# ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

УДК 548.5, 548.73, 544.77.023.5

# ВЛИЯНИЕ ХЛОРИДОВ ОДНО- И ДВУХВАЛЕНТНЫХ МЕТАЛЛОВ НА ОЛИГОМЕРНЫЙ СОСТАВ КРИСТАЛЛИЗАЦИОННЫХ РАСТВОРОВ ЛИЗОЦИМА И ДАЛЬНЕЙШИЙ РОСТ КРИСТАЛЛОВ

© 2021 г. М. А. Марченкова<sup>1,2</sup>, П. В. Конарев<sup>1,2</sup>, А. С. Бойкова<sup>1,2,\*</sup>, К. Б. Ильина<sup>1,2</sup>, Ю. В. Писаревский<sup>1,2</sup>, М. В. Ковальчук<sup>1,2</sup>

<sup>1</sup> Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия <sup>2</sup> Национальный исследовательский центр "Курчатовский институт", Москва, Россия

> \**E-mail: boykova.irk@yandex.ru* Поступила в редакцию 03.09.2020 г. После доработки 23.10.2020 г. Принята к публикации 26.11.2020 г.

Методом малоуглового рассеяния рентгеновских лучей исследовано влияние типа осадителя (LiCl, NaCl, KCl, NiCl<sub>2</sub> и CuCl<sub>2</sub>) на образование олигомеров (димеров и октамеров) в кристаллизационных растворах лизоцима при двух концентрациях белка. Из этих же растворов выращены кристаллы для установления влияния олигомерного состава на рост кристаллов. На основе данных, полученных в настоящей и предыдущих работах, описывающих влияние концентрации осадителя, продемонстрирована обратно пропорциональная зависимость суммарного содержания октамеров и димеров от порядкового номера катиона, что согласуется с увеличением активности ионов в лиотропном ряду для Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> и увеличением ионных радиусов для Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> и и увеличением объемной доли димеров ведет к уменьшению объемной доли октамеров при неизменяющейся объемной доли димеров и понижению вероятности появления кристаллов.

DOI: 10.31857/S0023476121050131

## **ВВЕДЕНИЕ**

Изучение пространственной структуры белков, функционирующих в живых организмах, позволяет разобраться, каким образом биологические молекулы способны выполнять свои функции в природе.

На сегодняшний день около 90% пространственных структур макромолекул, депонированных в белковый банк данных (Protein Data Bank, **PDB**), определено методом рентгеноструктурного анализа (**PCA**). Однако ограничением данного метода является требование монокристалличности образца. Поэтому исследование основных механизмов кристаллизации биологических макромолекул представляет фундаментальный интерес как для развития кристаллографии, так и для оптимизации подбора условий кристаллизации и сокращения времени роста кристаллов.

В последние годы обозначился переход от классической схемы кристаллообразования к двухступенчатой, включающей в себя образование промежуточных кластеров-прекурсоров. Одними из первых предположения такого рода высказали сотрудники Института кристаллографии РАН профессор Н.Н. Шефталь в 1957 г. при анализе кристаллизации из газовой фазы и Р.О. Гриз-

дейл в 1968 г. при анализе кристаллизации из растворов [1-3]. Активное развитие этого подхода началось в XXI веке. К настоящему времени имеются общирные ланные по этой тематике [4–6]. Особое место занимает цикл работ, выполненный в ФНИЦ "Кристаллография и фотоника" РАН под руководством М.В. Ковальчука, в котором методами малоуглового рассеяния рентгеновских лучей (МУРР) и нейтронов (МУРН) впервые экспериментально обнаружены предкристаллизационные кластеры-прекурсоры в кристаллизационных растворах нескольких белков (лизоцим [7, 8], протеиназа [9], термолизин [10] и аминотрансфераза [11]) и кристаллизационных растворах неорганического соединения дигидрофосфата калия [12]. Для модельного белка лизоцима показано, что в условиях роста кристаллов лизоцима тетрагональной сингонии в растворе образуются олигомерные частицы белка димеры и октамеры [7, 8], последние являются кластерами-прекурсорами кристалла. При добавлении к раствору лизоцима таких осадителей, как LiCl, NaCl, KCl, CoCl<sub>2</sub>, NiCl<sub>2</sub> и CuCl<sub>2</sub>, приводящих к росту кристаллов тетрагональной сингонии, объемная доля октамеров увеличивается в следующем порядке: для одновалентных ионов:  $K^+$ –Na<sup>+</sup>–Li<sup>+</sup>, для двухвалентных: Cu<sup>2+</sup>– Ni<sup>2+</sup>–Co<sup>2+</sup> [13]. Наличие таких лиотропных рядов (или рядов Гофмейстера, которые располагают ионы по силе их воздействия на различные свойства, в случае белка – его растворимость и стабильность) обусловлено их влиянием на какиелибо параметры исследуемой системы [14].

В настоящей работе продолжено изучение структуры растворов лизоцима в условиях роста кристаллов тетрагональной сингонии при добавлении осадителей NaCl, KCl, LiCl, NiCl<sub>2</sub> и CuCl<sub>2</sub> в зависимости от концентрации белка, осадителя и температуры на станциях P12 EMBL BioSAXS (DESY, Гамбург, Германия) и BM29 BioSAXS (ESRF, Гренобль, Франция).

## МАТЕРИАЛЫ И МЕТОДЫ

Материалы и подготовка образцов. Для приготовления образцов использовали белок лизоцим из куриного яйца производства Sigma-Aldrich (CAS № 12650-88-3). Для приготовления маточных растворов использовали следующие неорганические соли: NaCl (CAS № 7647-14-5, Helicon), KCl (CAS № 7447-40-7, abcr GmbH), LiCl (TY 6-09-3751-83, Лаверна Стройинжиниринг), CoCl<sub>2</sub> (CAS № 7791-13-1, Alta Aesar), NiCl<sub>2</sub> (CAS № 7791-20-0, Alta Aesar) и CuCl<sub>2</sub> (CAS № 7447-39-4, Acros Organics). Все растворы были приготовлены с использованием ультрачистой воды Millipore (сопротивление воды 18 МОм см). Белок и соли растворяли в 0.2 М натрий-ацетатном буфере, pH 4.5. Растворы солей фильтровали с помощью мембранных шприцевых фильтров Millex с размером пор 0.22 мкм, раствор белка центрифугировали в течение 10 мин с частотой 10000 об./мин. Начальная концентрация в маточном растворе белка – 80 мг/мл, начальные концентрации всех солей в маточных растворах – 0.8 и 0.4 М.

Методика МУРР-измерений. Перед проведением измерений методом МУРР маточные растворы лизоцима и солей смешивали друг с другом в равных объемах. Эксперименты были проведены на станциях P12 EMBL BioSAXS источника синхротронного излучения PETRA III (DESY, Гамбург, Германия) и BM29 BioSAXS Европейского источника синхротронного излучения (Гренобль, Франция).

Описание эксперимента на станции P12 EMBL BioSAXS (DESY, Гамбург, Германия). Энергия составляла 10 кэВ ( $\lambda = 0.124$  нм), в качестве детектора сигнала использовали двухкоординатный детектор PILATUS 6M, позволяющий проводить регистрацию относительно слабых сигналов рассеяния. Расстояние образец—детектор составляло 3.0 м, данные МУРР записывали в диапазоне величин вектора обратного рассеяния s = 0.027.0 нм<sup>-1</sup>, что соответствует разрешению 300– 0.9 нм в реальном пространстве. Измерения проводили с использованием специализированной ячейки для образцов МУРР, состоящей из горизонтального термостатируемого в диапазоне от 278 до 323 К кварцевого капилляра со стенками толщиной 50 мкм и диаметром 1.7 мм, размещенного в специализированном корпусе из нержавеющей стали. Время экспозиции составляло 50 мс, было сделано 20 съемок для каждого измерения образца. Более детальное описание станции приведено в [15]. Объем образца в каждом измерении составлял 40 мкл. Измерения проводили при температуре 20°С.

Описание эксперимента на станции ВМ 29 Віо-SAXS (ESRF, Гренобль, Франция). Энергия составляла 12.4 кэВ. в качестве летектора сигнала использовали двухкоординатный детектор Pilatus 1М. Расстояние образец-детектор составляло 2.9 м. Исследуемые образцы помещали в специальную термостатируемую роботизированную систему в кюветы из полистирола объемом 200 мкл, нагрев которых осуществлялся одновременно. Первоначально образцы нагревали до 20°С, затем температуру понижали до 10°С. Далее раствор из кюветы с помощью робота помещали в проточный кварцевый капилляр диаметром 1.8 мм, который использовался при измерениях [16]. Исследуемый раствор равномерно продвигался по капилляру, при этом пучок попадал в одну и ту же точку на капилляре, но все время в новую часть образца. За время движения образца по капилляру было сделано 10 съемок. Время экспозиции каждого измерения составляло 1 с, сечение пучка на образце – 700 мкм<sup>2</sup>. Объем образца в каждом измерении составлял 50 мкл.

Методика обработки экспериментальных данных. Усреднение сигнала от буферного раствора, вычитание усредненного сигнала от буфера из экспериментальных данных рассеяния раствором белков и нормировку на концентрацию белка выполняли с помощью программы PRIMUS, входяшей в программный пакет ATSAS [17, 18]. В результате получены экспериментальные кривые интенсивности I от модуля вектора рассеяния s (где  $s = 4\pi \sin \theta / \lambda$ , 2 $\theta$  – угол рассеяния,  $\lambda$  – длина волны) для растворов белка в различных условиях. Угловой диапазон составлял 0.03 < s < 5.0 нм<sup>-1</sup>. При сравнении последовательных кадров радиационного повреждения на исследуемых образцах не обнаружено. После первичной обработки экспериментальные кривые малоуглового рассеяния обрабатывали с помощью программы OLIGOMER [18] для определения объемных долей мономеров и олигомеров разного порядка. Расчет теоретических кривых олигомерных компонентов проводили с помощью программы CRYSOL [19]. В качестве мономерного компо-



**Рис. 1.** Экспериментальные кривые MУPP от раствора лизоцима с добавлением осадителей LiCl (1), KCl (2), NaCl (3), NiCl<sub>2</sub> (4) и CuCl<sub>2</sub> (5) и теоретические приближения смесью олигомеров, рассчитанные программой OLIGOMER (черные линии) для концентрации осадителей и концентраций лизоцима соответственно: a - 0.4 M, 20 мг/мл, P12 (EMBL, Гамбург, Германия); b - 0.4 M, 40 мг/мг, P12 (EMBL, Гамбург, Германия); b - 0.4 M, 40 мг/мг, P12 (EMBL, Гамбург, Германия); b - 0.4 M, 20 мг/мг, BM 29 BioSAXS (ESRF, Гренобль, Франция). Кривые смещены по вертикали для лучшей визуализации.

нента была взята кристаллографическая структура мономера лизоцима (PDB ID: 4WLD), а модели димера, тетрамера, гексамера и октамера получены по методике, описанной в [7]. Качество приближения оценивали с помощью минимизации невязки  $\chi^2$  между экспериментальными данными и теоретическими модельными приближениями по формуле, приведенной в [13].

Кристаллизация. Маточные растворы, приготовленные для измерений методом МУРР на станции P12 EMBL BioSAXS (DESY, Гамбург, Германия), использовали также для кристаллизации (материалы и методы). Кристаллизацию осуществляли методом диффузии в парах в варианте сидячей капли [20] с помощью кристаллизационного робота Mosquito-LCP (EMBL, Гамбург, Германия), объем капли составлял 200 нл (100 нл маточного раствора белка + 100 нл маточного раствора осадителя). Рост кристаллов проводился в автоматизированной системе визуализации **ROCK IMAGER** при температуре 19°C. Система позволяет наблюдать рост кристаллов белков и фотографирует капли в течение длительного времени несколько раз (в "нулевой" день (сразу после загрузки кристаллизационного планшета) и далее в 1, 3, 7, 14, 28, 56 и 84 день). Осадители использовали те же (NaCl, KCl, LiCl, NiCl<sub>2</sub> и CuCl<sub>2</sub>). Конечные концентрации в капле составляли для лизоцима 40 и 20 мг/мл, для осадителя – 0.4 М.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты моделирования данных МУРР и тенденции изменения объемной доли олигомеров.

КРИСТАЛЛОГРАФИЯ том 66 № 5 2021

В серии экспериментов, выполненных на станциях малоуглового рассеяния P12 (EMBL, Гамбург) и BM 29 BioSAXS (ESRF, Гренобль), были проведены измерения растворов при концентрации лизоцима 20 и 40 мг/мл и концентрации осадителей 0.4 и 0.2 М при температуре 20°С. В качестве осадителей использовали неорганические соли – хлориды щелочных (NaCl, KCl и LiCl) и переходных металлов (NiCl<sub>2</sub> и CuCl<sub>2</sub>). Для сравнения проведены измерения растворов лизоцима без осадителей. Экспериментальные и теоретические кривые, рассчитанные с помощью программы OLIGOMER, показаны на рис. 1.

Каждая комбинация типа осадителя и концентрации белка была измерена несколько раз на станциях P12 EMBL BioSAXS (DESY) и BM 29 BioSAXS (ESRF); в табл. 1 приведены усредненные результаты обработки экспериментальных данных.

Рассчитанные кривые МУРР от олигомерных смесей для растворов белка с осадителем хорошо совпадают с экспериментальными данными во всем угловом диапазоне, значения невязки  $\chi^2$  не превышают 1.6, что свидетельствует о правильности предложенной модели обработки. Отметим, что данные, полученные в одном эксперименте при повторных измерениях, различаются незначительно (в некоторых случаях на величину погрешности обработки).

Исследования объемной доли олигомеров в кристаллизационных растворах лизоцима при одинаковых условиях (концентрация белка 20 мг/мл и концентрация осадителей 0.4 М), проведенные

#### МАРЧЕНКОВА и др.

|           | <i>С</i> <sub>ос</sub> , М | С <sub>б</sub> ,<br>мг/мл | <i>Т</i> , ºС | LiCl |       | NaCl  |       | KCl  |       | NiCl <sub>2</sub> |      | CuCl <sub>2</sub> |      |
|-----------|----------------------------|---------------------------|---------------|------|-------|-------|-------|------|-------|-------------------|------|-------------------|------|
|           |                            |                           |               | 0    | Д     | 0     | Д     | 0    | Д     | 0                 | Д    | 0                 | Д    |
| DESY*     | 0.4                        | 40                        | 20            | 6.70 | 17.75 | 5.15  | 16.25 | 4.65 | 14.65 | 5.55              | 8.85 | 4.05              | 6.4  |
| DESY*     | 0.4                        | 20                        | 20            | 2.45 | 17.00 | 2.15  | 14.1  | 2.25 | 13.65 | 2.6               | 7.4  | 1.95              | 7.55 |
| ESRF**    | 0.2                        | 20                        | 20            | 1.13 | 8.6   | 0.875 | 5.7   | 0.43 | 3.8   | 1.43              | 3.1  | 0.7               | 0.5  |
| ESRF [13] | 0.2                        | 20                        | 20            | 1.70 | 7.3   | 1.8   | 5.4   | 1.9  | 5.0   | 2.4               | 1.9  | 1.1               | 0    |
| ESRF [13] | 0.2                        | 20                        | 10            | 1.9  | 13.1  | 2.2   | 10.6  | 2.4  | 10.5  | 2.8               | 7.9  | 1.7               | 3.5  |
| ESRF [13] | 0.1                        | 20                        | 20            | 0.1  | 6.2   | 0.1   | 4.9   | 0.3  | 4.5   | 1.0               | 0    | 0                 | 0    |
| ESRF [13] | 0.1                        | 20                        | 10            | 0.2  | 10.5  | 0.1   | 10.1  | 0.3  | 9.3   | 1.4               | 3.7  | 0                 | 0.1  |
| ESRF ***  | 0.43                       | 20                        | 20            | 2    | 12.6  | 1.86  | 10.3  | 2.27 | 9.7   | 2.46              | 9.83 |                   |      |

**Таблица 1.** Средние значения объемных долей димеров (Д) и октамеров (О) (%) лизоцима в растворах с осадителями LiCl, NaCl, KCl, CuCl<sub>2</sub> и NiCl<sub>2</sub>, полученные в экспериментах на станциях P12 EMBL BioSAXS (DESY, Hamburg) и BM 29 BioSAXS (ESRF, Grenoble)

Примечание. Одним цветом отмечены эксперименты при одинаковых условиях;  $C_{\rm oc}, C_6$  – концентрации осадителя и белка соответственно.

\* Среднее по двум экспериментам (округления нет).

\*\* Среднее по трем экспериментам.

\*\*\* Среднее по времени (три эксперимента).

на разных источниках синхротронного излучения, показали, что усредненные по нескольким измерениям объемные доли олигомеров отличаются друг от друга в относительных пределах 1-15% (наибольшее различие в 20% с осадителем LiCl) для октамеров и 25-30% для димеров. Кроме того, при выполнении повторных экспериментов на одной и той же станции объемные доли димеров при определенных условиях могли различаться в абсолютных пределах на 1.2-1.5%, а для октамеров – в пределах 0.3–0.5%, с учетом данной неоднозначности, можно заключить, что результаты, представленные в табл. 3, измеренные при различных условиях, находятся в согласии друг с другом. Однако объемная доля тетрамеров и гексамеров во всех экспериментах равняется 0%. Разброс значений между экспериментами на разных станциях и между повторными экспериментами в одной серии могут быть вызваны следующими факторами: неизбежными различиями в протоколе приготовления (временной период между добавлением осадителя и фактическим измерением), разной степенью ослабления пучка во избежание радиационного повреждения образца, изначально разной интенсивностью падающего пучка, разной степенью "чистоты" буферного раствора и наличием "примесей", стабильностью пучка на самих экспериментальных станциях и эффективностью заполнения образцов роботом.

Октамеры в среднем демонстрируют более стабильное поведение (их объемные доли при сравнении с данными, полученными в различных сериях экспериментов на различных источниках, слабо меняются по сравнению с содержанием димеров), в то время как димеры, судя по всему, являются более нестабильными образованиями, и их содержание может значительно меняться в ходе проведения различных экспериментов.

Во всех случаях объемная доля октамеров максимальна для NiCl<sub>2</sub> и минимальна для CuCl<sub>2</sub>. Исключение составляет LiCl (концентрация осадителя 0.4 М, белка 40 мг/мл), где объемная доля сильно повысилась в сравнении с условиями для NiCl<sub>2</sub>.

Зависимость объемной доли октамеров от порядкового номера Li, Na, K при комнатной температуре различается для разных измерений (табл. 2): для данных ESRF (строки 4—7) она прямо пропорциональна порядковому номеру элемента, для данных DESY (строки 1, 2) и ESRF (строка 3) – обратно пропорциональна.

Для димеров во всех измерениях (кроме строк 2 и 8) их объемная доля увеличивается при использовании разных осадителей в следующем порядке (от наименьшего к наибольшему):  $Cu^{2+}$ ,  $Ni^{2+}$ ,  $K^+$ ,  $Na^+$ ,  $Li^+$ .

Объемная доля димеров и октамеров увеличивается для такой же, как в случае с димерами, последовательности ионов  $Cu^{2+}$ ,  $Ni^{2+}$ ,  $K^+$ ,  $Na^+$ ,  $Li^+$  или уменьшается в ряду  $Li^+$ ,  $Na^+$ ,  $K^+$ ,  $Ni^{2+}$ ,  $Cu^{2+}$ , что согласуется с увеличением активности ионов в лиотропном ряду Гофмейстера для  $Li^+$ ,  $Na^+$ ,  $K^+$  и увеличением ионных радиусов для  $Li^+$ ,  $Na^+$ ,  $K^+$  и для  $Ni^{2+}$ ,  $Cu^{2+}$ .

Временные измерения МУРР. Для условий кристаллизации, где концентрация белка составляла 20 мг/мл, а концентрация осадителей LiCl, NaCl, KCl, NiCl<sub>2</sub> – 0.43 M, на станции BM29 (ESRF, Гренобль, Франция) было проведено исследование в промежутках времени 0\* мин (\*0 мин в дан-

|           | C <sub>oc</sub> , M | С <sub>б</sub> ,<br>мг/мл | T, ℃ | Изменение объемной<br>доли октамеров в ряду<br>от меньшего содержания<br>к большему | Изменение объемной<br>доли димеров в ряду<br>от меньшего содержания<br>к большему | Изменение объемной<br>доли октамеров и димеров<br>в ряду от меньшего<br>содержания к большему |
|-----------|---------------------|---------------------------|------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| DESY*     | 0.4                 | 40                        | 20   | $\begin{array}{c} Cu^{2+} < K^+ < Na^+ < \\ < Ni^{2+} < Li^+ \end{array}$           | $\begin{array}{c} Cu^{2+} < Ni^{2+} < K^{+} < \\ < Na^{+} < Li^{+} \end{array}$   | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^{+} < \\ < Na^{+} < Li^{+} \end{array}$               |
| DESY*     | 0.4                 | 20                        | 20   | $\begin{array}{l} Cu^{2+} < Na^+ < K^+ < \\ < Li^+ < Ni^{2+} \end{array}$           | $Ni^{2+} < Cu^{2+} < K^+ < < Na^+ < Li^+$                                         | $Cu^{2+} < Ni^{2+} < K^+ < < Na^+ < Li^+$                                                     |
| ESRF**    | 0.2                 | 20                        | 20   | $\begin{array}{l} K^+ < C u^{2+} < N a^+ < \\ < L i^+ < N i^{2+} \end{array}$       | $\begin{array}{c} Cu^{2+} < Ni^{2+} < K^+ < \\ < Na^+ < Li^+ \end{array}$         | $\begin{array}{l} Cu^{2+} < Ni^{2+} \approx K^+ < \\ < Na^+ < Li^+ \end{array}$               |
| ESRF [13] | 0.2                 | 20                        | 20   | $\begin{array}{l} Cu^{2+} < Li^+ < Na^+ < \\ < K^+ < Ni^{2+} \end{array}$           | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^{+} < \\ < Na^{+} < Li^{+} \end{array}$   | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^+ < \\ < Na^+ < Li^+ \end{array}$                     |
| ESRF [13] | 0.2                 | 20                        | 10   | $\begin{array}{l} Cu^{2+} < Li^+ < Na^+ < \\ < K^+ < Ni^{2+} \end{array}$           | $Cu^{2+} < Ni^{2+} < K^+ << Na^+ < Li^+$                                          | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^{+} \approx \\ \approx Na^{+} < Li^{+} \end{array}$   |
| ESRF [13] | 0.1                 | 20                        | 20   | $\begin{array}{l} Cu^{2+} < Li^+ = Na^+ < \\ < K^+ < Ni^{2+} \end{array}$           | $\begin{array}{l} Cu^{2+} = Ni^{2+} < K^+ < \\ < Na^+ < Li^+ \end{array}$         | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^+ < \\ < Na^+ < Li^+ \end{array}$                     |
| ESRF [13] | 0.1                 | 20                        | 10   | $\begin{array}{l} Cu^{2+} < Li^+ \approx Na^+ \approx K^+ \\ < Ni^{2+} \end{array}$ | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^+ < \\ < Na^+ < Li^+ \end{array}$         | $\begin{array}{l} Cu^{2+} < Ni^{2+} < K^+ < \\ < Na^+ < Li^+ \end{array}$                     |
| ESRF ***  | 0.43                | 20                        | 20   | $Na^+ < Li^+ < K^+ < Ni^{2+}$                                                       | $K^+ \le Na^+ \le Ni^{2+} \le Li^+$                                               | $K^+ < Na^+ < Ni^{2+} < Li^+$                                                                 |

Таблица 2. Тенденция изменения объемной доли олигомеров в кристаллизационном растворе лизоцима с осадителями – хлоридами металлов

Примечание. Одним цветом отмечены эксперименты при одинаковых условиях.

\* Среднее по двум экспериментам (округления нет).

\*\* Среднее по трем экспериментам.

\*\*\* Среднее по времени (три эксперимента).

| Осади-<br>тель    | 0 мин    |      |     |          | 100 мин   |      |     |          | 170 мин   |      |     |          |
|-------------------|----------|------|-----|----------|-----------|------|-----|----------|-----------|------|-----|----------|
|                   | $R_g, Å$ | Д, % | 0,% | $\chi^2$ | $R_g$ , Å | Д, % | 0,% | $\chi^2$ | $R_g$ , Å | Д, % | 0,% | $\chi^2$ |
| NaCl              | 18.6     | 10.1 | 1.9 | 0.98     | 18.5      | 10.3 | 1.8 | 0.91     | 18.6      | 10.6 | 1.9 | 0.87     |
| KCl [21]          | 19.1     | 9.4  | 2.3 | 0.92     | 18.9      | 10.0 | 2.2 | 0.92     | 19.1      | 9.7  | 2.3 | 0.90     |
| LiCl              | 18.9     | 12.0 | 2.1 | 1.06     | 18.8      | 12.8 | 2.0 | 1.18     | 18.8      | 13.0 | 2.0 | 1.13     |
| NiCl <sub>2</sub> | 19.1     | 9.9  | 2.3 | 1.01     | 19.4      | 8.9  | 2.6 | 1.21     | 19.4      | 10.7 | 2.5 | 1.30     |

**Таблица 3.** Объемная доля олигомерных фракций (димеров и октамеров), радиус инерции  $R_g$  и значение невязки  $\chi^2$  для растворов лизоцима при концентрации белка 20 мг/мл и концентрации осадителей 0.43 М

ном случае означает фактически время начала измерения, а не смешивания; от смешивания раствора белка и раствора осадителя до начала измерений проходило ~10-15 мин), 100 и 170 мин при температуре  $20^{\circ}$ С. Результаты обработки экспериментальных данных приведены в табл. 3.

С течением времени (от 0 до 170 мин) после смешения содержание октамеров и димеров в растворе изменяется незначительно. Это позволяет убрать вклад времени между добавлением осадителя к белку и фактическим измерением раствора из существенных факторов, влияющих на разброс значений содержания олигомеров между экспериментами.

КРИСТАЛЛОГРАФИЯ том 66 № 5 2021

Рост кристаллов в исследованных условиях. Рост кристаллов проводили из тех же маточных растворов, приготовленных для исследования методом МУРР на станции Р12 (EMBL, Гамбург, Германия). Для каждого типа осадителя была поставлена кристаллизация в трех каплях. В подписях к рисункам указано, в скольких опытах образовались кристаллы лизоцима, также приведены средние объемные доли октамеров в растворах по данным МУРР.

В табл. 4 приведены фотографии кристаллов, выращенных в условиях с концентрацией белка 40 и 20 мг/мл. Фотографии сделаны по истечении 56 дней (исключение составляют фотографии кристалла с осадителями KCl и CuCl<sub>2</sub>, сделанные

| <i>С</i> <sub>б</sub> , мг/мл | LiCl       | NaCl       | KCl         | NiCl <sub>2</sub> | CuCl <sub>2</sub> |
|-------------------------------|------------|------------|-------------|-------------------|-------------------|
| 40                            |            |            |             |                   |                   |
|                               | 3/3, 6.70% | 3/3, 5.15% | 3/3, 4.65%  | 3/3, 5.55%        | 3/3, 4.05%        |
| 20                            | 2/3, 2.45% | 3/3, 2.15% | 1/3*, 2.25% | 1/3, 2.6%         | 0/3*, 1.95%       |

Таблица 4. Фотографии кристаллов лизоцима, выращенных из исследуемых растворов при температуре 20°С, концентрациях белка 40 и 20 мг/мл и осадителей 0.4 М

Примечание. Показана одна из трех капель на 56 день кристаллизации, указано, в скольких каплях из трех выросли кристаллы, приведены средние объемные доли октамеров в растворах по данным МУРР (табл. 1) \* Фотография сделана на 84 день.

на 84 день). Все приведенные кристаллы выросли через день, кроме кристаллов в растворах с осадителями КСІ и CuCl<sub>2</sub> (концентрация белка 20 мг/мл), которые выросли спустя 84 дня.

При концентрации лизоцима в капле 40 мг/мл кристаллы выросли во всех трех каплях при объемной доле октамеров в растворе от 4.05 до 6.70% (наибольшее значение наблюдалось при осадителе LiCl, наименьшее — при CuCl<sub>2</sub>). Уменьшение концентрации белка с 40 до 20 мг/мл, ведущее и к уменьшению объемной доли октамеров при неизменяющейся объемной доли димеров в растворе, уменьшает вероятность появления кристалла вплоть до полного отсутствия кристаллов в случае использования осадителя CuCl<sub>2</sub> (1.95% октамеров). При использовании других осадителей наличие октамеров в растворе (при значении их средней объемной доли от 2.15% и больше) коррелирует с тем фактом, что в данных растворах наблюдался рост кристаллов лизоцима.

## ЗАКЛЮЧЕНИЕ

Методом малоуглового рассеяния рентгеновского излучения на станциях P12 EMBL BioSAXS (DESY, Гамбург, Германия) и BM 29 BioSAXS (ESRF, Гренобль, Франция) определен олигомерный состав кристаллизационных растворов лизоцима с использованием разных осадителей NaCl, KCl, LiCl, NiCl<sub>2</sub> и CuCl<sub>2</sub>. Для разных концентраций белка, осадителя и для разных температур показано, что в растворах присутствуют только димеры и октамеры, а также подтверждены выявленные ранее тенденции увеличения объемной доли октамеров при большем пересыщении [13].

Исследования объемной доли олигомеров в кристаллизационных растворах лизоцима при одинаковых условиях, проведенные на разных источниках синхротронного излучения, показали, что усредненные по нескольким измерениям объемные доли олигомеров отличаются друг от друга в относительных пределах 1-15% для октамеров и 25-30% для димеров. Однако зависимость суммарной объемной доли октамеров и димеров от порядкового номера катиона обратно пропорциональна порядковому номеру элемента: объемная доля димеров и октамеров уменьшается в ряду Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, что согласуется с увеличением активности ионов в лиотропном ряду Гофмейстера для Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> и увеличением ионных радиусов для Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> и для Ni<sup>2+</sup>, Cu<sup>2+</sup>.

Двукратное уменьшение концентрации белка в кристаллизационном растворе, ведущее и к vменьшению объемной доли октамеров при неизменяющейся объемной доли димеров, понижает вероятность появления кристалла вплоть до полного отсутствия кристаллов в случае использования осадителя CuCl<sub>2</sub> (1.95% октамеров). При использовании других осадителей наличие октамеров в растворе (при значении их средней объемной доли от 2.15% и больше) коррелирует с тем фактом, что в данных растворах наблюдался рост кристаллов лизоцима. Таким образом, удалось показать, что образование предкристаллизационной олигомерной фазы на начальной стадии кристаллизации в растворе может являться одним из необходимых условий того, что в растворе вырастет белковый кристалл.

Экспериментальные данные МУРР были собраны на станции P12, управляемой EMBL в Гамбурге, на накопителе PETRA III (DESY, Гамбург, Германия) и на станции BM 29 (ESRF, Гренобль, Франция). Авторы выражают благодарность А.Ю. Грузинову и Cy Jeffries (P12) и Mark Tully (BM29) за помощь в проведении экспериментов.

Работа выполнена при частичной финансовой поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, Российского фонда фундаментальных исследований (гранты № 18-32-20070 мол\_а\_вед, 19-29-12042 мк), НИЦ "Курчатовский институт" (приказ № 1360) и iNEXT [6938].

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Асхабов А.М.* // Записки Рос. минерал. о-ва. 2019. Т. 148. № 6. С. 1.
- 2. Шефталь Н.Н. // Успехи физ. наук. 1957. Т. 62. С. 191.
- 3. Гриздейл Р.О. // Теория и практика выращивания кристаллов. М: Металлургия, 1968. С. 176.
- 4. *Асхабов А.М.* // Зап. Рос. минерал. о-ва. 2016. Т. 145. № 5. С. 17.
- 5. *Vekilov P.G.* // Nanoscale. 2010. V. 2. P. 2346. https://doi.org/10.1039/C0NR00628A
- Alexander E.S., Driessche V., Kellermeier M. et al. New Perspectives on mineral nucleation and growth. From solution precursors to solid materials. Springer, 2017. 380 p.
- Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
- Boikova A.S., Dyakova Y.A., Ilina K.B. et al. // Acta Cryst. D. 2017. V. 73. № 7. P. 591. https://doi.org/10.1107/S2059798317007422

- Бойкова А.С., Дьякова Ю.А., Ильина К.Б. и др. // Кристаллография. 2018. Т. 63. № 6. С. 857. https://doi.org/10.1134/S0023476118060061
- 10. *Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al.* // J. Biomol. Struct. Dyn. 2019. V. 37. № 12. P. 3058. https://doi.org/10.1080/07391102.2018.1507839
- Marchenkova M.A., Konarev P.V., Rakitina T.V. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. P. 2939. https://doi.org/10.1080/07391102.2019.1649195
- 12. Ковальчук М.В., Алексеева О.А., Благов А.Е. и др. // Кристаллография. 2019. Т. 64. № 1. С. 10. https://doi.org/10.1134/S0023476119010156
- Дьякова Ю.А., Бойкова А.С., Ильина К.Б. и др. // Кристаллография. 2019. Т. 64. № 1. С. 15. https://doi.org/10.1134/S0023476119010065
- Sedlak E., Stagg L., Wittung-Stafshede P. // Arch. Biochem. Biophys. 2008. № 479. P. 69. https://doi.org/10.1016/j.abb.2008.08.013
- 15. Blanchet C.E., Spilotros A., Schwemmer F. et al. // J. Appl. Cryst. 2015. V. 48. № 2. P. 431. https://doi.org/10.1107/S160057671500254X
- Pernot P., Round A., Barrett R. et al. // J. Synchrotron Rad. 2013. V. 20. P. 660. https://doi.org/10.1107/S0909049513010431
- Franke D., Petoukhov M.V., Konarev P.V. et al. // J. Appl. Cryst. 2017. V. 50. P. 1212. https://doi.org/10.1107/S1600576717007786
- Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
- Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
- Ковальчук М.В., Просеков П.А., Марченкова М.А. и др. // Кристаллография. 2014. Т. 59. № 5. С. 749. https://doi.org/10.7868/S0023476114050105
- Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // Thin Solid Films. 2019. V. 677. P. 13. https://doi.org/10.1016/j.tsf.2019.02.051