квадрата различны по своей валентности и ионным радиусам, что влияет на размеры и форму квадратов. Наиболее крупный полиэдр – NaO₄ (среднее расстояние Na-O = 2.2 Å), самый маленький – FeO₄ (Fe-O == 2.0 - 2.1 Å), а форма этих полиздров может трансформироваться – от квадрата до прямоугольника или трапеции [2]. Если атомы железа и натрия в квадратной координации не вызывают возражений, то вопрос о Zr и Ta относится к разряду дискуссионных. В соответствии с локальным балансом зарядов на анионах, образующих квадрат, для центрального катиона предпочтительнее заряд меньше +4, и тем более он не может быть выше. Однако в гиперциркониевых образцах избыток циркония входит в позицию в центре квадрата наряду с другими элементами. Методом РСА было зафиксировано присутствие в центре плоского квадрата (Zr + Hf) в гидратированном эвдиалите [8], а также Та в высокотанталовом МГЭ [9]. Сильные связи, отвечающие самым коротким расстояниям 2.035(7) и 2.116(8) Å, осушествляются между атомами Та и четырьмя атомами кислорода, координирующими Та по квад-

Рис. 4. *М*2-пятивершинники, ориентированные в противоположные стороны, статистически замещаемые *М*2-октаэдром в структуре манганоэвдиалита.

рату, и гораздо более слабые взаимодействия Та с двумя другими лигандами (ОН-группами) на расстояниях 2.44(2) и 2.66(1) Å соответственно. В этом случае отклонение от локального баланса зарядов смягчается за счет дальнодействующих кулоновских взаимодействий с двумя атомами кислорода (с расстояниями Та–О до 2.66 Å), формально дополняющими координационную сферу Та до искаженного октаэдра.

*М*2-полуоктаэдр, или квадратная пирамида, – пятивершинник, образующийся на базе квадрата с добавлением ОН-группы, принадлежащей МЗили М4-октаэдрам на осях третьего порядка (рис. 4). Этот полиэдр могут заселять ионы Mn^{2+} , Fe^{3+} , Fe^{2+} , Na^+ и Zr^{4+} . "Визитной карточкой" кентбруксита можно считать Mn-пятивершинник [10]. Замещение марганца железом в пятивершинниках установлено в близких по строению к кентбрукситу минералах – феррокентбруксите [11], георгбарсановите [12], тасеките [13], фекличевите [14], голышевите [15] и ряде разновидностей МГЭ [2]. В этих минералах пятые вершины координационных полиэдров располагаются по одну сторону от плоскости квадрата, что подчеркивает ацентричный характер структуры (приводящий к стойкому проявлению пьезоэффекта в георгбарсановите) в отличие от близкой к центросимметричной структуры эвдиалита и его аналогов. В большинстве случаев в микрообласти M2 статистически реализуются ориентированные различным образом пятивершинники [2].

*М*2-октаэдр образуется, когда квадратная координация дополняется двумя ОН-группами осевых *М*3(*M*4)-октаэдров либо молекулами воды (рис. 4). В эти полиэдры могут входить атомы Fe^{2+} , Fe^{3+} , Ti, Hf, Zr, Mn, Na, Mg. Примерами минералов с *M*2-октаэдрами являются манганоэвдиалит (Mn) [16] и икранит (Fe) [17, 18]. Наиболее

Рис. 5. Объединение шестичленных колец октаэдров полиэдрами FeO_4 и NaO_6Cl .

крупные М2-полиэдры – семивершинники, построенные на основе квадрата и атомов кислорола каркаса. В них чаше всего располагаются атомы Na, а иногда Mn и Zr (рис. 5). Na-семивершинники доминируют в структурах [5, 19], а также зафиксированы в структурах промежуточного члена изоморфного ряда манганоэвдиалитилюхинит [20] и минерала ряда эвдиалит-сергеванит [21] с расстояниями Na-O 2.23(4)-2.96(3) и 2.33(1)-3.01(1) Å соответственно. Чаще всего разнообразные полиэдры находятся в комбинации друг с другом и имеют общие с М1-октаэдрами ребра, а с осевыми октаэдрами – вершины, в результате формируются локальные полиэдрические фрагменты пяти типов, которые заполняют статистически катионы с разными ионными радиусами и зарядами:

1. $M2^{IV} + M1^{VI} + M1^{VI}$;

2.
$$M2^{V} + M1^{VI} + M1^{VI} + M3^{VI}$$
;

- 3. $M2^{V} + M1^{VI} + M1^{VI} + M4^{VI}$;
- 4. $M2^{VI} + M1^{VI} + M1^{VI} + M3^{VI} + M4^{VI}$;
- 5. $M2^{VII} + M1^{VI} + M1^{VI} + M3^{VI} + M4^{VI}$.

В заполнении $M1^{VI}$ -октаэдра могут участвовать Ca, Mn, Fe, Na, *REE*, Sr, Y (в дуалите в одном модуле статистически присутствует вся эта группа элементов, кроме Y) [2]. В результате в каждом минерале реализуется определенная комбинация локальных составов для пар M1- и M2-полиэдров, отвечающая условиям локального баланса валентностей на атомах кислорода, общих для этих полиэдров. Общие вершины полиэдров M2 и $M3^{VI}$ ($M4^{VI}$) могут быть реализованы при всех вариантах их заселения. Например, в минералах ряда кентбруксит—феррокентбруксит и барсановите установлены комбинации Mn(Fe)-пятивершинников с NbO₆-октаэдрами (в частности, Feпятивершинник в таскеите из Одихинча [22] об-

разует кластер [NbFe₃]), а в вольфрамсодержащих аналогах кентбруксита (хомяковит и манганхомяковит [23] и йонсенит-(Се) [24]) эти же пятивершинники сочетаются с WO₆-октаэдрами. Заряд в таких случаях регулируется за счет О или ОН-группы в общей вершине. Большая избирательность возможна при распределении катионов с учетом наличия общего ребра М2-полиздров и *М*1-октаэдров. Для высококальциевых минералов (моговидит [25], фекличевит [14], голышевит [15], феррофекличевит [26]) возможно заселение М2-полиэдров всех типов не только двухвалентными, но и четырех- и пятивалентными элементами. В других случаях реализуются комбинации одно-, двух- и трехвалентных элементов в М1-октаэдре и элементов с зарядом от +1 до +5 в М2полиэдрах.

выводы

Особенностью изученного образца является высокая структурная сепарация химических элементов в микрообласти M2, приводящая к статистической реализации четырех типов полиэдров и пяти типов локальных полиэдрических фрагментов со статистическим заполнением их катионами Ca, Fe, Mn и Na. Минерал представляет яркий пример блочного изоморфизма в окрестности позиции M2. В изученном минерале локализована сульфатная группа в X-анионной части структуры и впервые установлено расщепление смешанной позиции в октаэдре шестичленного кольца.

Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" при поддержке Минобрнауки РФ (проект RFMEFI62119X0035) в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части рентгеноструктурного анализа и Российского фонда фундаментальных исследований (проект № 18-29-12005) в части кристаллохимического анализа микропористых минералов группы эвдиалита. Исследования методом ИКспектроскопии проведены в соответствии с темой Государственного задания (номер государственного учета ААА-А19-119092390076-7). Работы по анализу химического состава и диагностики ассоциирующих минералов выполнены при поддержке Российского фонда фундаментальных исследований (проект № 18-29-12007 мк).

СПИСОК ЛИТЕРАТУРЫ

 Chukanov N.V., Pekov I.V. // Micro- and Mesoporous Mineral Phases. Series: Reviews in Mineralogy and Geochemistry / Eds. Ferraris G., Merlino S. Washington: Mineralogical Society of America, 2005. V. 57. P. 105.

КРИСТАЛЛОГРАФИЯ том 66 № 1 2021

- 2. Расцветаева Р.К., Чуканов Н.В., Аксенов С.М. Минералы группы эвдиалита: кристаллохимия, свойства, генезис. Нижний Новгород: Изд-во НГУ, 2012. 229 с.
- 3. Солодовников С.Ф. Основные термины и понятия структурной кристаллографии и кристаллохимии. Новосибирск: Изд-во ИНХ СО РАН, 2005. 114 с.
- 4. Андрианов В.И. // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.
- 5. *Расцветаева Р.К., Хомяков А.П. //* Докл. РАН. Химия. 1998. Т. 362. № 6. С. 784.
- Голышев В.М., Симонов В.И., Белов Н.В. // Кристаллография. 1972. Т. 17. Вып. 6. С. 1119.
- 7. Расцветаева Р.К., Хомяков А.П., Андрианов В.И., Гусев А.И. // Докл. АН СССР. 1990. Т. 312. № 6. С. 1379.
- 8. Rozenberg K.A., Rastsvetaeva R.K., Khomyakov A.P. // Eur. J. Mineral. 2005. V. 17. P. 875.
- 9. Расцветаева Р.К., Чуканов Н.В., Меккель Ш. // Кристаллография. 2003. Т. 48. № 2. С. 250.
- Johnsen O., Grice J.D., Gault R.A. // Eur. J. Mineral. 1998. V. 10. P. 207.
- 11. Johnsen O., Gault R.A., Grice J.D. // Can. Mineral. 2003. V. 41. P. 55.
- Хомяков А.П., Нечелюстов Г.Н., Екименкова И.А., Расцветаева Р.К. // Зап. Всерос. минерал. о-ва. 2005. № 6. С. 47.
- Екименкова И.А., Расцветаева Р.К., Чуканов Н.В. // Кристаллография. 2000. Т. 45. № 6. С. 1010.
- Расцветаева Р.К., Екименкова И.А., Пеков И.В. // Докл. РАН. 1999. Т. 368. № 5. С. 636.
- Розенберг К.А., Расцветаева Р.К., Чуканов Н.В., Верин И.А. // Кристаллография. 2005. Т. 50. № 4. С. 590.
- 16. *Номура С.Ф., Атенсио Д., Чуканов Н.В. и др.* // Зап. Рос. минерал. о-ва. 2010. Т. 139. № 4. С. 35.
- 17. Екименкова И.А., Расцветаева Р.К., Чуканов Н.В. // Докл. РАН. 2000. Т. 371. № 5. С. 625.
- Расцветаева Р.К., Чуканов Н.В. // Кристаллография. 2003. Т. 48. № 5. С. 775.
- 19. Розенберг К.А., Расцветаева Р.К., Верин И.А. // Кристаллография. 2009. Т. 54. № 3. С. 446.
- Расцветаева Р.К., Чуканов Н.В., Меккель Ш. и др. // Кристаллография. 2020. Т. 65. № 1. С. 32.
- 21. Расцветаева Р.К., Чуканов Н.В., Ван К.В. // Кристаллография. 2020. Т. 65. № 4. С. 555.
- 22. Расцветаева Р.К., Чуканов Н.В., Зайцев В.А. и др. // Кристаллография. 2018. Т. 63. № 3. С. 392.
- 23. Johnsen O., Gault R.A., Grice J.D., Ercit T.S. // Can. Mineral. 1999. V. 37. P. 893.
- 24. *Grice J.D., Gault R.A.* // Can. Mineral. 2006. V. 44. P. 105.
- 25. Розенберг К.А., Расцветаева Р.К., Чуканов Н.В., Верин И.А. // Докл. РАН. 2005. Т. 400. № 5. С. 640.
- 26. Расцветаева Р.К., Чуканов Н.В., Сипавина Л.В., Воронин М.В. // Кристаллография. 2020. Т. 65. № 5. С. (в печати).