_____ СТРУКТУРА МАКРОМОЛЕКУЛЯРНЫХ ____ Соединений

УДК 548.73

ПРОСТРАНСТВЕННАЯ СТРУКТУРА ТОЧЕЧНОГО МУТАНТА ЭСТЕРАЗЫ PMGL2

© 2021 г. Д. А. Горяйнова¹, А. Ю. Николаева², М. В. Крюкова², Л. Е. Петровская³, Д. А. Корженевский², Е. А. Крюкова³, Д. А. Долгих^{3,4}, К. М. Бойко^{1,*}

¹ Институт биохимии им. А.Н. Баха РАН, Федеральный исследовательский центр "Фундаментальные основы биотехнологии" РАН, Москва, Россия

² Национальный исследовательский центр "Курчатовский институт", Москва, Россия

³ Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, Москва, Россия

⁴ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

*E-mail: boiko_konstantin@inbi.ras.ru Поступила в редакцию 17.07.2020 г. После доработки 17.07.2020 г. Принята к публикации 03.08.2020 г.

Ферменты из экстремофильных организмов представляют повышенный интерес для задач биотехнологии, поскольку обладают природной адаптацией к экстремальным условиям, имеющим место в технологических процессах. Липазы являются обширным классом гидролитических ферментов, которые катализируют расщепление сложноэфирных связей в триацилглицеридах, а также находят многочисленные применения в биотехнологии. Исследована кристаллическая структура точечного мутанта эстеразы PMGL2, ген которой обнаружен в результате скрининга метагеномной библиотеки ДНК из вечномерзлого грунта Сибири. Структура получена с разрешением 1.5 Å. Проведено сравнение структур мутантной формы и дикого типа PMGL2 на уровне строения субъединицы, функционального димера и активного центра фермента.

DOI: 10.31857/S0023476121050064

введение

В настоящее время одним из важных направлений научных исследований в биотехнологии является изучение возможностей практического использования микроорганизмов, обитающих в экстремальных условиях (экстремофилов). Такие микроорганизмы представляют особый интерес для биотехнологического применения, поскольку являются природными продуцентами ферментов, способных функционировать в нестандартных и часто экстремальных условиях: при повышенной или пониженной температуре, в присутствии высокой солености или органических растворителей и т.д. [1, 2].

Примером практически значимых ферментов являются липазы, являющиеся обширным классом гидролитических ферментов, которые катализируют расщепление сложноэфирных связей в триацилглицеридах, а также находят многочисленные применения в различных биотехнологических процессах [3, 4]. Липолитические ферменты имеют схожую пространственную структуру – двудоменный α/β-гидролазный фолд, включающий в себя каноническую каталитическую триаду, состоящую из остатков Ser-His-Asp/Glu.

Согласно сушествующей классификации. основанной на наличии консервативных мотивов. липазы делятся на несколько семейств - I-VIII [5-7], пространственные структуры представителей каждого из которых к настоящему моменту установлены. Бактериальные ферменты, относящиеся к семейству IV, по своей структуре и свойствам схожи с гормон-чувствительными липазами млекопитающих и потому были названы бактериальными гормон-чувствительными липазами (bHSL). Ферменты этого семейства в свою очередь подразделяются на два класса на основании последовательности мотива активного центра – GD(E)SAG и GTSAG [8-10]. В последнем случае допускается вариабельность остатка, предшествующего каталитическому серину. В отличие от хорошо изученных ферментов класса GDSAG ферменты второго класса изучены значительно меньше - установлены структуры всего трех ферментов. Одним из них является эстераза PMGL2, ген которой обнаружен в результате скрининга метагеномной библиотеки ДНК из вечномерзлого грунта. Эстераза относится к семейству HSL [11] и характеризуется наличием неканонического аминокислотного остатка (а.о.) в положении, предшествующем ка-

<i>P</i> 2 ₁
47.15, 92.53, 74.41
90.00, 106.61, 90.00
100
1.0
56.48-1.50 (1.53-1.50)*
95216 (4656)
6.3 (6.3)
97.6 (95.9)
16.1 (3.1)
7.3 (61.2)
99.9 (86.5)

Таблица 1. Кристаллографические данные и параметры съемки кристалла эстеразы PMGL2

786

* В скобках приведены значения для последнего слоя.

Таблица 2. Данные уточнения эстеразы PMGL2

16.8		
19.5		
18.5		
17.9		
27.2		
25.8		
Число неводородных атомов		
4833		
24		
414		
5286		
Среднеквадратичные отклонения		
0.012		
1.891		
График Рамачандрана		
96.7		
2.8		
6ZL7		

талитическому S174, в консервативном мотиве активного центра — ¹⁷²GXSAG¹⁷⁶. В случае PMGL2 в этом положении находится остаток цистеина — C173. С целью выяснения функциональной роли данного остатка цистеина был сконструирован ряд мутантных вариантов PMGL2, содержащих в этом положении остатки треонина, аспарагиновой кислоты и серина, встречающиеся у гомологичных ферментов [12].

В настоящей работе исследована кристаллическая структура точечного мутанта C173S эстеразы PMGL2 (m3PMGL2) с разрешением 1.5 Å. Проведено сравнение структур мутантной формы и дикого типа PMGL2 на уровне строения субъединицы, функционального димера и активного центра фермента.

МАТЕРИАЛЫ И МЕТОДЫ

Очистка и выделение белка, кристаллизация. Очистку и выделение мутантной формы m3PMGL2 проводили согласно [10]. Очищенный белок концентрировали до 10 мг/мл при помощи концентраторов Millipore для последующей кристаллизации.

Кристаллизацию m3PMGL2 проводили при температуре $+20^{\circ}$ C методом диффузии в парах (висячая капля) [10]. Финальные условия кристаллизации следующие: 250 мМ MgCl₂, 100 мМ HEPES 12% PEG 3350, pH 7.5.

Сбор и обработка дифракционных данных. Решение и уточнение структуры. Непосредственно перед сбором данных кристаллы m3PMGL2 кратковременно вымачивали в кристаллизационном растворе, содержащем дополнительно 25% глицерина в качестве криопротектора, после чего кристаллы вылавливали при помощи петли и помещали под струю жидкого азота. Дифракционные данные собраны на станции синхротронного источника SPring-8 (Harima Science Garden, Япония) при температуре 100 К. Дифракционная картина фиксировалась детектором Pilatus6M. Экспериментальные данные проиндексированы и обработаны с использованием программы iMOSFLM [13]. С помощью программы Pointless [14] установлена пр. гр. *P*2₁. Статистика набора данных приведена в табл. 1.

Структура m3PMGL2 получена с разрешением 1.50 Å при помощи метода молекулярного замещения с применением программы MOLREP [15]. В качестве стартовой модели использовали структуру PMGL2 дикого типа (код PDB6QIN). Уточнение структуры проводили с помощью программы REFMAC5 из набора ССР4 [16]. Визуальный осмотр карт электронной плотности и уточнение модели проводили с использованием программы СООТ [17]. Уточнение структуры выполняли до достижения *R*-факторами следующих значений: $R_{work} = 16.8\%$, $R_{free} = 19.5\%$ (табл. 2).

В случае m3PMGL2 в независимой части элементарной ячейки кристалла находятся две белковые цепи (в цепи A - 317 остатков, в цепи B - 320 остатков), один ион магния, две молекулы PEG 3350 и 453 молекулы растворителя. Электронная плотность отсутствует для 16 и 13 N-концевых аминокислот для цепей A и B соответственно, что может быть связано с их относительной подвижностью. Также в обеих цепях молекулы для а.о. 221–226 электронная плотность имела

Рис. 1. Наложение структуры m3PMGL2 (темный) на структуру PMGL2 дикого типа (светлый). Расположение петли 221–226 обозначено стрелкой.

низкий уровень, позволивший, однако, достроить эти участки.

Анализ структуры проводили с использованием программы СООТ и системы молекулярной графики РуМОL, Version 1.9.0.0 (Schrodinger, USA). Сравнение и наложение структур проводили с помощью сервиса PDBeFold [18], а контакты анализировали с использованием сервиса PDBePISA [19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кристаллы m3PMGL2 принадлежат пр. гр. *P*2₁. В независимой части элементарной ячейки кристалла находятся две субъединицы белка, образующие функциональный димер.

Структура m3PMGL2 имеет типичный α/β гидролазный фолд, состоящий из двух канонических доменов — САР-домена и каталитического домена. Домен САР содержит две α -спирали (α 1 и α 2). Каталитический домен состоит из восьми β -тяжей (β 1- β 8), окруженных девятью α -спиралями (α 3- α 11) [10], и содержит в активном центре каталитический остаток серина — S174.

Анализ контактов между субъединицами из независимой части показал, что m3PMGL2 аналогично многим другим эстеразам является димером в кристалле. Скрытая при формировании димера поверхность (buried surface area) составляет 1508 Å² (11.3% поверхности субъединицы). Димер стабилизирован 10 солевыми мостиками и 20 водородными связями. Оценка гидрофобных межмолекулярных взаимодействий в димере, сделанная по выигрышу свободной энергии при формировании межмолекулярного контакта, да-

Рис. 2. Электронная плотность 2FOFC (серая сетчатая поверхность) вокруг остатка S173. Уровень срезки – 1σ. Палочковой моделью показано двойное положение остатка серина и окружающие его остатки активного центра (подписаны). Темным цветом показан ход полипептидной цепи белка.

ет величину —7.5 ккал/моль. Полученные значения схожи с таковыми для дикого типа PMGL2 [10].

Проведенный анализ показал, что структуры субъединиц m3PMGL2 и дикого типа фермента также весьма схожи (RMSD = 0.181 Å^2). Наложение субъединиц продемонстрировало, что элементы вторичной структуры расположены идентично, что говорит об отсутствии влияния точечной замены на общую структуру фермента (рис. 1). Основные различия между структурами обнаружены в петлях 221–226. В молекуле PMGL2 дикого типа а.o. 221–226 не имели электронной плотности [10] в отличие от молекулы m3PMGL2, где эта область имеет электронную плотность, хотя и низкого уровня.

Полость активного центра m3PMGL2 сформирована остатками G172, S173, A175, G176. В активном центре m3PMGL2 на месте цистеина, предшествующего каталитическому S174, находится серин, что подтверждает проведенную мутацию (рис. 2). Электронная плотность для S173 демонстрирует, что он имеет двойное положение: в одном положении его боковая группа ориентирована по направлению к C202, а в другом – к боковой группе F305. В последнем положении S173 способен образовывать водородную связь с боковой группой E120 через молекулу растворителя.

ЗАКЛЮЧЕНИЕ

Исследована структура мутантной формы эстеразы PMGL2, проведено ее сравнение со структурой белка дикого типа и показано, что на уровне структуры димера, субъединицы и активного центра различий в строении двух форм PMGL2 не обнаружено. Полученные результаты позволяют утверждать, что замена цистеина на серин в положении 173 не влияет на структуру фермента, при этом биохимические характеристики мутантной формы близки к таковым для дикого типа [12].

Работы по экспрессии и выделению белка выполнены при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-04-00491), работы по кристаллографическому уточнению и анализу полученной структуры выполнены при поддержке Министерства науки и высшего образования РФ. Статья подготовлена по материалам кристаллизационных исследований, выполненных в ЦР (КЭ) "Кристаллизатор" (Шифр ЦР (КЭ) "МКС (Наука)" ФНИЦ-1) на российском сегменте Международной космической станции.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kumar L.A.G., Singh B.* // Biotechnology. 2011. V. 10. P. 121.
 - https://doi.org/10.3923/biotech.2011.121.135
- Karan R., Capes M.D., Dassarma S. // Aquat. Biosyst. 2012. V. 8. P. 4. https://doi.org/10.1186/2046-9063-8-4
- Gaur R., Hemamalini R., Khare S.K. // Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products. 2017. P. 175. https://doi.org/10.1016/B978-0-444-63662-1.00008-7
- Casas-Godoy L., Duquesne S., Bordes F. et al. // Methods Mol. Biol. 2012. V. 861. P. 3. https://doi.org/10.1007/978-1-61779-600-5_1
- Ollis D.L., Cheah E., Cygler M. et al. // Protein Eng. 1992. V. 5. P. 197. https://doi.org/10.1093/protein/5.3.197

- Arpigny J.L., Jaeger K.E. // Biochem. J. 1999. V. 343. P. 177.
- Nardini M., Dijkstra B.W. // Curr. Opin. Struct. Biol. 1999. V. 9. P. 732. https://doi.org/10.1016/s0959-440x(99)00037-8
- Jeon J.H., Lee H.S., Kim J.T. et al. // Appl. Microbiol. Biotechnol. 2012. V. 93. P. 623. https://doi.org/10.1007/s00253-011-3433-x
- Li P.Y., Ji P., Li C.Y. et al. // J. Biol. Chem. 2014. V. 289.
 P. 19031. https://doi.org/10.1074/jbc.M114.574913
- Boyko K.M., Kryukova M.V., Petrovskaya L.E. et al. // PLOS ONE. 2020. V. 15 (1). P. e0226838. https://doi.org/10.1371/journal.pone.0226838
- 11. Petrovskaya L.E., Novototskaya-Vlasova K.A., Spirina E.V. et al. // FEMS Microbiol. Ecol. 2016. V. 92. P. fiw046. https://doi.org/10.1093/femsec/fiw046
- Kryukova M.V., Petrovskaya L.E., Novototskaya-Vlasova K.A. et al. // Biochemistry. 2020. V. 85. P. 831. https://doi.org/10.1134/S0006297920060085
- Battye T.G., Kontogiannis L., Johnson O. et al. // Acta Cryst. D. 2011. V. 67. P. 271. https://doi.org/10.1107/S0907444910048675
- 14. Evans P. // Acta Cryst. D. 2006. V. 62. P. 72. https://doi.org/10.1107/S0907444905036693
- Vagin A., Teplyakov A. // J. Appl. Cryst. 1997. V. 30. P. 1022. https://doi.org/10.1107/S0021889897006766
- Collaborative Computational Project N. // Acta Cryst. D. 1994. V. 50. P. 760. https://doi.org/10.1107/S0907444994003112
- 17. Emsley P., Cowtan K. // Acta Cryst. D. 2004. V. 60. P. 2126. https://doi.org/10.1107/S0907444904019158
- Krissinel E., Henrick K. // Acta Cryst. D. 2004. V. 60. P. 2256. https://doi.org/10.1107/S0907444904026460
- 19. *Krissinel E., Henrick K.* // J. Mol. Biol. 2007. V. 372. P. 774. https://doi.org/10.1016/j.jmb.2007.05.022