_____ СТРУКТУРА МАКРОМОЛЕКУЛЯРНЫХ ____ СОЕДИНЕНИЙ

УЛК 548.73

ПОЛУЧЕНИЕ, КРИСТАЛЛИЗАЦИЯ И ПРЕДВАРИТЕЛЬНЫЕ РЕНТГЕНОВСКИЕ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ МУТАНТА КАРБОКСИПЕПТИДАЗЫ Т С ГИДРОФИЛИЗИРОВАННЫМ КАРМАНОМ ПЕРВИЧНОЙ СПЕЦИФИЧНОСТИ

© 2021 г. В. Х. Акпаров^{1,*}, Г. Е. Константинова¹, В. И. Тимофеев^{1,2,**}, И. П. Куранова^{1,2}

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия

² Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия *E-mail: valery@akparov.ru

***E-mail: tostars@mail.ru*Поступила в редакцию 12.10.2020 г.
После доработки 09.11.2020 г.
Принята к публикации 09.11.2020 г.

Мутантная форма крабоксипептидазы Т из Thermoactinomyces vulgaris КПТ11QG, содержащая замены L211Q, T262S, L254S, A251S, закристаллизована методом висячей капли. Кристаллы принадлежали к пр. гр. *P*6(3)22. От выращенных кристаллов на синхротроне ESRF (Франция, станция

ID23-1) собран рентгенодифракционный набор, позволяющий определить структуру мутанта при

DOI: 10.31857/S0023476121030024

разрешении 2.6 Å.

ВВЕДЕНИЕ

Карбоксипептидаза Т (КПТ) из Thermoactinomyces vulgaris относится к группе пищеварительных карбоксипептидаз термофильных микроорганизмов. Она способна осуществлять катализ при повышенных температурах с высокой скоростью и благодаря этому имеет преимущество при использовании в ряде биотехнологических процессов. КПТ обладает широкой субстратной специфичностью, отщепляя как заряженные, так и (преимущественно) гидрофобные остатки с С-конца пептидов [1]. Благодаря этому ее субстратная селективность может быть изменена с помощью мутагенеза в широком диапазоне, что в целом делает КПТ привлекательным объектом белковой инженерии.

Одной из важнейших областей применения карбоксипептидаз является применение в биотехнологическом производстве инсулина. При этом используется карбоксипептидаза В (КПВ), обладающая селективностью к положительно заряженным аминокислотным остаткам. Для создания на основе КПТ фермента с КПВ-подобной селективностью был проведен ряд исследований по последовательному замещению структурных детерминант КПТ на соответствующие детерминанты КПВ [2–8]. Наибольший успех был достигнут благодаря единственной мутации L211Q, затрагивающей консервативный 211-й остаток лейцина,

присутствующий и в КПТ, и в КПВ, и в гидрофобно-специфичной КПА [6]. Замена остатков кармана первичной селективности КПТ на соответствующие остаки КПВ оказалась неэффективной [3]. Незначительное влияние на субстратную селективность КПТ оказали и структурные ионы кальция, отсутствующие в КПВ [9].

Сравнение кристаллических структур КПВ и КПТ в комплексе с аналогами переходного состояния показало, что между аминокислотными остатками кармана первичной селективности КПВ и лигандом находится цепочка из фиксированных молекул воды, создающая своего рода ледяную капсулу вокруг лиганда [10]. В КПТ такой элемент кармана первичной специфичности отсутствовал. Известно, что связанные в активном центре молекулы воды в некоторых случаях оказывают влияние на связывание субстратов ферментами [11]. В связи с этим в настоящей работе был получен мутант КПТ, содержащий наряду с мутацией L211Q замены нескольких гидрофобных остатков кармана первичной специфичности на гидрофильный остаток серина: T262S, L254S, A251S (КПТSSSQ). Гидроксильные группы серинов могли имитировать гидроксильные группы молекул воды или служить центрами гидратации кармана первичной селективности. Для изучения влияния гидрофилизации на строение кармана первичной селективности мутант KПTSSSQ был

Таблица 1. Статистические характеристики набора, собранного от кристалла КПТSSSQ

•	•
Обработка набора	
Пр. гр.	P6(3)22
a = b, c, Å	158.278, 104.610
$\alpha = \beta$, γ , град	90, 120
Разрешение, Å	30.0-2.60 (2.74-2.60)
Количество независимых рефлексов	23 589 (3397)
Полнота, %	97.88 (98.77)
$I/\sigma(I)$	3.77 (2.04)
Rmrgd-F, %	16.9 (57.0)

Примечание. В скобках приведены значения для последней оболочки.

закристаллизован в присутствии осадителя сульфата аммония и для выращенных кристаллов был получен набор дифракционных данных.

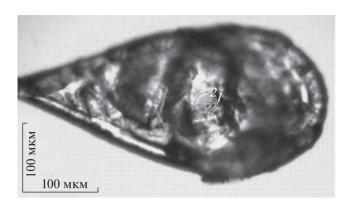
МАТЕРИАЛЫ И МЕТОДЫ

Мутантный вариант гена pro-cpTSSSQ получен из ООО "Евроген", Россия. Наличие мутаций было подтверждено секвенированием.

Получение рекомбинантной КПТSSQ. Экспрессию гена pro-cpTSSSQ проводили в клетках Escherichia coli BL21(DE3) pLysS (Novagene) согласно инструкции производителя [12]. После индукции экспрессии с помощью изопропил-β-D-тиогалактопиранозида (**IPTG**) клетки разрушали ультразвуком.

Выделение pro-cpTSSSQ из телец включения проводили как описано в [13]. Для получения зрелого фермента к раствору pro-cpTSSSQ добавляли субтилизин 72 в соотношении КПТ к субтилизину 200: 1 (по массе) и инкубировали 4 ч при 37°C. Субтилизин инактивировали добавлением диизопропилфторфосфата. Раствор с активированной КПТ снова концентрировали ультрафильтрацией до объема 2 мл и центрифугировали для удаления осадка. После концентрирования раствор фермента подкисляли до рН 6.0, прибавляя 100 мМ MES/NaOH, pH 5.8, наносили на колонку с аффинным сорбентом CABS-Сефарозой [14] (объем колонки 20 мл), уравновешенную 10 мМ буфером MES/NaOH, pH 6.0, содержавшим 0.5 M NaCl, 10 мM CaCl_2 и 0.1 мM ZnSO_4 , промывали колонку этим же буфером и затем элюировали KПTSSSQ 10 мМ буфером Tris/HCl, pH 9.0. Фракции, содержащие активный белок, объединяли, концентрировали до объема 1 мл, проводили замену буфера на буфер для кристаллизации (0.01 М MES/NaOH, pH 6.0, содержащий 1 мМ CaCl₂, 0.1 мM ZnSO₄, 5% MPD и 0.25 M NaCl) путем разбавления раствора белка до 10 мл этим буферным

раствором с последующим концентрированием до 1 мл на ультрафильтрационной ячейке Амикон (Миллипор, США) с целлюлозной мембраной на 10 кДа. Операцию концентрирование—разбавление повторяли трижды, после чего белок доводили до концентрации 10 мг/мл по Брэдфорду [15] и стерильно фильтровали с помощью центрифужных патронов Centripack. Далее раствор использовали для кристаллизации белка. Отсутствие субтилизиновой активности было подтверждено с помощью специфического хромогенного субстрата ZAALpNA.DsNa-ПААГ электрофорез проводили согласно [16].


Кристаллизация КПТSSSQ. Кристаллы КПТSSSQ выращены методом висячей капли. Раствор осадителя содержал 1.6 М сульфата аммония в 10 мМ буфере MES/NaOH, pH 6.0, содержавшем 0.5 М NaCl, 10 мМ CaCl₂, 0.1 мМ ZnSO₄. Кристаллы появлялись в течение четырех суток. Кристаллы для сбора дифракционных данных извлекали из капилляра в раствор осадителя и после перенесения в криораствор замораживали в парах жидкого азота. Кроме компонентов осадителя криораствор содержал 20 мас. % глицерина.

Сбор и обработка дифракционных данных. От выращенных кристаллов при температуре 100 К собран дифракционный набор до разрешения 2.6 Å на синхротоне ESRF (Франция, станция ID23-1). В качестве детектора использовали Pilatus_6M_F. Дифракционные данные были получены методом вращения от одного кристалла при расстоянии между кристаллом и детектором 377.89 мм и длине волны 1 Å; углы качания и вращения 0.1° и 90° соответственно. Обработку набора экспериментальных интенсивностей проводили с помощью программы iMosflm [17]. Статистические характеристики набора приведены в табл. 1. Кристаллы относятся к пр. гр. *P*622. В независимой части ячейки содержится одна молекула фермента.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выращенные кристаллы КПТSSSQ дифрагировали до разрешения 2.6 Å и принадлежали к пр. гр. P6(3)22 со следующими параметрами элементарной ячейки: a=b=158.278, c=104.610 Å, $\alpha=\beta=90^\circ, \gamma=120^\circ.$ Выращенный кристалл в криопетле показан на рис. 1.

Оценка содержания растворителя в элементарной ячейке по методу Мэттьюса [18], проведенная с помощью программного пакета ССР4 [19], показала, что в независимой части ячейки содержится одна субъединица белка. Коэффициент Мэттьюса составляет 5.18, в элементарной ячейке содержится 76.25% растворителя. Полученный набор позволяет установить структуру мутантной формы КПТSSSQ при разрешении 2.6 Å.

Puc. 1. Кристалл КПТSSSQ в криопетле.

Пространственная группа кристаллов мутанта КПТSSSQ совпадает с пространственной группой кристаллов фермента дикого типа. Замена четырех аминокислотных остатков (T262S, A251S, L254S, L211Q) не привела к изменению пространственной группы кристаллов, как это произошло в случае КПТ11QG (G215S, A251G, T257A, D260G, T262D, L254I, ins253T) [20].

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 19-04-00220) в части выделения и очистки белка и выращивания кристаллов в условиях невесомости, а также при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН в части получения и обработки рентгенодифракционных наборов.

СПИСОК ЛИТЕРАТУРЫ

- Stepanov V.M. // Methods Enzymol. 1995. V. 248. P. 675.
- 2. *Akparov V.K., Grishin A.M., Timofeev V.I., Kuranova I.P.* // Crystallography Reports. 2010. V. 55. № 5. P. 802. https://doi.org/10.1134/S10637745100501473

- 3. *Akparov V.K.*, *Grishin A.M.*, *Yusupova M.P. et al.* // Biochemistry. (Mosc). 2007. V. 72. № 4. P. 416. https://doi.org/10.1134/S0006297907040086
- 4. *Akparov V., Timofeev V., Khaliullin I. et al.* // J. Biomol. Struct. Dyn. 2018. V. 36. № 15. P. 3958. https://doi.org/10.1080/07391102.2017.13042425
- Akparov V.K, Timofeev V.I., Kuranova I.P., Rakitina, T.V. // Acta Cryst. F. 2018. V. 74. № 10. P. 638. https://doi.org/10.1107/S2053230X18011962
- 6. Akparov V.K., Timofeev V.I., Khaliullin I.G., Švedas V. et al. // FEBS J. 2015. V. 282. № 7. P. 1214. https://doi.org/10.1111/febs.13210
- 7. Akparov V.K., Timofeev V.I., Konstantinova G.E. et al. // PLoS One. 2019. V. 14. № 12. P. 1. https://doi.org/10.1371/journal.pone.0226636
- 8. *Акпаров В.Х., Тимофеев В.И., Куранова И.П.* // Кристаллография. 2011. Т. 56. № 4. С. 641.
- 9. Гришин А.М., Акпаров В.Х., Честухина Г.Г. // Биохимия. 2008. Т. 73. № 10. С. 1422.
- Akparov V.K., Sokolenko N., TimofeevV., Kuranova I. // Acta Cryst. F. 2015. V. 71. P. 1335. https://doi.org/10.1107/S2053230X15016799
- 11. *Lenz S., Wetmore S.* // Biochemistry. 2016. V. 55. № 5. P. 798.
- 12. Novagen pET System Manual TB055 7th Ed. // Novagen Madison W.I. 1997.
- 13. *Trachuk L., Letarov A., Kudelina I.A. et al.* // Protein Expr. Purif. 2005. V. 40. № 1. P. 51. https://doi.org/10.1111/j.1432-1033.1992.tb17184.x
- 14. *Cueni L.B., Bazzone T.J., Riordan J.F., Vallee B.L.* // Anal Biochem. 1980. V. 107. № 2. P. 341. http://www.ncbi.nlm.nih.gov/pubmed/7435967
- 15. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248.
- 16. Laemmli U.K. // Nature. 1970. V. 227. № 5259. P. 680.
- 17. Battye T., Kontogiannis L., Johnson O., Powell H.R. // Acta Cryst. D. 2011. V. 67. Pt 4. P. 271. https://doi.org/10.1107/S0907444910048675
- 18. Mattews B.W. // J. Mol. Biol. 1968. V. 33. P. 491.
- 19. *Winn M.D.*, *Ballard C.C.*, *Cowtan K.D. et al.* // Acta Cryst. D. 2011. V. 67. № 4. P. 235. https://doi.org/10.1107/S0907444910045749
- 20. Акпаров В.Х., Константинова Г.Е., Тимофеев В.И. и др. // Кристаллография. 2020. Т. 65. № 6. С. 896. https://doi.org/10.31857/s0023476120060053