____ СТРУКТУРА НЕОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

УДК 539.26; 548.313.25; 546.16; 546.65; 549.461; 546.66

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ДЕФЕКТНУЮ СТРУКТУРУ КРИСТАЛЛОВ ФЛЮОРИТОВЫХ ФАЗ $Sr_{1-x}La_xF_{2+x}$ (x = 0.11-0.33)

© 2021 г. Е. А. Сульянова^{1,*}, Д. Н. Каримов¹, Б. П. Соболев¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: sulyanova@gmail.com* Поступила в редакцию 05.05.2020 г. После доработки 05.05.2020 г. Принята к публикации 16.06.2020 г.

Представлены результаты рентгеноструктурного анализа монокристаллов $Sr_{1-x}La_xF_{2+x}$ (x = 0.11, 0.24, 0.32, 0.33) с различной термической предысторией (закалка и *as grown*) и послеростовой обработкой (отжиг при 1300, 900 и 750°C в течение 36, 96 и 192 ч соответственно). Все кристаллы относятся к структурному типу CaF_2 (пр. гр. $Fm\overline{3}m$) и имеют вакансии в основном анионном мотиве и межузельные анионы фтора в двух позициях 32*f*. В отожженном при 900°C кристалле $Sr_{0.89}La_{0.11}F_{2.11}$ присутствуют межузельные анионы в позиции 4*b*. Установлено, что отжиг при 900°C кристалла *as grown* с x = 0.11 приводит к увеличению количества вакансий в основном анионном мотиве и к уменьшению количества релаксированных анионов $F_{(32/)1}$. Отжиг при 750°C кристалла *as grown* с x = 0.33, состав которого близок конгруэнтному, приводит к уменьшению ~ в 2.5 раза количества релаксированных анионов $F_{(32/)1}$, преобладание тетраэдрической конфигурации анионов $F_{(32/)3}$ при термической обработке не изменяется.

DOI: 10.31857/S0023476121030279

введение

Работа продолжает серию из 16 публикаций, посвященных получению монокристаллов флюоритовых нестехиометрических фаз $Sr_{1-x}R_xF_{2+x}$ (R = 16 редкоземельных элементов – РЗЭ) [1] и упорядоченных фаз $Sr_mR_nF_{2m+3n}$ (R = Gd–Lu, Y) [2], изучению их дефектной структуры [3–5] и выявлению ее связи с некоторыми структурночувствительными свойствами (ионной проводимостью, механическими, оптическими и др.) [6, 7].

Существенным обстоятельством, затрудняющим сравнение структурных данных, полученных на кристаллах, выращенных в разных условиях, является доказанная структурным анализом зависимость дефектного строения от температуры. Наиболее убедительные доказательства температурной зависимости получены *in situ* на кристалле $Ca_{0.94}Y_{0.06}F_{2.0}$ [8].

Целью работы является изучение влияния послеростовой термической обработки кристаллов нестехиометрических фаз $Sr_{1-x}La_xF_{2+x}$ (x = 0.11, 0.24, 0.32, 0.33) на их дефектную структуру.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы $Sr_{1-x}La_xF_{2+x}$ (x = 0.11, 0.24, 0.32, 0.33) получены закалкой расплава. В качестве исходных реактивов использовали SrF_2 марки ос.ч. 10-2 и LaF₃ марки х.ч., предварительно проплавленные во фторирующей атмосфере продуктов пиролиза политетрафторэтилена. Расплавы компонентов, загруженных в графитовый многоячеистый тигель, выдерживали в течение двух часов при температуре 1600°С для фторирования и гомогенизации в смешанной атмосфере Не и CF₄ (10 об.%), после чего тепловой узел ростовой установки резко охлаждали до комнатной температуры. Скорость охлаждения, оцениваемая по температурам кристаллизации реперных веществ CaF₂ ($T_{пл}$ = 1418°С) и NaF ($T_{пл}$ = 998°С), составляла в этом интервале температур ~200 град/мин.

Термическую обработку (**TO**) кристаллических буль $Sr_{1-x}La_xF_{2+x}$ проводили при 1300, 900 и 750°С в установке для отжига кристаллов с графитовым тепловым узлом в атмосфере CF₄. Блоки кристаллов (~0.5 см³) заворачивали в Ni-фольгу и помещали в графитовый контейнер. Контроль температуры осуществляли с помощью W/Reтермопары. После окончания процесса тигель с образцами охлаждали путем отключения электропитания нагревателя и непрерывной прокачкой через объем камеры инертного газа комнатной температуры. Для краткости будем пользоваться обозначением кристаллов, отражающим их состав и условия TO: ^xLa_T, где x – атомная доля La, T – температура TO. Закаленный кристалл

Условное обозначение	x	$T \pm 20$, °C	τ, ч				
$^{0.11}La_q$	0.11	закалка					
$^{0.11}$ La ₉₀₀		900	96				
$^{0.24}$ La ₁₃₀₀	0.24	1300	36				
$^{0.32}$ La ₁₃₀₀	0.32						
$^{0.33}$ La ₇₅₀	0.33	750	192				

Таблица 1. Условия термической обработки кристаллов $Sr_{1-x}La_xF_{2+x}$

 $Sr_{0.89}La_{0.11}F_{2.11}$ без последующей TO обозначен ^{0.11}La_q, а кристалл *as grown* ^{0.11}La_{qg}. Условные обозначения и параметры TO для каждого кристалла указаны в табл. 1.

Фазовый состав кристаллов $Sr_{1-x}La_xF_{2+x}$ определяли на порошковом рентгеновском дифрактометре X'Pert PRO (PANalytical, Нидерланды) в геометрии Брэгга—Брентано с использованием излучения Cu K_{α} . Параметры ячейки рассчитывали по программе DICVOL [9]. Составы

кристаллов определяли по параметрам элементарных ячеек с использованием зависимостей [10].

Для рентгеноструктурного анализа отбирали оптически однородные участки кристаллов. Параметры дифракционных экспериментов приведены в табл. 2. Анализ полученных дифракционных данных показал принадлежность всех изученных кристаллов к структурному типу CaF₂.

Уточнение структуры проводили в рамках пр. гр. $Fm\overline{3}m$ с использованием программы Jana2006 [11]. В экспериментальный массив интенсивностей вводили поправки на поглощение для сферического образца, поляризацию и фактор Лорентца. В процессе уточнения в экспериментальный массив интенсивностей вводили поправку на изотропную экстинкцию в приближении Беккера–Коппенса [12] (I тип, угловое распределение блоков мозаики по закону Гаусса). При уточнении ангармонических компонент тензора тепловых колебаний атомов использовали разложение температурного множителя в ряд Грама–Шарлье [13]. Уточнение структурных параметров МНК проводили по усредненному массиву данных по мо-

таолица 2.	данные дифра	акционных экспер	риментов и парам	етры уточнения с	труктуры криста.	DIOB SI _{1-x} La _x Γ_{2+x}

Обозначение	$^{0.11}$ La $_q$	$^{0.11}La_{900}$	$^{0.24}La_{1300}$	$^{0.32}La_{1300}$	$^{0.33}$ La ₇₅₀			
x	0.11	0.11	0.24	0.32	0.33			
Сингония, пр. гр., Z	Кубическая, <i>Fm</i> 3 <i>m</i> , 4							
*a, Å	5.81499(2)	5.8153(5)	5.8326(5)	5.8433(5)	5.8446(5)			
$V, Å^3$	196.63	196.66	198.42	199.51	199.79			
D_x , г/см ³	4.5045(5)	4.5109(5)	4.7697(5)	4.9307(5)	4.9508(5)			
Излучение, λ, Å	Mo K_{lpha} , 0.71073							
Т, К		295						
μ, мм ⁻¹	26.447	26.426	25.488	24.907	24.836			
T_{\min}, T_{\max}	0.0970, 0.1964	0.0799, 0.1516	0.0768, 0.1478	0.0799, 0.1509	0.0903, 0.1649			
Диаметр образца, мм	0.132	0.170	0.184	0.184	0.170			
Дифрактометр	Xcalibur S Oxford	CAD4 Enraf-Nonius						
	Diffraction CCD							
Тип сканирования	ω	ω/2θ						
θ_{max} , град	74.24	75.25	74.84	74.32	76.54			
Пределы h, k, l	$-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15$							
Число отражений:								
измеренных/независи-	7680/137,	4190/137,	4194/137,	4184/138,	4129/137,			
мых с $I > 3\sigma(I), R_{int}$	0.0425	0.0348	0.0231	0.0287	0.0236			
Число уточняемых	13							
параметров								
Весовая схема	$\omega = 1/(4F^2[\sigma^2(F) + (0.008F)^2)])$							
<i>R</i> / <i>wR</i> , %	0.60/1.80	0.62/1.32	0.62/1.63	0.73/1.66	0.62/2.21			
S	0.99	0.99	1.00	0.99	0.98			
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.32/0.37	-0.22/0.34	-0.15/0.09	-0.35/0.40	-0.32/0.35			

КРИСТАЛЛОГРАФИЯ том 66 № 3 2021

СУЛЬЯНОВА и др.

Рис. 1. Карты разностных синтезов электронной плотности в плоскости (110) для кристаллов $Sr_{1-x}La_xF_{2+x}$. Вычтены катионы Sr^{2+} , La^{3+} и анионы $F_{(8c)}$ (а). Вычтены все атомы структуры (б). Шаг изолиний 0.2 э/Å³.

дулям $|F|^2$ с использованием атомных кривых рассеяния и поправок на аномальное рассеяние [13].

Исходной моделью при уточнении структуры фаз $Sr_{1-x}La_xF_{2+x}$ служила структура SrF_2 . Разностные синтезы электронной плотности в плоскости (110) для исследованных кристаллов показаны на рис. 1а. Синтезы построены после вычитания катионов (Sr^{2+} , La^{3+}), занимающих в структуре позицию 4a, для которых задана смешанная кривая рассеяния, и матричных анионов $F_{(8c)}$, занимающих в структуре позицию 8c, для которых уточнена заселенность позиции.

На картах разностных синтезов (рис. 1а) хорошо визуализируются максимумы электронной плотности, отвечающие межузельным анионам фтора, которые обозначены согласно системе Уайкова $F_{(позиция)цифра}$. Цифра за обозначением позиции указана для различия анионов в одной позиции с разными координатами. Например, в кристалле ^{0.32}La₁₃₀₀ координаты (v, v, v) анионов $F_{(32/)1}$ и $F_{(32/)3}$, расположенных в двух позициях 32f, имеют координаты v = 0.300(3) и 0.415(1) соответственно. Максимумы в двух позициях 32f, соответствующие положениям анионов $F_{(32/)1}$ и $F_{(32/)3}$, присутствуют на всех картах, максимум в позиции 4b – только на карте кристалла ^{0.11}La₉₀₀. При уточнении структуры считали, что оставшаяся на картах разностных синтезов электронная плотность около позиции $F_{(8c)}$ после учета вклада ангармонизма тепловых колебаний кристаллической решетки демонстрирует статическое смещение матричных анионов и соответствует релаксированным анионам $F_{(32)1}$.

Ангармонический характер распределения электронной плотности вблизи позиций, занимаемых катионами и матричными анионами $F_{(8c)}$, учтен для катионов во всех кристаллах, кроме кристалла ^{0.11}La₉₀₀, до четвертого порядка разложения в ряд Грама–Шарлье и для матричных анионов $F_{(8c)}$ в каждом кристалле до третьего порядка разложения. В кристалле ^{0.11}La₉₀₀ параметры атомных смещений катионов уточнены в гармоническом приближении.

На последнем этапе уточнения суммарное количество анионов (2 + x на одну формульную единицу) зафиксировано в соответствии с составом каждого кристалла. Координаты атомов и эквивалентные параметры атомных смещений в Sr_{1-x}La_xF_{2+x} приведены в табл. 3. Стандартные отклонения для заселенностей позиций каждого атома рассчитаны при фиксированном значении всех остальных уточняемых параметров. Карты разностных синтезов электронной плотности в плоскости (110) после вычитания всех атомов

Кристалл	Атом*	q^*	x/a	y/b	<i>z,</i> / <i>c</i>	$\beta_{ m 3KB}$
$^{0.11}$ La _q	(Sr2, La) _(4<i>a</i>)	0.89 + 0.11	0	0	0	0.651(3)
^{0.11} La ₉₀₀		0.89 + 0.11	0	0	0	0.683(2)
$^{0.24}La_{1300}$		0.76 + 0.24	0	0	0	0.820(3)
$^{0.32}La_{1300}$		0.68 + 0.32	0	0	0	0.808(3)
$^{0.33}$ La ₇₅₀		0.67 + 0.33	0	0	0	0.684(3)
$^{0.11}$ La _q	F _(8c)	0.945	1/4	1/4	1/4	1.038(4)
$^{0.11}La_{900}$		0.898	1/4	1/4	1/4	1.002(8)
$^{0.24}La_{1300}$		0.745	1/4	1/4	1/4	1.496(8)
$^{0.32}La_{1300}$		0.816	1/4	1/4	1/4	1.641(8)
$^{0.33}$ La ₇₅₀		0.887	1/4	1/4	1/4	1.494(8)
$^{0.11}$ La _q	F _{(32f)1}	0.008(4)	0.315(9)	0.315(9)	0.315(9)	2.1(9)
$^{0.11}La_{900}$		0.017(5)	0.285(5)	0.285(5)	0.285(5)	1.1(2)
$^{0.24}La_{1300}$		0.036(5)	0.299(2)	0.299(2)	0.299(2)	1.7(2)
$^{0.32}$ La ₁₃₀₀		0.034(5)	0.300(3)	0.300(3)	0.300(3)	2.1(3)
$^{0.33}La_{750}$		0.016(5)	0.305(4)	0.305(4)	0.305(4)	1.2(4)
$^{0.11}$ La _q	F _{(32f)3}	0.019(3)	0.420(5)	0.420(5)	1/2	1.9(7)
$^{0.11}La_{900}$		0.020(3)	0.417(3)	0.417(3)	1/2	1.6(3)
$^{0.24}$ La ₁₃₀₀		0.058(3)	0.413(1)	0.413(1)	1/2	1.9(1)
$^{0.32}$ La ₁₃₀₀		0.052(5)	0.415(1)	0.415(1)	1/2	1.4(1)
$^{0.33}La_{750}$		0.053(5)	0.415(1)	0.415(1)	1/2	1.3(1)
^{0.11} La ₉₀₀	$F_{(4b)}$	0.024(8)	1/2	1/2	1/2	2.8(9)

Таблица 3. Координаты атомов, заселенности позиций (q) и эквивалентные параметры атомных смещений в структуре $Sr_{1-x}La_xF_{2+x}$

* $q_{F(8c)} = [4(2 + x) - q_{F(32f)1} - q_{F(32f)3} - q_{F(4b)}]/8$, где $q_{F(32f)1}$, $q_{F(32f)3}$, $q_{F(4b)}$ – количество анионов в позициях (32f)1, (32f)3 и 4b соответственно.

структуры кристаллов $Sr_{1-x}La_xF_{2+x}$ показаны на рис. 16.

ЗАВИСИМОСТЬ ДЕФЕКТНОЙ СТРУКТУРЫ $Sr_{1-x}La_xF_{2+x}$ (x = 0.11, 0.24, 0.32, 0.33) ОТ ТЕМПЕРАТУРЫ ОТЖИГА

Структурными дефектами изученных кристаллов являются вакансии в основном анионном мотиве, межузельные анионы и примесные катионы La³⁺ в позициях Sr²⁺. Количество вакансий (V), приходящееся на одну элементарную ячейку, составляет $V = 8 - q(F_{(8c)}) - q(F_{(32)})$.

В табл. 4 показаны рассчитанные из экспериментальных значений заселенностей позиций доли релаксированных анионов $u = q(F_{(32)1})/q(F_{(8c)})$ и отношения количеств межузельных анионов $F_{(32)3}$ к числу вакансий в основном анионном мотиве $y = q(F_{(32)3})/V$ для кристаллов $Sr_{1-x}La_xF_{2+x}$,

КРИСТАЛЛОГРАФИЯ том 66 № 3 2021

изученных в настоящей работе, и кристаллов $Sr_{1-x}La_xF_{2+x}$ as grown, изученных нами ранее [14].

На рис. 2 показаны зависимости параметров дефектной структуры кристаллов $Sr_{1-x}La_xF_{2+x}$ от температуры TO, на которых кристаллы расположены в порядке ее возрастания. Закаленные кристаллы занимают на диаграммах крайнее правое положение, поскольку их дефектная структура соответствует термическому состоянию, близкому к плавлению. Вопрос о положении на диаграмме кристаллов аs grown остается открытым. Они были размещены нами на диаграмме между кристаллами, отожженными при 750 и 900°С.

При ТО количество $q(F_{(32/)3})$ (рис. 2а) во всех изученных кристаллах остается приблизительно постоянным. В кристалле *as grown* с x = 0.11 отжиг при 900°С приводит к увеличению количества ва-кансий V (рис. 2б) в основном анионном мотиве. Параметр y (рис. 2в), показывающий их отношение, в кристалле *as grown* с x = 0.11 при отжиге уменьшается с 2.90 до 2.35.

Таблица 4. Параметры дефектной структуры в кристаллах $Sr_{1-x}La_xF_{2+x}$ с различной термической обработкой после роста

Образец	x	<i>T</i> , °C	V	У	и
$^{0.11}$ La _{ag} [14]	0.11	as grown	0.232	2.90	0.11
$^{0.11}La_{900}$	0.11	900	0.272	2.35	0.08
$^{0.11}$ La _q	0.11	закалка	0.184	3.30	0.03
$^{0.20}$ La _{ag} [14]	0.20	as grown	0.36	3.20	0.13
$^{0.24}La_{1300}$	0.24	1300	0.888	2.09	0.19
$^{0.32}$ La _{ag} [14]	0.32	as grown	0.416	4.08	0.19
$^{0.32}La_{1300}$	0.32	1300	0.384	4.33	0.17
^{0.33} La ₇₅₀	0.33	750	0.392	4.33	0.07

Параметр *у* позволяет оценить количественный состав межузельных анионных группировок $\{F_{(32/)3}\}_m$ в кристалле. При *у* = 4 в кристалле возможно образование тетраэдрических группировок $\{F_{(32/)3}\}_4$, которые являются анионными ядрами катион-анионных тетраэдрических кластеров $[M_{4-n}R_nF_{26+n}]$ [15].

В кристаллах с x = 0.32 и 0.33, составы которых близки к конгруэнтному, количество анионов $F_{(32/)3}$ и вакансий в основном анионном мотиве после ТО при 1300 и 750°С не изменяется, а их соотношение *у* приблизительно равно 4, что соответствует образованию в них тетраэдрических группировок { $F_{(32/)3}$ }.

Смещение основных анионов $F_{(8c)}$ из своих позиций, называемое релаксацией анионной подрешетки, оценим по отношению *и* (рис. 2г) количества релаксированных анионов $F_{(32/)1}$ к количеству основных анионов $F_{(8c)}$. Наибольшее количество релаксированных анионов наблюдается в кристаллах *as grown*. В кристаллах с составом, близким к конгруэнтному, с понижением температуры ТО параметр *и* уменьшается ~ в 2.5 раза.

Отжиг при 900°С кристалла ^{0.11}La_{ag} приводит к появлению межузельных анионов F_(4b) в позиции 4b

Рис. 2. Зависимости количества межузельных анионов $F_{(32/)3}$ (а), вакансий (*V*) в основном анионном мотиве (б), отношения (*y*) количества межузельных анионов $F_{(32/)3}$ к количеству вакансий в основном анионном мотиве (в) и отношения (*u*) количества релаксированных межузельных анионов $F_{(32/)1}$ к количеству матричных анионов от температуры отжига кристалла (г).

и уменьшению количества релаксированных анионов F_{(32/)1}.

ЗАКЛЮЧЕНИЕ

Установлено, что изученные монокристаллы $Sr_{1-x}La_xF_{2+x}$ (x = 0.11, 0.24, 0.32, 0.33) принадлежат к структурному типу CaF_2 , пр. гр. $Fm\overline{3}m$. Во всех найдены вакансии в основном анионном мотиве и межузельные анионы в двух позициях 32*f*. В отожженном при 900°С кристалле с x = 0.11 межузельные анионы найдены также в позиции 4*b*.

Изучена зависимость дефектной структуры кристаллов $Sr_{1-x}La_xF_{2+x}$ от их термической обработки.

Изменение дефектной структуры кристаллов с x = 0.32 и 0.33, состав которых близок к конгруэнтному, выражается в уменьшении ~ в 2.5 раза количества релаксированных анионов $F_{(32f)1}$ в отожженном при 750°С кристалле по сравнению с кристаллом *as grown*. Конфигурация анионных группировок анионов $F_{(32f)3}$ в кристаллах преимущественно тетраэдрическая, с изменением температуры термообработки она не изменяется.

Отжиг при 900°С кристалла ^{0.11}La_{*ag*} приводит к появлению межузельных анионов $F_{(4b)}$ в позиции 4*b* и уменьшению количества релаксированных анионов $F_{(32/)1}$.

Данные о кристаллической структуре исследованных фаз депонированы в Банке данных неорганических соединений: ICSD № 2014978 — Sr_{0.89}La_{0.11}F_{2.11} (закаленный), 2014979 — Sr_{0.89}La_{0.11}F_{2.11} (отожженный), 2014981 — Sr_{0.76}La_{0.24}F_{2.24}, 2014982 — Sr_{0.68}La_{0.32}F_{2.32}, 2014987 — Sr_{0.67}La_{0.33}F_{2.33}.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН с использованием оборудования ЦКП (про-ект RFMEFI62119X0035).

СПИСОК ЛИТЕРАТУРЫ

- 1. Соболев Б.П., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2009. Т. 54. № 1. С. 129.
- 2. Сульянова Е.А., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2015. Т. 60. № 1. С. 159.
- 3. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554.
- 4. *Сульянова Е.А., Каримов Д.Н., Соболев Б.П. //* Кристаллография. 2019. Т. 64. № 6. С. 874.
- 5. Сульянова Е.А., Каримов Д.Н., Соболев Б.П. // Кристаллография. 2020. Т. 65. № 4. С. 562.
- 6. Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н. и др. // Кристаллография. 2011. Т. 56. № 6. С. 1169.
- 7. Сорокин Н.И., Каримов Д.Н., Сульянова Е.А. и др. // Кристаллография. 2010. Т. 55. № 4. С. 708.
- 8. *Hofmann M., Hull S., McIntyre G.J. et al.* // J. Phys.: Condens. Matter. 1997. V. 9. № 4. C. 845.
- 9. Louer D., Louer M. // J. Appl. Cryst. 1972. V. 5. P. 271.
- 10. Sobolev B.P., Seiranian K.B., Garashina L.S. et al. // J. Solid State Chem. 1979. V. 28. № 1. P. 51.
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. № 5. S. 345.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. № 2. P. 129.
- International Tables for Crystallography V. C. / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
- 14. *Сульянова Е.А., Болотина Н.Б., Калюканов А.И. и др. //* Кристаллография. 2019. Т. 64. № 1. С. 47.
- Мурадян Л.А., Максимов Б.А., Симонов В.И. // Координац. химия. 1986. Т. 12. № 10. С. 1398.