ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ

УДК 544.773.432+537.533.35

ОСОБЕННОСТИ МИКРОСТРУКТУРЫ ГИДРОГЕЛЯ ПОЛИ-*n*-ВИНИЛПИРРОЛИДОН–La(NO₃)₃ · 6H₂O

© 2021 г. А. С. Орехов¹, Н. А. Архарова¹, В. В. Клечковская^{1,*}

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: klechvv@crys.ras.ru* Поступила в редакцию 09.06.2020 г. После доработки 03.08.2020 г. Принята к публикации 05.08.2020 г.

Методами растровой и просвечивающей электронной микроскопии исследованы особенности структуры композиционного гидрогеля поли-*n*-винилпирролидон–La(NO₃)₃ · 6H₂O. Показано, что в порошке La(NO₃)₃ · 6H₂O, используемом для создания композита, содержатся также кристаллы в виде шестигранных призм с размером ребра ~1.8 мкм и игольчатые кристаллы шириной до 1 мкм и длиной до 50 мкм. При формировании композита в объеме гидрогеля порошок La(NO₃)₃ · 6H₂O гидролизуется, и лантан равномерно распределяется в матрице, но на поверхности композита формируются включения в виде "розеток" диаметром до 20 мкм, построенные из наностержней, обогащенных лантаном и кислородом. Исследования высушенных гидрогелей методом просвечивающей электронной микроскопии указывают на то, что композиционный гель и включения – "розетки" – имеют аморфную структуру.

DOI: 10.31857/S0023476121040172

введение

Анализ литературных данных показывает, что гидрогели являются перспективными материалами для использования в различных областях биотехнологии и биомедицины. Их производство малозатратно, они могут быть легко разработаны и удобны в обработке [1–4]. Гидрогели в качестве перевязочных материалов имеют большие преимущества перед другими покрытиями благодаря ряду свойств: они не прилипают, ускоряют заживление, легко удаляются из раны, уменьшают боли и воспаления.

Известно также, что ионы редкоземельных элементов и комплексы на их основе обладают противомикробной активностью [5-8]. Так, наночастицы на основе La проявляют антимикробные свойства относительно различных патогенных бактерий и грибков человека, особенно они активны против Staphylococcus aureus [9]. Высокая концентрация ионов La³⁺ может привести к повреждению внешней оболочки клеточной мембраны Escherichia coli и увеличить ее проницаемость. Это приводит к снижению скорости или прекращению синтеза аденозинтрифосфата и, как следствие, блокированию роста клеток E. coli [10]. Редкоземельные элементы от La^{3+} до Lu^{3+} имеют ионные радиусы от 1.03 до 0.99 Å. Эти величины близки к радиусу иона Ca^{2+} (1.00 Å), входящего в состав клеток бактерий. Включение этих

элементов в композит может способствовать замещению ионов Ca²⁺ в клетках бактерий ионами редкоземельных элементов, вызывая гибель бактерий [11, 12].

В [13] для повышения антимикробной активности композитного перевязочного материала было предложено включить в матрицу гидрогеля ионы редкоземельных элементов (RE). Впервые были созданы композиционные гидрогели на основе нетоксичного, биосовместимого полимера поли-*n*-винилпирролидона (**ПВП**) (C_6H_9NO)_{*n*} с гидрофильной группой N-C=O и гидрофобной полимерной цепочкой С-С с функциональными частицами RE(NO₃)₃ · xH₂O (ПВП-RE). Были выбраны редкоземельные элементы La, Gd, Yb и показано, что новые материалы ПВП-RE действительно обладают антимикробной активностью. Отличительной особенностью композита $\Pi B\Pi - La(NO_3)_3 \cdot 6H_2O$ (**ПВП-La**) от композитов ПВП-Gd и ПВП-Yb было присутствие на его поверхности включений с размерами до 15-20 мкм в форме "розеток" (подобных цветам). Методом рентгенофазового анализа не удалось получить подробных сведений об особенностях структуры таких образований.

Цель настоящего исследования — детальная характеризация структурных особенностей композиционного гидрогеля ПВП–La(NO₃)₃ · 6H₂O методами электронной микроскопии.

Рис. 1. РЭМ-изображение исходного порошка La(NO₃)₃ · 6H₂O: а – кристаллы в виде призм, б – игольчатые кристаллы.

МАТЕРИАЛЫ И МЕТОДЫ

Композиционный гидрогель получали методом золь-гель из ПВП, сшивающего агента тетраэтоксисилана и порошка $La(NO_3)_3 \cdot 6H_2O$. При получении композиционного гидрогеля ПВП—La к 11%-ному водному раствору ПВП добавляли молочную кислоту концентрацией 0.01 мас. % (катализатор), порошок $La(NO_3)_3 \cdot 6H_2O$ в количестве 5.59 мас. % и тетраэтоксисилан — 5.04 мас. % [13].

В настоящей работе морфологию порошка $La(NO_3)_3 \cdot 6H_2O$ изучали с помощью растрового электронного микроскопа (РЭМ) Scios (FEI, США). Для минимизации радиационных повреждений образца при взаимодействии с электронным пучком использовали метод низковольтной растровой электронной микроскопии (ускоряющее напряжение до 1 кВ). Для детального исследования особенностей микро- и наноструктуры "розеток" исходные композиты высушивали в электронном микроскопе. При проведении исследования этих включений в композиционом геле ПВП-La с помощью просвечивающей электронной микроскопии (ПЭМ) методом фокусировки ионного пучка были приготовлены срезы толщиной до 100 нм. Локальный анализ высушенного до постоянной массы и перетертого в порошок до потери кристаллического блеска ПВП-La, а также поперечного среза проводили в просвечивающем электронном микроскопе Тесnai Osiris FEI в режиме высокоразрешающей просвечивающей растровой электронной микроскопии с использованием высокоуглового кольцевого темнопольного детектора (ВР ПРЭМ). Карты распределения элементов в композите регистрировали с помощью энергодисперсионного рентгеновского анализатора (Super-X SDD).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследована структура исходных компонентов, используемых для получения образцов, и сформированного композитного гидрогеля ПВП—La в нативном и высушенном состояниях. На РЭМ-изображениях порошка La(NO₃)₃ · 6H₂O (добавляемого затем в гидрогель ПВП) обнаружены включения шестигранных призм с размером ребра ~1.8 мкм, а также игольчатых кристаллов шириной до 1 мкм и длиной до 50 мкм (рис. 1). Анализ рентгенограмм порошка La(NO₃)₃ · 6H₂O (PDF № 00-022-1126) показал, что эти кристаллы могут быть фазами La₂O₃ (PDF № 01-074-2430) и La(OH)₃ (PDF № 01-083-2034) (рис. 2a).

Гидрогель представляет собой смесь твердого вещества (полимера) и жидкости (воды). По данным [14] в гидрогелях могут присутствовать четыре типа структурированной воды: свободная вода (1) (заполняет пространство между цепями полимера и пор и может быть легко удалена из гидрогелей в мягких условиях); связанная вода (2) (напрямую присоединяется к полимерной цепи посредством гидратации функциональных групп или ионов и является неотъемлемой частью структуры гидрогелей, она может быть удалена только при высоких температурах); промежуточная вода (3) (не присоединенная к сети гидрогелей, но физически захваченная между гидратированными полимерными цепями); полусвязанная вода (4) (обладает промежуточными свойствами связанной и свободной воды: слои воды могут быть включены в структуру гидрогелей, но гораздо слабее взаимодействуют с функциональными группами и ионами).

На присутствие структурированной воды указывают два диффузных пика на рентгеновской дифрактограмме нативного гидрогеля ПВП–Lа (рис. 2б): асимметричный пик при 2 $\theta \sim 20^\circ$, обусловленный водой (1) и водой (2), и сдвинутый в сторону больших углов диффузный пик при 2 $\theta \sim 42^\circ$, соответствующий кластерам воды (3). Отметим, что дифракционные пики La(NO₃)₃ · 6H₂O на дифрактограммах нативного ПВП–La отсутствуют. Этот факт свидетельствует о гидролизе

Рис. 2. Рентгеновские дифрактограммы порошка $La(NO_3)_3 \cdot 6H_2O$ (а) (показаны положения рефлексов Брэгга для $La(NO_3)_3 \cdot 6H_2O$ (*1*), $La(OH)_3$ (*2*), La_2O_3 (*3*)) и нативного гидрогеля ПВП–La (б).

Рис. 3. РЭМ-изображение поверхности нативного композитного гидрогеля ПВП–La (а), отдельной "розетки" на поверхности высушенного ПВП–La (б) и ее поперечного среза (в) (режим обратно рассеянных электронов).

 $La(NO_3)_3 \cdot 6H_2O$ при образовании композитного гидрогеля ПВП-La.

На РЭМ-изображении гладкой поверхности нативного, а также высушенного гидрогеля ПВП-Lа наблюдаются включения в виде "розеток" размерами до 15-20 мкм (рис. 3). РЭМ-изображения отдельной розетки размером ~10 мкм и ее поперечного среза (режим детектирования обратно рассеянных электронов) представлены на рис. 36, 3в. Из полученных изображений следует, что такое включение – "розетка" – представляет собой объемное образование, погруженное в массу композита ПВП-Lа на глубину до ~5 мкм. Более светлый контраст от включения при регистрации в режиме обратно рассеянных электронов свидетельствует о том, что оно обогащено лантаном. На рис. 4 представлены РЭМ-изображения с большим увеличением отдельных "лепестков розетки", полученные в режимах детектирования

КРИСТАЛЛОГРАФИЯ том 66 № 4 2021

вторичных и обратно рассеянных электронов. Видно, что каждый отдельный "лепесток" представляет собой агломерат наностержней, в каждом фрагменте которого выделяется преимущественное направление. Наностержни определяют форму агломератов в гидрогеле в целом. Области включений содержат микропоры, в то время как вне "розетки" в композиционном геле пор обнаружено не было. Можно предположить, что в процессе формирования композиционного гидрогеля происходит "локальное" перераспределение концентрации ионов лантана, приводящее к образованию "розеток".

Для более детального анализа включений готовили утоненные образцы композита ПВП–Lа, которые исследовали с помощью ПЭМ (рис. 5). Анализ электронограмм области *А* выделенного участка лепестка наностержней и области *В* массива гидрогеля ПВП–La, содержащих по три

Рис. 4. РЭМ-изображения отдельных лепестков розетки, полученные в режиме детектирования вторичных (а) и обратно рассеянных (б) электронов.

Рис. 5. РЭМ-изображение поперечного среза "розетки" (а), где квадратом выделена область ПЭМ-исследования. Изображение участка *A* "розетки" и участка *B* вне ее, полученное в режиме ВР ПРЭМ, и соответствующие им дифракционные картины справа (б). Карты распределения элементов в выделенной области включения (в).

диффузных отражения с межплоскостными расстояниями $d \sim 2.7$, 1.8—1.9 и 1.0—1.1 Å, свидетельствует об аморфном состоянии всего образца с элементами ближнего порядка (рис. 56).

На рис. 5в представлено картирование по элементам La, O, Si, C, N выделенной области поперечного среза "розетки" высушенного гидрогеля ПВП-La, откуда следует, что наностержни, формирующие лепестки "розетки", обогащены не только лантаном, но и кислородом. Кроме того, анализ данных энергодисперсионного рентгеновского анализа участков A и B, выделенных из массива композита и включения, показал, что область "розетки" содержит элементы C (54 ат. %), O (29 ат. %), N (4 ат. %), Si (0.5 ат. %) и La (10 ат. %), a область гидрогеля вне "розетки" – C (53 ат. %), O (14 ат. %), N (6 ат. %), Si (3.7 ат. %) и La (2 ат. %).

ЗАКЛЮЧЕНИЕ

Электронно-микроскопическое исследование композиционного гидрогеля ПВП-La показало, что при формировании материала в объеме гидрогеля кристаллический порошок La(NO₃)₃ · 6H₂O гидролизуется, и лантан равномерно распределяется в матрице ПВП. Однако на поверхности композита формируются включения в виде "розеток" размерами до 20 мкм, построенные из наностержней, обогащенных лантаном и кислородом. Таким образом, согласно данным энергодисперсионного рентгеновского анализа ионы лантана распределяются неравномерно по поверхности гидрогеля ПВП-La. Можно говорить о нижней и верхней границах концентрации La на поверхности – вне "розеток" (как и в объеме нативного гидрогеля ПВП-La) присутствует ~2 ат. % ионов La³⁺, и дополнительно во включениях их концентрация достигает ~10 ат. %. Согласно литературным данным при увеличении концентрации редкоземельных элементов усиливается ингибирование роста бактерий. Вероятно, именно факт высокой концентрации лантана во включениях – "розетках" – на поверхности композита способствует более высокой антимикробной активности гидрогеля ПВП–La, что было отмечено в [13] при сравнении с полученными в аналогичных условиях гидрогелями ПВП-Gd, ПВП-Yb, на поверхности которых подобные включения отсутствовали.

Авторы выражают благодарность профессору Г.М. Кузьмичевой за предоставление образцов для исследования и плодотворное обсуждение результатов.

Работа выполнена при поддержке Министерства науки и высшего образования РФ в части электронно-микроскопических исследований на оборудовании ЦКП "Диагностика материалов" ФНИЦ "Кристаллография и фотоника" и Российским фондом фундаментальных исследований (проект № 18-03-00330).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kamoun E.A., Kenawy E.S., Chen X.* // J. Adv. Res. 2017. V. 8. № 3. P. 217. https://doi.org/10.1016/j.jare.2017.01.005
- Xiang J., Shen L., Hong Y. // Eur. Polym. J. 2020. V. 130. P. 109609. https://doi.org/10.1016/j.eurpolymj.2020.109609
- Koehler J., Brandl F.P., Goepferich A.M. // Eur. Polym. J. 2018. V. 100. P. 1. https://doi.org/10.1016/j.eurpolymj.2017.12.046
- Marieta M.-P., Magyari K., Vulpoi A. // Adv. Mater. Res. 2019. V. 1151. P. 9. https://doi.org/10.4028/www.scientific.net/AMR.1151.9
- Wakabayashi T., Ymamoto A., Kazaana A. et al. // Biol. Trace Elem. Res. 2016. V. 174. P. 464. https://doi.org/10.1007/s12011-016-0727-y
- Lekha L., Kanmani Raja K., Hariharan R. et al. // Appl. Organomet. Chem. 2015. V. 29. P. 90. https://doi.org/10.1002/aoc.3250
- Cota I., Marturano V., Tylkowski B. // Coord. Chem. Rev. 2019. V. 396. P. 49. https://doi.org/10.1016/j.ccr.2019.05.019
- 8. *Hui Yu, Qizhuang He, Jing Yang et al.* // J. Rare Earths. 2006. V. 24. № 1. P. 4. https://doi.org/10.1016/S1002-0721(07)60309-3
- 9. Gayathri S., Ranjithkumar R., Balaganesh A.S. et al. // Kong. Res. J. 2016. V. 3. № 1. P. 1. https://doi.org/10.26524/krj115
- Liu G., Ran Z., Wang H. et al. // Front. Chem. China. 2008. V. 3. P. 70. https://doi.org/10.1007/s11458-008-0010-7
- Hirano S., Suzuki K.T. // Environ Health Perspect. 1996. V. 104. P. 85. https://doi.org/10.1289/ehp.96104s185
- Pidcock E., Moore G.R. // J. Biol. Inorg. Chem. 2001. V. 6. P. 479. https://doi.org/10.1007/s007750100214
- Timaeva O.I., Arkharova N.A., Orekhov A.S. et al. // Polymer . 2020. V. 186. P. 122079. https://doi.org/10.1016/j.polymer.2019.122079
- 14. Pasqui D., De Cagna M., Barbucci R. // Polymers. 2012. V. 4. P. 1517. https://doi.org/10.3390/polym4031517