_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 548.736.6

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ В МИНЕРАЛАХ ГРУППЫ ЭВДИАЛИТА. Х. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПРОМЕЖУТОЧНОГО ЧЛЕНА РЯДА РАСЛАКИТ–СЕРГЕВАНИТ

© 2021 г. Р. К. Расцветаева^{1,*}, Н. В. Чуканов^{2,3}

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ² Институт проблем химической физики РАН, Черноголовка, Россия

³ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

**E-mail: rast@crys.ras.ru* Поступила в редакцию 08.06.2020 г. После доработки 17.06.2020 г. Принята к публикации 17.06.2020 г.

Методами рентгеноструктурного анализа, электронно-зондового микроанализа и ИК-спектроскопии исследован промежуточный член ряда твердых растворов раслакит—сергеванит. Параметры элементарной тригональной ячейки минерала: a = 14.208(1), c = 30.384(1) Å, V = 5311.80(6) Å³, пр. гр. *R*3. Кристаллическая структура уточнена до итогового фактора расходимости R = 4.59% в анизотропном приближении атомных смещений с использованием 3394 рефлексов с $F > 3\sigma(F)$. Упрощенная формула минерала (Z = 3): $[Na_{12}(H_3O)_2][Ca_3(Fe_{1.5}Mn_{1.5})]Zr_3[Na_2Zr][Si_{26}O_{72}]OH_4$. Впервые установлено расщепление позиции шестичленного кольца октаэдров, преимущественно заселенной Fe и Mn. Обсуждаются проблемы генезиса низкокальциевых минералов группы эвдиалита.

DOI: 10.31857/S0023476121010185

введение

В последние десятилетия минералы группы эвдиалита (**МГЭ**) привлекают внимание многих исследователей и технологов. Повышенный интерес к этим минералам вызван как совокупностью их кристаллохимических особенностей, так и тем фактом, что МГЭ являются концентраторами ряда редких элементов (Zr, Hf, Nb, лантаноидов Ln и других) и рассматриваются как потенциальное сырье – источник этих элементов.

Состав МГЭ с учетом кристаллохимических особенностей по рекомендациям Подкомитета по эвдиалитам при КНМНК ММА [1] может быть описан общей формулой $N(1)_3N(2)_3N(3)_3N(4)_3$ $N(5)_3 M(1)_6 M(2)_{3-6} M(3) M(4) Z_3 [Si_{24}O_{72}]O'_{4-6} X_2$. Буквенные обозначения характеризуют набор элементов, а также их положение в структуре. При общем структурном мотиве, в основе которого лежит гетерополиэдрический каркас, состоящий из колец ${}^{\text{IV}}\text{Si}_3\text{O}_9$, ${}^{\text{IV}}\text{Si}_9\text{O}_{27}$ и ${}^{\text{VI}}M1_6\text{O}_{24}$ (M1 = Ca, Mn²⁺, Fe²⁺, Na, *Ln*; римскими цифрами обозначены координационные числа), соединенных между собой дополнительными катионами в позициях M2 и ^{VI} $Z(M2 = Fe^{2+}, Fe^{3+}, Mn^{2+}, Zr, Ta, Na; Z =$ = Zr, Ti, Nb), МГЭ характеризуются уникальным химическим и структурным разнообразием [2–4]. Координационное число (КЧ) позиции М2 может

варьироваться от 4 (плоский квадрат) до 7. Дополнительный вклад в кристаллохимическое разнообразие МГЭ вносят различные компоненты (Si, Nb, W, Al, Na и другие) в позициях *M*3 и *M*4, центрирующих кольца Si₉O₂₇ и имеющих заряд от +1 до +6 и KЧ = 4 или 6, а также вариации содержания внекаркасных катионов в позициях N1-N5 (Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Y³⁺, *Ln*³⁺, H₃O⁺), дополнительных анионов в X-позициях (Cl⁻, F⁻, S^{2-} , SO_4^{2-} , CO_3^{2-}) и молекул H_2O , расщепление и заселенность смешанных ключевых позиций и наличие в них вакансий. Обладая этими особенностями, МГЭ являются прекрасными моделями для исследования закономерностей гомовалентного, гетеровалентного и блочного изоморфизма в минералах с микропористыми гетерополиэдрическими структурами. Кристаллохимическое разнообразие МГЭ преимущественно определяется вариациями состава в окрестности позиций M1-M4, а также в X- и некоторых N-позициях. Эти позиции принято называть ключевыми, их заселенность положена в основу принципов выделения минеральных видов в группе эвдиалита.

МГЭ входят в состав специфических щелочных магматических горных пород – нефелиновых сиенитов агпаитового ряда, а также связанных с ними пегматитов и метасоматитов. Кристаллохи-

Упрощенная формула	$[Na_{12}(H_3O)_2][Ca_3(Fe_{1.5}Mn_{1.5})]$
(Z = 3)	Zr ₃ [Na ₂ Zr][Si ₂₆ O ₇₂]OH ₄
<i>a</i> , <i>c</i> , Å	14.208(1), 30.384(1)
<i>V</i> , Å ³	5311.80(6)
Сингония, пр. гр., <i>Z</i>	Тригональная, <i>R</i> 3, 3
Размеры кристалла, мм	0.19×0.20×0.30
Дифрактометр	Xcalibur Eos CCD Oxford Diffraction
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
Тип сканирования	ω
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-19 \le h \le 19, 0 \le k \le 22,$
	0 < l < 48
$(\sin\theta/\lambda)_{max}, Å^{-1}$	0.8
Общее количество/число	35997/3394, 3.6
независимых отражений	
c $F > 3\sigma F$, R_{ycp} , %	
Метод уточнения	МНК по F
<i>R</i> , %	4.59
Программы	AREN [14]

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры

мические особенности МГЭ являются важным типоморфным признаком, отражающим условия минералообразования, в том числе активность некогерентных элементов, фугитивность летучих компонентов, температуру и окислительно-восстановительные условия кристаллизации.

Среди МГЭ выделяется совокупность низкокальциевых членов, в которых катионы разного радиуса упорядочены и чередуются через один в кольце связанных ребрами октаэдров ${}^{VI}M1_6O_{24}$, в результате позиция M1 распадается на две независимые позиции, M1.1 и M1.2, с потерей плоскости симметрии и понижением симметрии от R3m до R3 (структурный тип онейллита [5]). Чаще всего в позиции M1.1 доминирует Ca, а в позиции $M1.2 - Mn^{2+}$ или Fe²⁺. К настоящему времени упорядочение в шестичленных кольцах установлено в онейллите [5], раслаките [6] и воронковите [7]. Недавно Комиссией по новым минералам, номенклатуре и классификации Международной минералогической ассоциации был утвержден новый МГЭ, относящийся к структурному типу онейллита-сергеванит Na₁₅(Ca₃Mn₃)(Na₂Fe)Zr₃Si₂₆O₇₂(OH)₃ · H₂O (IMA № 2019-057). Кроме того, исследован ряд образцов промежуточного состава и потенциально новых минералов подгруппы онейллита [8-13]. Образованию подобных минералов способствует ультраагпаитовая обстановка, о чем свидетельствуют ассоциирующие с ними минералы —

индикаторы такой обстановки (вуоннемит, ломоносовит, стенструпин и другие).

В настоящей работе исследован еще один низкокальциевый представитель группы эвдиалита (образец № 7956).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изученный в настоящей работе МГЭ найден в отвалах рудника Карнасурт (гора Карнасурт, Ловозерский щелочной массив, Кольский полуостров). Он образует зерна оранжево-красного цвета размером до 1 см в щелочном пегматите, в ассоциации с микроклином, нефелином, эгирином, лампрофиллитом и казаковитом.

Химический состав изучен методом рентгеноспектрального микроанализа с применением растрового электронного микроскопа Tescan Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток 400 пА) и использованием системы регистрации рентгеновского излучения и расчета состава образца INCA Energy 450. Среднее по пяти измерениям содержание определяемых микрозондом компонентов в изученном минерале: Na₂O 14.35, K₂O 0.51, CaO 6.36, MnO 2.72, FeO 2.92, Y₂O₃ 1.33, La₂O₃ 1.41, Ce₂O₃ 1.82, Nd₂O₃ 0.47, TiO₂ 0.16, ZrO₂ 12.87, HfO₂ 0.23, Nb₂O₅ 0.78, SiO₂ 51.15, Cl 0.29, -O=Cl-0.07 мас. %, сумма 97.30 мас. %. Пределы содержания компонентов с учетом неоднородности зерен описываются следующей эмпирической формулой, рассчитанной на 25.85 атомов кремния (согласно данным рентгеноструктурного анализа Z = 3): $(H_3O)_xNa_{13.8-14.5}K_{0.3}Ln_{0.5-0.7}Y_{0.2-0.6}Ca_{3.4}Mn_{0.9-1.3}Fe_{1.1-1.3}$ $Zr_{2.9-3.3}Ti_{0-0.1}Nb_{0.1-0.4}Hf_{0-0.05}Si_{25.85}O_{72}Cl_{0.25}(OH,O,H_2O)_y.$

Минерал исследован методом рентгеноструктурного анализа. Для сбора дифракционных данных использован монокристальный ССД-дифрактометр Xcalibur Oxford Diffraction (Мо K_{α} -излучение). Характеристика кристалла и данные эксперимента приведены в табл. 1. Химический состав образца, изученного в настоящей работе, близок к составу Fe-содержащей разновидности сергеванита [8], поэтому координаты атомов его каркаса были использованы в качестве стартового набора. Внекаркасные позиции найдены из серии разностных синтезов электронной плотности. Состав катионов в ряде позиций и подпозиций уточняли с учетом смешанных кривых атомного рассеяния. Все расчеты выполнены по системе кристаллографических программ AREN [14]. Уточненные структурные параметры и характеристики координационных полиэдров приведены в табл. 2-4 соответственно.

ОПИСАНИЕ СТРУКТУРЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основные особенности состава и строения изученного МГЭ отражены в его кристаллохимической формуле (Z= 3), которая находится в хорошем согласии с эмпирической: ^{N1-5}[(Na_{11.2}(H₃O,H₂O)₂Ln_{0.5}Y_{0.3})] ^{N6}[K_{0.3}]^{M1.1}Ca₃^{M1.2}[(Fe_{1.2}Mn_{1.2})Ca_{0.6}][Zr₃]^{M2}[Na_{2.4}^{IV}(Zr,Hf)_{0.6}^{V1}] ^{M3,M4}[Si_{1.85}Nb_{0.1}Ti_{0.05}][Si₂₄O₇₂] (OH)_{3.05}Cl_{0.2} · H₂O, где квадратными скобками выделены составы ключевых позиций структуры, а римскими цифрами обозначены КЧ катионов. Упрощенная формула (Z= 3): [Na₁₂(H₃O)₂][Ca₃(Fe_{1.5}Mn_{1.5})]Zr₃[Na₂Zr] [Si₂₆O₇₂](OH)₄.

Особенностью химического состава изученного образца являются низкое содержание кальция и присутствие железа и марганца в приблизительно равных количествах, которые восполняют недостающее количество Са в одном из двух независимых октаэдров шестичленного кольца. Октаэдр, заполненный Са, и октаэдр, содержащий (Mn, Fe) с небольшой примесью Са, чередуются в шестичленных кольцах. CaO₆-октаэдр характеризуется расстояниями M1.1-O в пределах 2.31(1)-2.387(7) Å. Позиция *M*1.2 во втором октаэдре расщеплена на две подпозиции с расстоянием 0.213(6) Å между ними. Подпозиция состава Fe_{0.4}Mn_{0.4}П_{0.2} находится в октаэдрес расстояниями M1.2a - O = 2.231(9) - 2.39(1) Å, в то время как ионы кальция занимают октаэдр с расстояниями M1.2b-O = 2.17(1)-2.477(6) Å и заселенностью 20%.

Параллельные ребра октаэдров, принадлежащих соседним шестичленным кольцам, образуют полиэдр, по своей конфигурации близкий к плоскому квадрату и координирующий ключевую позицию М2. В данном образце эта позиция расщеплена на две, заполненные статистически, с расстоянием M2a - M2b = 0.748(6) Å. Центр квадрата занят катионами циркония (избыточного по отношению к трем атомам Zr на формулу в позиции Z) с расстояниями M2b-O = 2.084(6)-2.213(5) Å. Эта координация дополнена до октаэдра расположенными по обе стороны от квадрата ОН-группами на расстояниях 2.45(4) и 2.71(3) Å от подпозиции M2b. Вторая подпозиция заселена атомами натрия с расстояниями до вершин квадрата M2a - O = 2.176(7) - 2.22(1) Å (среднее 2.20 Å). Особенностью этой координации является ее односторонний характер, так как атом кислорода, дополняющий квадрат до пятивершинника, находится за пределами 3 Å. С учетом заселенности этих подпозиций преобладающим катионом в *М*2-микрообласти является натрий (табл. 3, 4).

Каждая из двух других видообразующих позиций, *M*3 и *M*4, располагающихся на оси третьего порядка вблизи центров двух неэквивалентных девятичленных кремнекислородных колец Si₉O₂₇,

Таблица 2. Координаты и эквивалентные параметры смещений атомов каркаса

Позиция	x/a	y/b	z/c	$B_{_{\rm ЭKB}}, Å^2$
Ζ	0.3326(1)	0.1672(1)	0.1669(1)	1.52(2)
Si1	-0.0085(1)	0.3880(1)	0.0971(1)	1.18(8)
Si2	0.2697(1)	0.3259(1)	0.2366(1)	1.04(8)
Si3	0.5280(1)	0.2652(2)	0.2517(1)	1.38(8)
Si4	-0.0081(1)	0.6033(1)	0.0972(1)	1.15(8)
Si5	0.2069(1)	0.4133(2)	0.0765(1)	1.36(8)
Si6	0.0826(1)	0.5414(1)	0.2581(1)	1.31(7)
Si7	0.0556(1)	0.3254(1)	0.2366(1)	1.13(7)
Si8	0.1423(1)	0.0720(1)	0.0819(1)	1.06(7)
O 1	0.4748(5)	0.2361(7)	0.2031(2)	2.4(3)
O2	0.2625(7)	0.0291(7)	0.2060(3)	3.1(3)
O3	0.4135(5)	0.3079(6)	0.1281(2)	2.0(3)
O4	0.6049(5)	0.3936(5)	0.2525(2)	2.1(3)
O5	0.4401(6)	0.2229(6)	0.2902(2)	2.5(3)
O6	0.4101(5)	0.0319(6)	0.0455(2)	2.1(3)
O 7	0.0994(5)	0.3784(6)	0.1076(2)	1.9(3)
O 8	0.0234(5)	0.5115(4)	0.1104(2)	1.4(3)
09	0.2748(7)	0.5450(6)	0.0710(3)	3.0(3)
O10	0.1786(5)	0.3558(6)	0.0308(2)	1.8(3)
O11	0.0245(6)	0.5133(6)	0.3054(2)	2.1(3)
O12	0.1761(6)	0.3527(7)	0.2186(2)	2.4(3)
O13	0.0359(6)	0.2959(5)	0.2876(2)	2.2(3)
O14	0.3909(6)	0.4344(6)	0.2274(2)	2.2(3)
O15	0.3918(9)	0.6038(8)	0.2572(3)	3.4(3)
O16	0.0632(6)	0.1253(5)	0.0774(2)	2.1(3)
O 17	0.1934(7)	0.0958(8)	0.1280(2)	2.9(3)
O18	0.2206(6)	0.1134(6)	0.0411(2)	2.4(3)
O19	0.4109(6)	0.1015(6)	0.1285(2)	2.2(3)
O20	0.6248(7)	0.0345(7)	0.0453(2)	2.3(3)
O21	0.2610(6)	0.2933(5)	0.2877(2)	2.1(3)
O22	0.2590(7)	0.2293(7)	0.2066(2)	2.7(3)
O23	0.2792(6)	0.3810(7)	0.1065(2)	2.6(3)
O24	0.0420(5)	0.4312(5)	0.2261(2)	1.6(3)

Примечание. Все атомы находятся в общих положениях, заселенность всех позиций равна единице.

расщеплена на три подпозиции, находящиеся на коротких расстояниях друг от друга: M3a-M3b == 1.37(7), M3a-M3c = 0.489(8), M3b-M3c == 1.85(7), M4a-M4b = 0.89(2), M4a-M4c = 0.24(4), M4b-M4c = 1.60(4) Å. Подпозиции M3a, M3b и M3c заселены статистически и содержат 0.8Si, 0.1Si и 0.1Nb соответственно. Заселенности подпозиций M4a, M4b и M4c - 0.65Si, 0.35Si и 0.05Ti соответственно. Общее доминирование атомов Si в M3- и M4-позициях позволяет отнести изучен-

Позиция	x/a	y/b	<i>z</i> / <i>c</i>	Q	q	$B_{_{ m 3KB}/*_{ m H3O}}$, Å ²
<i>M</i> 1.1	0.2596(1)	-0.0003(1)	0.0001(1)	9	1.0	0.59(6)
<i>M</i> 1.2 <i>a</i>	0.2619(1)	0.2599(1)	0.0005(1)	9	0.78(1)	0.26(5)
<i>M</i> 1.2 <i>b</i>	0.3928(4)	0.3207(4)	0.3318(2)	9	0.25(1)	0.5(1)
M2a	0.0448(3)	0.5231(3)	0.0026(1)	9	0.79(1)	1.79(6)
M2b	0.5079(1)	0.4927(2)	0.0016(1)	9	0.20(1)	0.82(3)
МЗа	0.3334	0.6667	0.2816(1)	3	0.79(2)	2.21(6)
M3b	0.3334	0.6667	0.236(2)	3	0.07(3)	6.3(5)
МЗс	0.3334	0.6667	0.2977(2)	3	0.11(1)	1.1(1)
M4a	0.3333	0.6667	0.0468(3)	3	0.68(3)	2.08(9)
M4b	0.3334	0.6667	0.0915(7)	3	0.28(2)	3.5(2)
M4c	0.3334	0.6667	0.039(1)	3	0.05(1)	1.5(6)
N1a	0.1147(5)	0.2301(6)	0.1504(2)	9	0.67(2)	2.5(1)
N1b	0.078(2)	0.175(2)	0.1691(6)	9	0.25(1)	3.1(2)
N1c	0.098(2)	0.171(2)	0.1682(7)	9	0.12(1)	1.6(1)
N2a	0.5638(5)	0.4382(5)	0.1771(2)	9	0.71(1)	2.4(1)
N2b	0.592(2)	0.183(2)	0.1629(6)	9	0.21(1)	1.7(5)
N2c	0.546(2)	0.0939(7)	0.1826(3)	9	0.10(1)	3.4(1)
N3a	0.2009(6)	0.1013(4)	0.2872(2)	9	0.81(5)	1.1(2)
N3b	0.179(7)	0.086(8)	0.300(1)	9	0.25(2)	6.6(8)
N4a	0.4643(4)	0.2331(4)	0.0456(1)	9	0.51(1)	1.9(1)
N4b	0.433(2)	0.217(1)	0.0542(5)	9	0.20(1)	1.3(5)
N4c	0.496(2)	0.247(1)	0.0532(4)	9	0.32(1)	2.4(3)
N5a	0.281(6)	0.531(3)	0.180(2)	9	0.24(3)	5(1)
N5b	0.223(3)	0.657(3)	0.1650(6)	9	0.34(2)	3.7(5)
N5c	0.187(3)	0.591(3)	0.151(1)	9	0.23(2)	3(1)
<i>N</i> 6	0	0	0	3	0.35(7)	4.1(2)*
OH1	0.3334	0.6667	0.336(1)	3	0.45(7)	7.1(4)
OH2	-0.0002(1)	0	0.330(1)	3	0.55(8)	7.0(6)
OH3	0.3334	0.6667	0.14	3	0.5(1)	2.00(1)*
OH4	0.3334	0.6667	0.18	3	0.3(1)	3.8(7)*
OH5	0.205(3)	0.603(3)	-0.001(1)	9	0.23(2)	2.5(6)
OH6	0.610(3)	0.215(3)	-0.004(1)	9	0.21(2)	2.2(6)
<i>X</i> 1	-0.0004(2)	0	0.226(1)	3	0.19(2)	7.7(3)
X2a	0.6664	0.3334	0.0943(7)	3	0.70(4)	3.7(4)
X2b	0.6667	0.3334	0.128(3)	3	0.3(9)	3.3(6)*

Таблица 3. Координаты, кратность (Q) и заселенность (q) позиций и эквивалентные параметры смещений атомов ключевых и внекаркасных позиций

Примечание. $X1 = Cl_{0.2}, X2a = (H_2O)_{0.7}, X2b = (H_2O)_{0.3}.$

ный минерал к высококремнистым представителям минералов со структурным типом онейллита (табл. 5).

Крупные катионы распределяются по шести цеолитоподобным полостям каркаса, в которых *N*-позиции (кроме *N*6) расшепляются на две-три подпозиции (табл. 3, 4). В одной полости подпозиции, отстоящие друг от друга на расстояниях N1a-N1b = 0.64 (1), N1a-N1c = 0.92(2) и N1b--N1c = 0.31(4) Å, заняты атомами натрия. В другой полости единая позиция также расщепляется на три с расстояниями между ними N2a-N2b = 0.82(1), N2a-N2c = 0.42(1) и N2b-N2c = 1.25(2) Å. Две из них заняты натрием, в то время как в N2c находятся 0.3 атома Y. В третьей полости центральная позиция расщепляется на две, разнесен-

Позиция С	$C_{2} = 2$	VII	Расстояния катион–анион, Å			
	COCTAB (Z - 3)	КЧ	Минимальное	Максимальное	Среднее	
Ζ	3Zr	6	2.05(1)	2.12(1)	2.074	
<i>M</i> 1.1	3Ca	6	2.31(1)	2.387(7)	2.354	
<i>M</i> 1.2 <i>a</i>	1.2Fe + 1.2Mn	6	2.231(9)	2.39(1)	2.319	
<i>M</i> 1.2 <i>b</i>	0.6Ca	6	2.17(1)	2.477(6)	2.312	
M2a	2.4Na	4	2.176(7)	2.22(1)	2.2	
M2b	0.6(Zr, Hf)	6	2.084(6)	2.71(3)	2.290	
МЗа	0.8Si	4	1.64(3)	1.66(1)	1.655	
M3b	0.1Si	4	1.61(2)	1.71(7)	1.63	
МЗс	0.1Nb	6	1.75(4)	1.937(7)	1.843	
M4a	0.65Si	4	1.522(9)	1.66(1)	1.62	
M4b	0.3Si	4	1.47	1.62(1)	1.58	
M4c	0.05Ti	6	1.79(2)	1.97(5)	1.88	
N1a	2.1Na	8	2.56(1)	2.73(1)	2.634	
N1b	0.6Na	7	2.34(3)	2.85(2)	2.621	
N1c	0.3Na	7	2.31(2)	2.82(2)	2.621	
N2a	2.1Na	9	2.482(8)	2.95(4)	2.672	
N2b	0.6Na	7	2.43(2)	3.00(2)	2.62	
N2c	0.3Y	8	2.47(1)	2.79(1)	2.60	
N3a	$1.5Na + 0.9H_{3}O$	8	2.41(1)	3.09(2)	2.782	
N3b	0.6H ₃ O	6	2.20(1)	2.60(9)	2.41	
N4a	0.9Na + 0.6Ce	10	2.49(1)	3.001(9)	2.75	
N4b	0.6Na	6	2.44(2)	2.71(1)	2.60	
N4c	0.9Na	8	2.44(2)	3.09(7)	2.76	
N5a	0.6H ₃ O	5	2.20(1)	2.91(7)	2.55	
N5b	0.9H ₃ O	5	2.87(2)	3.03(2)	2.94	
N5c	0.6H ₃ O	6	2.30(1)	2.99(4)	2.74	
<i>N</i> 6	0.3K	9	2.811	2.988	2.892	

Таблица 4. Характеристики координационных полиэдров

Примечание. Расстояния для SiO₄-тетраэдров каркаса опущены ввиду их стандартных значений.

Таблица 5. Состав видообразующих ключевых позиций минералов со структурным типом онейллита (пр. гр. R3)

Минерал	M 1.1	<i>M</i> 1.2	M2	М3	<i>M</i> 4	Литература
Онейллит	Mn	Ca	Fe ^V _{1.43}	Nb	Si	[5]
Раслакит	Ca	Fe	$Na_{1.5}^V$	Si	Si	[6]
Воронковит	Na	Mn	Fe ^{IV} _{1.5}	Si	Si	[7]
"Сергеванит"	Ca	Mn	$Na_{1.8}^{VII}$	Si	Si	[8]
Образец 7956	Ca	$[(Fe + Mn)]_{0.8} + [Ca]_{0.2}$	Na ^{IV} _{2.4}	Si	Si	настоящая работа

ные на расстояние N3a-N3b = 0.48(5) Å и занятые (1.5Na + 0.9H₃O) и 0.6H₃O соответственно. В четвертой полости расстояния N4a-N4b, N4a-N4c и N4b-N4c равны 0.46(1), 0.45(1) и 0.76(2) Å соответственно, причем подпозиции N4b и N4c заня-

ты атомами натрия с заселенностью 0.6 и 0.9 соответственно, а в подпозиции N4a с KЧ = 10 фиксируется смешанная заселенность (0.9Na + 0.6Ce). Полость, ограниченная сверху и снизу кольцами Si₉O₂₇, занята группами H₃O в подпозициях, раз-

Рис. 1. Фрагмент структуры промежуточного члена твердого раствора раслакит—сергеванит (проекция на ось 3).

несенных на расстояния N5a-N5b = 0.89(7), N5a-N5c = 1.80(7) и N5b-N5c = 0.92(5) Å, а также ОН-группами в апикальных вершинах SiO₄-тетраэдров, развернутых внутрь полости. Атомы в подпозициях N1-N5 формируют пяти- и десятивершинные полиэдры, а атомы К находятся в центре шестерного кольца из M1-октаэдров в позиции N6 с KЧ = 9 и заселенностью 0.3.

Анионные позиции X1 и X2, расположенные на оси третьего порядка, заняты атомом хлора и молекулами воды соответственно. Позиция хлора заполнена частично и статистически входит в окружение полиэдров N1b, N1c и N3a. Позиция, занимаемая молекулами воды, расщеплена на две, находящиеся на расстоянии 1.02(9) Å друг от друга и входящие статистически в полиэдры N2b, N3b, а также N4a и N4c (табл. 3, 4).

Одной из особенностей минералов с микропористыми гетерополиэдрическими структурами, к которым относятся и МГЭ, является расщепление позиций с частичной заселенностью подпозиций. Современные экспериментальные и расчетные методы позволяют локализовать и уточнять эти подпозиции. Для минералов со структурным типом эвдиалита характерно расщепление всех позиций, кроме Z и позиций кольцевых кремнекислородных фрагментов каркаса. Другой кольцевой фрагмент каркаса — шестичленное кольцо ^{VI} $M1_6O_{24}$, состоящее из октаэдров $M1O_6$, соединенных общими ребрами, — до недавнего времени считали также устойчивым к вариациям химического состава, а позицию M1 не склонной к расщеплению. Хотя иногда в октаэдрах шестичленного кольца наблюдалось расщепление смешанных позиций, уточнение подпозиций выполнено впервые для минерала с пр. гр. R3m [15]. В минерале, исследованном в настоящей работе, установлено не только упорядочение в шестичленном кольце, но и впервые зафиксировано расщепление позиции в одном из двух независимых октаэдров и проведено уточне-

выводы

ние этих подпозиций в рамках пониженной сим-

метрии (пр. гр. *R*3).

Изученный минерал обладает рядом химических и структурных особенностей, касающихся кристаллохимических ключевых позиций. В частности, в М1-позиции одного октаэдра шестичленного кольца кальций замещен атомами Fe и Mn в равных пропорциях с небольшой примесью Са, что обусловливает его принадлежность к системе твердых растворов раслакит-сергеванит. Таким образом, с учетом полученных данных можно сделать вывод, что в системе твердых растворов МГЭ, относящихся к онейллитовому структурному типу, реализуется широкий изоморфизм Fe. Mn. Ca и Na в *M*1-октаэдрах. В табл. 5 приведены доминирующие компоненты в ключевых позициях низкокальциевых МГЭ с низкой симметрией и упорядочением состава в октаэдрах шестичленного кольца.

Минерал отличается не только уникальным составом шестичленного кольца, но и расщеплением смешанной позиции в октаэдре, что позволяет относить к числу расщепляющихся позицийи *M*1-позицию каркаса. Новый представитель группы эвдиалита со структурным типом онейллита принадлежит к типоморфным компонентам специфических горных пород — наиболее высокоагпаитовых разновидностей нефелиновых сиенитов и связанных с ними пегматитов.

Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" при поддержке Минобрнауки (проект RFMEFI62119X0035) в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части рентгеноструктурного анализа и Российского фонда фундаментальных исследований (проект № 18-29-12005) в части кристаллохимического анализа микропористых минералов группы эвдиалита. Работы по сбору минерала, анализа его химического состава и диагностики ассоциирующих минералов выполнены в соответствии с темой Государственного задания (№ ААА-А19-119092390076-7), а также при поддержке Российского фонда фундаментальных исследований (проект № 18-29-12007_мк).

СПИСОК ЛИТЕРАТУРЫ

- Johnsen O., Ferraris G., Gault R.A. et al. // Can. Mineral. 2003. V. 41. P. 785.
- Расцветаева Р.К., Чуканов Н.В., Аксенов С.М. Минералы группы эвдиалита: кристаллохимия, свойства, генезис. Нижний Новгород: Изд-во НГУ, 2012. 229 с.
- 3. Johnsen O., Grice J.D. // Can. Mineral. 1999. V. 37. № 4. P. 865.
- Расцветаева Р.К., Чуканов Н.В. // Зап. Рос. минерал. о-ва. 2011. Ч. 140. № 3. С. 25.
- Johnsen O., Grice J.D., Gault R.A. // Can. Mineral. 1999. V. 37. P. 1111.
- 6. *Чуканов Н.В., Пеков И.В., Задов А.Е. и др.* // Зап. Всерос. минерал. о-ва. 2003. № 5. С. 22.

- 7. *Расцветаева Р.К., Хомяков А.П.* // Кристаллография. 2000. Т. 45. № 4. С. 649.
- 8. Расцветаева Р.К., Чуканов Н.В., Ван К.В. // Кристаллография. 2020. Т. 65. № 4. С. 562.
- 9. Расцветаева Р.К., Аксенов С.М., Чуканов Н.В. // Докл. РАН. 2010. Т. 431. № 2. С. 201.
- 10. Расцветаева Р.К., Хомяков А.П., Некрасов Ю.В. // Кристаллография. 1999. Т. 44. № 5. С. 824.
- 11. *Расцветаева Р.К., Чуканов Н.В., Верин И.А. //* Докл. РАН. 2006. Т. 409. № 6. С. 807.
- 12. *Расцветаева Р.К., Розенберг К.А., Пеков И.В. и др. //* Кристаллография. 2006. Т. 51. № 2. С. 235.
- 13. Расцветаева Р.К., Хомяков А.П. // Кристаллография. 2000. Т. 45. № 2. С. 251.
- 14. *Андрианов В.И.* // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.
- 15. Расцветаева Р.К., Чуканов Н.В., Лисицин Д.В. // Кристаллография. 2021. Т. 66. № 1 (в печати).