КРИСТАЛЛОГРАФИЯ, 2021, том 66, № 1, с. 97–103

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

УДК 548.736

КТт [B₄O₆(OH)₄] · 3H₂O – НОВЫЙ ПРЕДСТАВИТЕЛЬ СЕМЕЙСТВА БОРАТОВ СО СЛЮДОПОДОБНЫМИ ТЕТРАЭДРИЧЕСКИМИ СЛОЯМИ

© 2021 г. А. П. Топникова¹, Е. Л. Белоконева¹, О. В. Димитрова¹, А. С. Волков¹, Д. В. Дейнеко¹, Л. В. Зорина^{2,*}

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Институт физики твердого тела РАН, Черноголовка, Россия *E-mail: nastya_zorina@rambler.ru Поступила в релакцию 10.08.2020 г.

Поступила в редакцию 10.08.2020 г. После доработки 01.09.2020 г. Принята к публикации 01.09.2020 г.

Кристаллы нового бората KTm[B₄O₆(OH)₄] · 3H₂O (пр. гр. $P\overline{3}1m$, a = 4.5472(7), c = 12.151(3) Å) получены в гидротермальных условиях при $T = 280^{\circ}$ C и P = 100 атм. В структуре выделяются пакеты из двух полярных слюдоподобных тетраэдрических слоев [B₄O₆(OH)₄]_{∞∞}, соединенных TmO₆-октаэдрами. Атомы K и молекулы воды статистически заполняют межпакетное пространство. Аналогичный слой есть в структурах пепроссиита, его синтетических аналогов NdAl_{2.07}[B₄O₁₀]O_{0.6} и KTa[B₄O₆(OH)₄](OH)₂ · 1.33H₂O (пр. гр. $P\overline{6}2m$), в которых координация тяжелого атома тригонально-призматическая. Проведено сопоставление с двумя другими структурами семейства – KGd[B₆O₁₀(OH)₂] и KHo[B₆O₁₀(OH)₂]. В новом члене семейства реализована комбинация из простых слюдяных слоев и октаэдров в одном пакете, неизвестная ранее. Для всех рассмотренных представителей характерны беспорядок и статистическая заселенность позиций, особенно в межпакетном пространстве. Кристаллы KTm[B₄O₆(OH)₄] · 3H₂O демонстрируют интенсивную эмиссию в синей области видимого света за счет излучательных переходов 4*f*-4*f* катиона Tm³⁺. В спектрах излучения фотолюминесценции наиболее интенсивным является переход ¹D₂-³F₄ при 450 нм.

DOI: 10.31857/S0023476121010215

введение

Для боратов характерно большое разнообразие анионных радикалов в связи со способностью бора присутствовать в двоякой координации (треугольной и тетраэдрической), что вызывает интерес к данному классу соединений сточки зрения кристаллохимии и поиска новых фаз. Кристаллы боратов являются интересными объектами для материаловедения, поскольку обладают большим спектром химических и физических свойств, таких как лазерные, магнитные, люминесцентные, нелинейно-оптические, ионопроводящие. Наличие редкоземельных ионов в структурах боратов позволяет надеяться на получение кристаллов с люминесцентными свойствами.

Согласно базам данных [1, 2] среди класса боратов с Tm известны следующие соединения в соответствии с систематикой [3]: TmBO₃ [4], TmBa₃(BO₃)₃ [5] и Ca₄TmB₃O₁₀ [6] с изолированными BO₃-треугольниками [Δ], TmHB₂O₅ с диборатными цепочками [$T+\Delta$] [7], высокобарический TmB₃O₆ с гофрированными слоями из тетраздров, соединенных в гексаборатные блоки 6[6*T*] [8], высокобарический $\text{Tm}_3\text{B}_5\text{O}_{12}$ с тетраздрическими слоями [9], аналогичными силикатным в структуре синтетического $\text{H}_2\text{NaNd}[\text{Si}_6\text{O}_{15}] \cdot n\text{H}_2\text{O}$ [10].

Боратные кристаллические структуры активно используются как матрицы для введения люминесцирующих катионов благодаря высокой стабильности излучения [11, 12]. В ряду редкоземельных элементов (РЗЭ) эмиссия наблюдается за счет внутри конфигурационных 4f-4f и межконфигурационных $5d^{1}-4f$ переходов и находит широкое применение в системах LED (Light-Emitting Diode) [13]. Катионы Tm³⁺ демонстрируют излучение в синей области видимого спектра за счет трехфотонного ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ (~480 нм) [14, 15] и четырехфотонного ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ (~450 нм) переходов. Схематическое представление процессов возбуждения и релаксации катионов Tm³⁺, возникающих при воздействии излучения с длиной волны 358 нм, представлена на рис. 1 [16]. В спектрах излучения также присутствуют переходы

Рис. 1. Схема межуровневых переходов, возбуждения и излучения ионов Tm^{3+} .

 ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ (~650 нм) и ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ (~750 нм) [17]. Так как 4*f*-электроны сильно экранированы 5*s*- и 5*p*электронными оболочками [18], переходы 4*f*-4*f* являются узкими полосами в спектрах поглощения и излучения [19]. В зависимости от кристаллического окружения положение полос люминесценции может незначительно изменяться. Кроме того, в зависимости от температуры и давления может наблюдаться перераспределение интенсивностей переходов Tm³⁺, что используется в методах оптической термометрии [20, 21].

В настоящей работе приведены результаты гидротермального синтеза, исследования кристаллической структуры нового бората $\text{KTm}[B_4O_6(OH)_4] \cdot 3H_2O$, ее сравнительного кристаллохимического анализа с родственными структурами, а также исследования люминесцентных свойств кристаллов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и свойства кристаллов. Кристаллы нового бората $KTm[B_4O_6(OH)_4] \cdot 3H_2O$ получены в гидротермальных условиях при температуре 280°С и давлении ~100 атм. в стандартных автоклавах объемом 5—6 см³ с тефлоновым вкладышем. Нижний предел температуры был ограничен кинетикой гидротермальных реакций, верхний — возможностями аппаратуры. Коэффициент заполнения автоклава выбран таким образом, чтобы давление оставалось постоянным. Массовое соотношение исходных компонентов Tm_2O_3 и B_2O_3 , взятых в количестве 1.0 г (0.003 моль) и 1.0 г (0.014 моль) соответственно, составляло 1 : 1.

Ионы K^+ , Cl^- и CO_3^{2-} были добавлены в раствор в качестве минерализаторов. Отношение твердой и жидкой фаз было 1 : 5. Время взаимодействия составляло 14 сут, что было необходимо для полного завершения реакции, после кристаллы промывали водой. Значение pH, измеренное после реакции, равно 10.

В общей тонкозернистой массе опыта обнаружены прозрачные и полупрозрачные тонкие слюдоподобные кристаллы с перламутровым блеском и их сростки. Выход кристаллов составлял около 10%. Оценочный тест на генерацию второй гармоники (ГВГ), выполненный с помощью импульсного ИАГ : Nd-лазера по схеме "на отражение" [22] для общей массы кристаллов, показал нулевой сигнал относительно кварцевого эталона, что свидетельствовало о центросимметричности кристаллов новой фазы.

Состав кристаллов определен с помощью рентгеноспектрального анализа в лаборатории локальных методов исследования вещества МГУ на микрозондовом комплексе на базе растрового электронного микроскопа Jeol JSM-6480LV и по-казал присутствие атомов Tm, K и O.

Рентгеноструктурное исследование. Параметры новой фазы определены на дифрактометре Oxford Diffraction Gemini R с CCD-детектором на прозрачном монокристалле в виде маленькой тонкой пластинки размером 0.125 × 0.1 × 0.025 мм. Определялась гексагональная ячейка, для которой не было аналогов в базе данных неорганических соединений ICSD [1]. Параметры элементарных ячеек были близки параметрам решетки структур $KTa[B_4O_6(OH)_4](OH)_2 \cdot 1.33H_2O[23], KGd[B_6O_{10}(OH)_2]$ и КНо[B₆O₁₀(OH)₂] [24], что позволило предположить принадлежность новой структуры к данному семейству слоистых боратов. Трехмерный экспериментальный набор интенсивностей получен в полной сфере обратного пространства на дифрактометре Oxford Diffraction Gemini R с ССД-детектором. Обработка данных выполнена по программе CrysAlis [25]. Структура была решена прямыми методами с помощью программы SHELXS [26] комплекса WinGX [27]. В качестве вероятной для расшифровки предложена пр. гр. $P\overline{6}2m$, однако в силу центросимметричности структуры, выявленной в результате теста на ГВГ, для расшифровки была выбрана пр. гр. $P\overline{3}1m$. Первыми были найдены позиции Tm, B, K, O1 и О2. Атом К статистически заселял свою позицию с вероятностью 0.5. Из разностного синтеза выявлены позиции атомов ОЗ, О4 молекул воды. Их заселенности (0.28 и 0.22 соответственно) найдены путем пошагового изменения (шаг 0.02, приблизительно равный величине погрешности). При расчете остаточной электронной плотности обнаружены высокие пики вблизи позиции

	-
Химическая формула	$\mathrm{KTm}[\mathrm{B}_{4}\mathrm{O}_{6}(\mathrm{OH})_{4}]\cdot 3\mathrm{H}_{2}\mathrm{O}$
М	469.35
Сингония, пр. гр., <i>Z</i>	Тригональная, $P\overline{3}1m,1$
<i>a</i> , <i>c</i> , Å	4.5472(7), 12.151(3)
$V, Å^3$	217.58(8)
D_x , г/см ³	3.505
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
μ, мм ⁻¹	10.754
<i>Т</i> , К	293(2)
Размер образца, мм	$0.125 \times 0.1 \times 0.025$
Дифрактометр	Oxford Diffraction Gemini R
Тип сканирования	Ω
θ_{max} , град	34.596
Пределы h, k, l	$-5 \le h \le 7, -7 \le k \le 6, \\ -18 \le l \le 19$
Количество рефлексов измеренных/независи- мых/с $I \ge 1.96\sigma(I)/R_{int}$	2142/363/239/0.2417
Метод уточнения	МНК по $F^2(hkl)$
Весовая схема	$\frac{1/[\sigma^2(F_o)^2 + (0.0794P)^2]}{P = [\max(F_o)^2 + 2(F_c)^2]/3}$
Число параметров	32
R _{all}	0.1225
R_{gt}, R_{wgt}	0.0795, 0.1614
S	1.009
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-2.329/2.127
Программы	SHELX

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры $KTm[B_4O_6(OH)_4] \cdot 3H_2O$

атома Tm, отстоящие от основной позиции на расстояниях $\sim 0.198 - 1.428$ Å вдоль оси *с*, что говорило о разупорядочении атомов Tm вдоль данного направления. Добавление дополнительных слабозаселенных позиций Tm1-Tm4 (табл. 2) и пошаговое варьирование заселенностей с уточнением тепловых параметров позволили существенно понизить фактор расходимости до R = 0.0795. Расчет баланса валентных усилий по Полингу для полученной модели с учетом кратностей позиций атомов показал, что атом О1 является атомом кислорода О²⁻, а атом О2 – гидроксильной группой (ОН)-. Выявить позиции атомов Н было затруднительно из-за высокого разупорядочения структуры. Полученная структурная модель уточнена с использованием метода наименьших квадратов и программы SHELXL [28] комплекса WinGX [27] в анизотропном приближении смещений атомов Tm, B, K, O1 и O2 с уточнением весовой схемы. Заключительная кристаллохимическая формула исследованного бората – $\text{KTm}[B_4O_6(\text{OH})_4] \cdot 3H_2O, Z = 1.$

Кристаллографические данные, характеристики эксперимента и результаты заключительного уточнения структуры приведены в табл. 1, координаты и тепловые параметры атомов – в табл. 2. Информация о структуре находится в базе данных CCDC(ICSD) [1], номер депозита 2022543. Рисунки построены с помощью программы ATOMS [29].

Исследование спектров люминесценции. Спектрально-люминесцентные свойства изучали с помощью спектрофлюориметра Agilent Cary Eclipse. Установка позволяет регистрировать спектры люминесценции и возбуждения люминесценции образцов в диапазоне длин волн от 230–1000 нм. Источником возбуждающего излучения является

Таблица 2.	Координаты	базисных атомов,	заселенность	позиций (s.o.	f.) и эквива	лентные	изотропные	парамет-
ры в структ	ype KTm[B ₄ C	$O_6(OH)_4] \cdot 3H_2O$						

Атом	Позиция Уайкова	s.o.f.	x/a	y/b	<i>z/c</i>	$U_{_{ m ЭKB}},{ m \AA}^2$
Tm	1 <i>a</i> ,1 <i>m</i>	0.532	0	0	0	0.026(6)
Tm1	2e, 3m	0.15	0	0	0.984(4)	0.011(4)*
Tm2	2e, 3m	0.054	0	0	0.926(3)	0.015(3)*
Tm3	2e, 3m	0.018	0	0	0.883(6)	0.015(10)*
Tm4	2e, 3m	0.012	0	0	0.810(7)	0.029(16)*
Κ	2e, 3m	0.5	0	0	0.633(2)	0.084(6)
В	4h, 3	1.0	0.6667	0.3333	0.8401(16)	0.026(3)
O1	6k, m	1.0	0.605(2)	0	0.8803(9)	0.036(2)
O2(OH)	4h, 3	1.0	0.6667	0.3333	0.7171(12)	0.050(3)
O3(Ow)	6k, m	0.28	0.491(12)	0	0.550(3)	0.060(12)*
O4(Ow)	6k, m	0.22	0.510(14)	0	0.655(4)	0.053(13)*

Изотропные смещения атомов.

Рис. 2. Фотолюминесценция КТтп[B₄O₆(OH)₄] · 3H₂O: а – спектр возбуждения, $\lambda_{em} = 450$ нм; б – спектр излучения, $\lambda_{ex} = 350$ нм. СТВ – Charge Transfer Band (полоса с переносом заряда).

ксеноновая лампа (75 кВт), управление которой осуществляется с помощью программного обеспечения Agilent Cary Eclipse. Установка оборудована различными щелями шириной от 1 до 10 мм, позволяющими изменять интенсивность пучка, попадающего на регистратор.

Спектр возбуждения фотолюминесценции для КТтт[B₄O₆(OH)₄] · 3H₂O представлен на рис. 2a. В спектре присутствуют переходы, относящиеся к переходу ${}^{3}H_{6}-{}^{1}D_{2}$ и высокоэнергетическим переходам ${}^{3}H_{6}-{}^{3}P_{J}$ со сравнительно малой интенсивностью. Пониженная симметрия для иона тулия в кристаллической структуре КТтт[B₄O₆(OH)₄] · 3H₂O (пр. гр. $P\overline{3}$ 1*m*) приводит к значительному расщеплению люминесцентного перехода ${}^{3}H_{6}-{}^{1}D_{2}$ (рис. 2a).

В спектрах фотолюминесценции наблюдается ряд переходов (рис. 2б): на уровень ${}^{1}D_{2}$ за счет возбуждения с последующей излучательной и безызлучательной релаксацией — переходы на уровни ${}^{3}F_{4}$ и ${}^{1}G_{4}$ соответственно. Наблюдается доминирование четырехфотонного перехода ${}^{1}D_{2}-{}^{3}F_{4}$ (450 нм) по сравнению с ${}^{1}G_{4}-{}^{3}H_{6}$ (475 нм) (рис. 26). Распределение интенсивностей спектральных линий нетипично для катиона тулия, так как зачастую самый интенсивный – переход ${}^{1}G_{4}-{}^{3}H_{6}$ [30], однако ранее оно наблюдалось в фосфатных матрицах [31, 32]. Полоса, отвечающая переходу ${}^{1}G_{4}-{}^{3}F_{4}$ (645 нм), имеет низкую интенсивность и не вносит существенного вклада в результирующее излучение.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Описание структуры. Структура нового бората $KTm[B_4O_6(OH)_4] \cdot 3H_2O$ состоит из полярных тетраэдрических слюдоподобных слоев $[B_4O_6(OH)_4]_{\infty\infty}$, параллельных плоскости ab (рис. 3а, 3б), аналогичных силикатным [T₄O₁₀]_{∞∞}. Концевые вершины тетраэдров представлены ОН-группами. BO₃(OH)-тетраэдр характеризуется следующими межатомными расстояниями: $B-O1 (\times 3) 1.480(8)$, B-O2(OH) 1.50(2) Å, и гидроксильная группа слегка удалена от атома В. Атом Тт в основной позиции окружен шестью атомами кислорода, образующими изолированные TmO₆-октаэдры (симметрия $\overline{3}1m$) с расстояниями Tm-O1 (×6) 2.311(10) Å. Два полярных слоя с противоположной ориентацией вершин тетраэдров соединены TmO₆-октаэдрами в центросимметричные неполярные пакеты (рис. 3а). Межпакетное пространство статистически заселено атомами К и молекулами воды H₂O₃ и H₂O₄ (табл. 2). Атомы К координированы 11 атомами кислорода молекул воды, находящихся на расстоянии 2.25-2.52 Å. Кроме беспорядка и статистического заполнения позиций в межпакетном пространстве в структуре наблюдается разупорядочение позиции Tm, которая "размыта" вдоль оси с. По мере удаления от основной позиции Тт в центре октаэдра заселенности дополнительных позиций Tm1–Tm4 уменьшаются (табл. 2, рис. 3а), оставаясь незначительными.

Аналогичный слой присутствует в структурах $KTa[B_4O_6(OH)_4](OH)_2 \cdot 1.33H_2O$ [23] (рис. 4), пепроссиита и его синтетического аналога $NdAl_{2.07}[B_4O_{10}]O_{0.6}$ (табл. 3), где он был обнаружен впервые [33]. В этих структурах слои соединяются в пакеты тригональными призмами(симметрия $\overline{6}2m$), а не октаэдрами. Образование пакетов происходит за счет зеркальной плоскости m_z , а не за счет центра инверсии, как в новом представителе, что и приводит к различию в пространственных группах и координационных полиэдрах. В К,Таборате межслоевое пространство заполнено атомами K, OH-группами и молекулами воды, в Nd,Al-борате – атомами Al и O. Данные позиции с вакансиями заселены статистически.

Рис. 3. Кристаллическая структура $KTm[B_4O_6(OH)_4] \cdot 3H_2O$: а – боковая проекция, показаны TmO_6 -октаэдры и $BO_3(OH)$ -тетраэдры, статистически заселяющие позиции атомы Tm, атомы K и молекулы H_2O изображены шарами; б – борокислородный тетраэдрический слой в проекции на плоскость *ab*.

Новое соединение также родственно боратам $KHo[B_6O_{10}(OH)_2]$ (рис. 5а) и $KGd[B_6O_{10}(OH)_2]$ (рис. 5б, табл. 3) [24]. Отличие этих структур от нового K,Tm-бората заключается в том, что к полярным тетраэдрическим слоям присоединяются дополнительные $BO_2(OH)$ -треугольники, и образуется полиборатный слой $[B_6O_{10}(OH)_2]_{\infty\infty}^{4-}$ (рис. 5а, 5в). Структура $KHo[B_6O_{10}(OH)_2]$ имеет ту же симметрию и аналогичный координационный полиэдр атома P3Э — HoO_6 -октаэдр (рис. 5а). В структуре $KGd[B_6O_{10}(OH)_2]$ (рис. 5б) реализуется ацентричный вариант с тригональной призмой, как в K,Ta-борате, синтетическом Al,Nd-бо-

Рис. 4. Кристаллическая структура $KTa[B_4O_6(OH)_4](OH)_2$. 1.33H₂O в боковой проекции: показаны TaO_6 -тригональные призмы и BO3(OH)-тетраэдры, атомы K и молекулы H₂O изображены шарами.

рате и пепроссиите (табл. 3). Октаэдрическая координация связана с меньшим ионным радиусом Tm и Ho конца ряда РЗЭ по сравнению с радиусом Gd середины ряда или крупным Ta. Пространство между пакетами также заселено статистически крупными атомами K, атомами B2 и OH-группами (рис. 5а, 5б), в позициях есть вакансии. Были обнаружены нелинейно-оптические свойства кристаллов K,Gd-бората (сигнал ГВГ в 45 раз превышает сигнал в кварцевом образце) [24].

Таким образом, для кристаллов всех рассмотренных боратов характерны совершенная спайность и низкое качество, в структурах наблюдаются беспорядок и статистическое заселение позиций атомов в межпакетном пространстве. Пакет из октаэдров (призм) и двух слоев из В-тетраэдров является самой стабильной частью всех структур. Для нового К,Тт-бората помимо беспорядка в межпакетном пространстве характерно разупорядочение атомов Тт вдоль оси *с* структуры. Данный структурный вариант новый для семейства, поскольку в нем сочетаются октаэдрический "сердечник", как в К,Но-борате, и простые слюдяные слои без дополнительных треугольников, как в К,Та-борате и пепроссиите.

выводы

Кристаллы нового бората $KTm[B_4O_6(OH)_4] \cdot 3H_2O$ были получены в гидротермальных условиях при температуре 280°С и давлении 100 атм.

ТОПНИКОВА и др.

Химическая формула, ссылка	<i>a</i> , <i>c</i> , Å	Пр. гр.	КП	Тип слоя и его формула
КТт[B₄O ₆ (OH)₄] · 3H ₂ O, [настоящая работа]	4.547, 12.151	<i>P</i> 31 <i>m</i>	Октаэдр	Тетраэдрический [В ₄ О ₆ (ОН) ₄] _{∞∞}
NdAl _{2.07} [B_4O_{10}] $O_{0.6}$, [18] KTa[B_4O_6 (OH) ₄](OH) ₂ · · 1.33H ₂ O, [11]	4.588, 9.298 4.512, 12.057	P62m P62m	Тригональная призма Тригональная призма	Тетраэдрический [В₄О ₁₀] _{∞∞} Тетраэдрический [В₄О ₆ (OH) ₄] _{∞∞}
$\text{KHo}[B_6O_{10}(\text{OH})_2], [12]$	4.508, 12.032	<i>P</i> 31 <i>m</i>	Октаэдр	Тетраэдрический, дополненный треугольниками [B ₆ O ₁₀ (OH) ₂] _{∞∞}
$KGd[B_6O_{10}(OH)_2], [12]$	4.524, 12.096	P 6 2m	Тригональная призма	Тетраэдрический, дополненный треугольниками [B ₆ O ₁₀ (OH) ₂]∞∞

Таблица 3. Основные кристаллохимические характеристики структур семейства

Примечание. КП – координационный полиэдр тяжелого атома.

Структура состоит из полярных слюдоподобных тетраэдрических слоев $[B_4O_6(OH)_4]_{\infty\infty}$, которые объединяются с TmO₆-октаэдрами в неполярные пакеты. Межпакетное пространство заполнено атомами К и молекулами воды, заселяющими позиции с вакансиями статистически. Новый борат принадлежит семейству слоистых структур, таких

как $KTa[B_4O_6(OH)_4](OH)_2 \cdot 1.33H_2O$, пепроссиита и его синтетического аналога $NdAl_{2.07}[B_4O_{10}]O_{0.6}$, а также синтетических фаз с усложненным слоем $KHo[B_6O_{10}(OH)_2]$ и $KGd[B_6O_{10}(OH)_2]$. В K,Tmборате реализована новая комбинация простых слюдяных слоев с TmO_6 -октаэдрами. Самой стабильной частью всех структур является пакет из

Рис. 5. Кристаллические структуры $KHo[B_6O_{10}(OH)_2]$ (а) и $KGd[B_6O_{10}(OH)_2]$ (б) в боковых проекциях (показаны HoO_6 -октаэдры и GdO_6 -тригональные призмы соответственно, BO_4 -тетраэдры и $BO_2(OH)$ -треугольники, атомы К изображены шарами); борокислородный тетраэдрический слой структур в проекции на плоскость *ab* (в).

октаэдров (призм) и слоев из ВО₄-тетраэдров. Совершенная спайность и плохое качество кристаллов связаны с их строением и характерным для них беспорядком в структурах, статистическим заселением позиций атомов в межпакетном пространстве. Для структуры К,Тт-бората также характерно разупорядочение атомов Тт в направлении оси *с* структуры, что объясняет несколько завышенный фактор расходимости при уточнении структуры.

Синтезированный борат демонстрирует интенсивную эмиссию в синей области видимого света за счет излучательных переходов 4f-4f катиона Tm³⁺. В спектрах излучения фотолюминесценции наиболее интенсивным является переход ${}^{1}D_{2}-{}^{3}F_{4}$ при 450 нм.

Авторы выражают благодарность С.Ю. Стефановичу за определение сигнала ГВГ и консультации, В.О. Япаскурту за определение состава кристаллов.

Работа выполнена частично в рамках госзадания ИФТТ РАН. Исследование люминесцентных свойств проведено при поддержке Российского научного фонда (грант № 19-77-10013).

СПИСОК ЛИТЕРАТУРЫ

- 1. The Cambridge Crystallographic Data Centre (CCDC). Inorganic Crystal Structure Data Base ICSD. https://www.ccdc.cam.ac.uk/http://www.fiz-karlsruhe.de
- 2. Crystallography Open Database. crystallography.net/cod
- Christ C.L., Clark J.R. // Phys. Chem. Miner. 1977. V. 2. P. 59.
- Newnham R.E., Redman M.J., Santoro R.P. // J. Am. Ceram. Soc. 1963. V. 46. P. 253.
- Liu Y., Yu F., Wang Zh. et al. // Cryst. Eng. Commun. 2014. V. 16. P. 7141.
- 6. *Илюхин А.Б., Джуринский Б.Ф. //* Журн. неорган. химии. 1993. Т. 38. С. 1625.
- Белоконева Е.Л., Зорина А.П., Димитрова О.В. // Кристаллография. 2013. Т. 58. № 2. С. 191.
- Moeller M.H., Schleid T., Emme H. et al. // Z. Natur. B. 2004. V. 59. P. 202.
- Emme H., Valldor M., Pöttgen R., Huppertz H. // Chem. Mater. 2005 V. 17. P. 2707.

- Либау Ф. Структурная химия силикатов. М.: Мир, 1988. 410 с.
- Qiao X., Cheng Y., Qin L.et al. // J. Alloys Compd. 2015. V. 617. P. 946.
- 12. Du P., Yu J.S. // Mater. Res. Bull. 2016. V. 84. P. 303.
- Nikiforov I.V., Deyneko D.V., Spassky D.A. et al. // Mater. Res. Bull. 2020. V. 130. P. 110925.
- 14. *Xue Z., Yi Z., Li X. et al.* // Biomaterials. 2017. V. 115. P. 90.
- 15. *Zhang H., Li Y., Lin Y. et al.* // Nanoscale. 2011. V. 3. P. 963.
- Carnall W.T., Fields P.R., Rajak K. // J. Chem. Phys. 1968. V. 49. P. 4424. https://doi.org/10.1063/1.1669893
- 17. Tymiński A., Grzyb T. // J. Lumin. 2017. V. 181. P. 411.
- GruberJ. B., Conway J.G. // J. Chem. Phys. 1960. V. 32. № 4. P. 1178.
- Nadort A., Zhao J., Goldys E.M. // Nanoscale. 2016. V. 8. P. 13099.
- Transition Metal and Rare Earth Compounds Excited States, Transitions, Interactions I / Ed. Yersin H. New York: Springer, 2001. 187 p.
- 21. Runowski M., Shyichuk A., Tymiński A. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 20. P. 17269.
- 22. *Stefanovich S.Yu.* // Extended Abstracts of Eur. Conf. on Lasers and ElectroOptics (CLEO Europe'94). Amsterdam, 1994. P. 249.
- Belokoneva E.L., Stefanovich S.Yu., Dimitrova O.V. // J. Solid State Chem. 2002. V. 195. P. 79.
- Belokoneva E.L., Topnikova A.P., Stefanovich S.Yu. et al. // Solid State Sci. 2015. V. 46. P. 43.
- 25. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- 26. Sheldrick G.M. // Acta Cryst. A. 2008.V. 64. P. 112.
- 27. Farrugia L.J. // J. Appl. Cryst. 2012. V. 45. P. 849.
- 28. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3.
- 29. Dowty E. ATOMS. Shape Software, Kingsport, Tennessee, USA, 2006.
- Dominiak-Dzik G., Ryba-Romanowski W., Goł S., Pajaczkowska A. // J. Phys.: Condens. Matter. 2000. V. 12. P. 5495.
- Meza-Rocha A.N., Speghini A., Lozada-Morales R., Caldiño U. // Opt. Mater. 2016. V. 58. P. 183.
- 32. Que M., Ci Zh., Wang Yu. Et al. // J. Lumin. 2013. V. 144. P. 64.
- 33. Пущаровский Д.Ю., Карпов О.Г., Леонюк Н.И., Белов Н.В. // Докл. АНСССР. 1978. Т. 241. С. 91.