_____ СТРУКТУРА МАКРОМОЛЕКУЛЯРНЫХ ____ Соединений

УДК 577.322.63

ВЛИЯНИЕ МИССЕНС-МУТАЦИИ Ile222Thr В SsoIF2γ НА СРОДСТВО γ- И β-СУБЪЕДИНИЦ aIF2

© 2021 г. О. С. Никонов^{1,*}, О. В. Кравченко¹, Н. А. Невская¹, Е. А. Столбоушкина¹,

М. Б. Гарбер¹, С. В. Никонов¹

¹ Институт белка РАН, Пущино, Россия *E-mail: alik@vega.protres.ru Поступила в редакцию 08.09.2020 г. После доработки 16.12.2020 г. Принята к публикации 16.12.2020 г.

Фактор инициации трансляции 2 эукариот (eIF2) и архей (aIF2) доставляет заряженную инициаторную тРНК (Met-tRNAi^{Met}) на малую рибосомную субчастицу. Фактор e/aIF2 состоит из трех субъединиц (α , β , γ) и функционирует как гетеротримерный комплекс. Ранее было показано, что гомозиготная миссенс-мутация Ile222Thr в γ -субъединице человеческого IF2, нарушающая взаимодействие β - и γ -субъединиц, ведет к умственной отсталости и микроцефалии. В представленной работе показано, что аналогичная мутация в γ -субъединице фактора инициации трансляции 2 архей, который гомологичен эукариотическому белку, не изменяет ни конформацию этого белка, ни его сродство к aIF2 β .

DOI: 10.31857/S0023476121050155

введение

В эукариотах и археях фактор инициации трансляции 2 (e/aIF2) играет ключевую роль в инициации биосинтеза белка. В ГТФ-связанной форме он доставляет инициаторную метионилтРНК на малую субчастицу рибосомы. Структурные перестройки, возникающие в 43S преинициаторном комплексе, состоящем из малой рибосомной субчастицы 40S, связанной с факторами инициации трансляции eIF1, eIF1A, eIF3, и тройным комплексом eIF2-Met-tRNAi^{Met}-GTP. способствуют быстрому гидролизу ГТФ даже в отсутствие мРНК [1]. После узнавания старт-кодона и удаления неорганического фосфата (Pi) eIF2 переходит в ГДФ-связанную форму и диссоциирует из инициаторного комплекса [2, 3], оставляя инициаторную тРНК в Р-сайте малой рибосомной субчастицы и открывая возможности для дальнейших этапов биосинтеза белка.

Фактор инициации трансляции 2 состоит из трех субъединиц (α , β , γ) и функционирует как гетеротримерный комплекс. Центральную роль в формировании e/aIF2 играет γ -субъединица. Она взаимодействует как с α -, так и с β -субъединицами, тогда как α - и β -субъединицы не взаимодействуют друг с другом. Присутствие α -субъединицы необходимо для связывания инициаторной метионил-тРНК [4, 5]; β -субъединица в эукариотическом факторе при образовании инициаторного комплекса 43S взаимодействует с мРНК [6]. Дефекты в связывании γ - и β -субъединиц, обусловленные миссенс-мутацией Ile222Thr в человеческом IF2 γ (HsaIF2 γ), приводят к X-хромосомному неврологическому заболеванию, характеризующемуся умственной отсталостью и микроцефалией [7]. В дрожжах аналогичная мутация ухудшает правильный выбор старт-кодона и функционирование SceIF2 *in vivo*, причем негативная роль указанной мутации может быть минимизирована суперэкспрессией гена белка eIF2 β [7]. Структурное обоснование негативной роли миссенс-мутации в этих факторах в настоящее время невозможно, так как до сих пор не определена структура ни одного эукариотического фактора инициации трансляции 2 с атомным разрешением.

Ранее было показано, что *in vitro* aIF2 может функционально заменять eIF2 в связывании Met-tRNAi^{Met} с эукариотической рибосомой и в сканировании матрицы [8]. В настоящее время известны кристаллические структуры γ -субъединиц из *Pyrococcus abyssy* (PabIF2 γ) [9], *Methanococcus jannaschii* (MjaIF2 γ) [10], *Sulfolobus solfataricus* (SsoIF2 γ) [11, 13] и *Pyrococcus furiosus* (PfuIF2 γ) [12]. Каждая γ -субъединица состоит из трех доменов, N-концевой домен (G-домен) представляет собой ГТФазу и отвечает за основные функции белка, в том числе за узнавание β -субъединицы [12–14]. G-домены структур aIF2 из разных организмов (за исключением лабильных переключателей) могут быть наложены друг на друга с

Статистика набора							
Пр. гр.	<i>I</i> 23						
$a = b = c$, Å; $\alpha \leq \beta \leq \gamma$, град	186.59; 90.0						
Длина волны, Å	1.54						
Пределы разрешения, Å	26.39-2.1 (2.2-2.1)						
Общее число отражений	62755 (8124)						
Число уникальных отражений	18403 (3357)						
Полнота, %	99.9 (100.0)						
R _{merge} , %	10.8 (34.28)						
Избыточность	3.41 (2.42)						
Среднее <i>I</i> /δ(<i>I</i>)	8.02 (1.99)						
Статистика уточнения							
Диапазон разрешения, Å	26.38-2.10 (2.13-2.10)						
Число молекул в асимметрич-	1						
ной части							
Число отражений	62736 (2594)						
Размер тестовой выборки, %	5						
$R_{ m work,}$ %	18.2 (23.21)						
$R_{\rm free},\%$	20.6 (25.06)						
Средний температурный	24.3						
фактор, Å ²							
Среднеквадратичные							
отклонения							
Длины связей, Å	0.005						
Валентные углы, град	1.102						
Число остатков на карте Рамачандрана							
Наиболее предпочтительные	97.8						
районы, %							
Дополнительно разрешенные	2.2						
районы, %							
PDB ID	6R8T						

Таблица 1. Статистические характеристики дифракционного набора и кристаллографического уточнения Ile181Thr SsoIF2γ

Примечание. Данные в скобках соответствуют интервалу наиболее высокого разрешения.

г.т.s.d. < 0.65 Å [14]. Это предполагает наличие только незначительных локальных изменений в сайте узнавания β -субъединицы. Со стороны последней во всех известных структурах в узнавании γ -субъединицы участвует α -спираль [12–14]. В HsaIF2 β участок 171–189 аминокислотной последовательности, соответствующий спирали α 1 в структуре факторов из архей [15], скорее всего также имеет спиральную конформацию.

Тогда можем предположить, что миссенс-мутация будет иметь одинаковое влияние на целостность гетеротримера во всех e/aIF2. В настоящее время проверить это предположение возможно только для архей, так как только для них известны пространственные структуры IF2 или его субъединицы. Для исследования выбрали SsoIF2 γ с мутацией Ile181Thr, которая является аналогом мутации Ile222Thr в HsaIF2 γ . Полученная в работе структура мутантной формы Ile181Thr SsoIF2 γ оказалась идентична структуре белка SsoIF2 γ дикого типа (4rjl) [16]. Встраивание полученной структуры в структуру $\alpha\beta\gamma$ -гетеротримера [13] не выявило стерических или других препятствий для связывания β - и γ -субъединиц.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение Ile181Thr SsoIF2 γ . Суперпродукцию и очистку мутантной формы Ile181Thr SsoIF2 γ проводили так же, как и белка SsoIF2 γ дикого типа [17]. Непосредственно перед кристаллизацией белок Ile181Thr SsoIF2 γ смешивали с нуклеотидом GDPCP и проводили эксперименты по кристаллизации в условиях, описанных в [18] для мутантной формы Sso aIF2 γ (Δ 37–47) с GDPCP.

Определение структуры мутантного белка. Дифракционные данные собраны в Институте белка РАН (Пущино, Россия) на генераторе с вращаюшимся анодом (Bruker AXS MICROSTAR) с CCDдетектором (Bruker PLATINUM 135). Данные обрабатывали с помощью программного комплекса PROTEUM^{plus} (Bruker AXS). Стартовые фазы получены методом молекулярного замещения в программе Phaser [19], принадлежащей комплексу кристаллографических программ ССР4 [20]. В качестве стартовой модели использовали структуру белка SsoIF2ү дикого типа высокого разрешения в комплексе с GDPCP (PDB ID 4ril) [16]. Полученную структуру уточняли при разрешении 2.1 Å с использованием программного комплекса PHENIX [21]. Ручную правку и модификацию модели осуществляли с помощью программного комплекса Coot [22]. Статистика сбора данных и кристаллографического уточнения представлена в табл. 1. Координаты и структурные факторы помещены в банк белковых данных.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящее время структура $\beta\gamma$ -комплекса IF2 известна для двух архей: *S. solfataricus* [13, 14] и *P. furiosus* [12], что позволяет надежно выделить область межмолекулярного взаимодействия $\beta\gamma$. Фрагменты аминокислотных последовательностей a/eIF2 γ и a/eIF2 β , ответственные за формирование межмолекулярного взаимодействия $\beta\gamma$, представлены на рис. 1. Список доступных структур субъединиц aIF2 с литературными ссылками и PDB-кодами для каждой структуры приведены в табл. 2. Для исследования влияния миссенс-мутации в aIF2 γ на сродство β - и γ -субъединиц в архейном IF2 выбрали структуру SsoIF2 γ прежде всего потому, что гетеротример SsoIF2 определен

(a)	Ssoγ Pfuγ Mjaγ Pabγ Scev	¹¹ NIGVVGHVDH <u>GKTTLVQAIT³⁰¹¹²DGAILVVAA</u> NEPFP <u>OPOTR EHFVALGIIG</u> VKNLIIVONK ¹⁵ ¹³ NIGMVGHVDH <u>GKTTLTKALT³²¹⁰⁹DGAILVIAA</u> NEPCPRP <u>OTR EHLMALGIIG</u> QKNIIIAQNK ¹⁴ ³⁹ NIGMVGHVDH GKTSLTKALT ^{5¹³⁵DGAILVIAA NEPCPQPQTK EHLMALEILG IDKIIIVQNK¹⁷ ¹²NIGMVGHVDH GKTTLTKALT³¹¹⁰⁹DGAILVIAA NEPCPRPQTR EHLMALGIIG QKNIIIAQNK¹⁴ ¹²NIGTIGHVGH GKSTVVBAIS¹²¹ ²¹²DAALLLIAG NESCPOPOTS EHLAALEIMK LKHVIILONK²⁵}
	Hsaγ	43 NIGTIGHVAH GKSTVVKAIS 62 153 DAALLLIAG NESCPOPOTS EHLAAIEIMK LKHILILONK 19
	Ssoγ Pfuγ Mjaγ Pabγ Sceγ Hsaγ	⁵¹ VDVVSKEEAL SOYROIKOFT KGTWAENVPI IPVSALHKIN IDSLIECIEE YIK ²⁰³ ⁴⁰ IB) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
(б)	Ssoβ Pfuβ Mjaβ	**** ** * ***** ** ² S <u>SEKEYVEM LDRLYSKLPE²⁰</u> ³ IDYYDYTKL LEKAYQELPE ²¹ ⁷ IDYYDYKAL LKRARSQIPD ²⁵

Рис. 1. Сравнение аминокислотных последовательностей фрагментов aIF2 и eIF2 (табл. 2), ответственных за формирование области межмолекулярного взаимодействия βγ. Остатки, взаимодействующие в межмолекулярной области β- и γ-субъединиц SsoIF2, помечены звездочками; а – сравнение фрагмента последовательностей IF2γ архейных и эукариотичесих белков; б – сравнение аминокислотных последовательностей участка β-субъединицы архейных и эукариотических белков, ответственного за связывание γ-субъединицы; на сером фоне показаны идентичные остатки, на черном – остатки, кардинально различающиеся в архейных и эукариотических последовательностях.

с более высоким разрешением (2.15 Å), чем гетеродимер PfuIF2 (2.8 Å). Кроме того, в кристалле гетеродимера PfuIF2 N-конец β -субъединицы имеет плотный контакт с доменом II γ -субъединицы, что, по-видимому, искажает его спиральную конформацию, которая сохраняется в SsoIF2 γ .

Sceβ

Hsa ß

¹²⁶EVGLPYSEL LSRFFNILRT¹⁴⁴

¹⁷¹ERDYTYEEL LNRVFNIMRE¹⁸⁹

Кристаллическая структура мутантной формы Ile181Thr SsoIF2 γ в комплексе с GDPCP (аналогом ГТФ) определена при разрешении 2.1 Å. Наложение этой структуры на структуру аналогичного комплекса белка дикого типа [16] показывает их полную идентичность (средняя квадратичная ошибка равна 0.184 Å для всех С_{α}-атомов). Фрагмент структуры, ответственный за контакт с β субъединицей, показан на рис. 2. В месте точечной мутации боковая цепь треонина повторяет валиновую часть Ile181, положения атомов OG1 и CG1 совпадают в пределах ошибки измерения. В мутантной форме атом OG1 связан с двумя молекулами воды (S107 и S177), в структуре дикого типа вода вблизи CG1 отсутствует. Таким образом, единственное следствие миссенс-мутации в SsoIF2γ — появление полярного остатка на поверхности при полном сохранении конформации белка.

Остаток в положении 181 включен в область межмолекулярного взаимодействия $\beta\gamma$ и может оказывать влияние на сродство комплекса. Замена γ -субъединицы дикого типа в структурах SsoIF2 $\alpha\beta\gamma$ и PfuIF2 $\beta\gamma$ на мутантную форму Ile181Thr SsoIF2 γ показывает, что место мутации в области межмолекулярного взаимодействия $\beta\gamma$ как SsoIF2, так и PfuIF2 остается доступным растворителю. Обе молекулы воды, входящие в бли-

Организм	Обозначение	Объект	РDB-код	Разрешение, Å	Литература
S. solfataricus	Sso	SsoIF2γ	4rjl	1.64	[16]
		SsoIF2αβγ	3cw2	2.80	[14]
		$SsoIF2\alpha\beta\gamma_{incomp}$	2qn6	2.15	[13]
P. furiosus	Pfu	PfuIF2(βγ)	2d74	2.80	[12]
P. abyssi	Pab	PabIF2γ	1kk3	1.90	[9]
M. jannaschii	Mja	MjaIF2γ	1s0u	2.40	[10]

Таблица 2. Опубликованные структуры субъединиц aIF2

КРИСТАЛЛОГРАФИЯ том 66 № 5 2021

Рис. 2. Наложение участков (Asn143-Lys203) структур SsoIF2 γ дикого типа и мутантной формы Ile181Thr SsoIF2 γ , определяющих связывание β -субъединицы: а – вторичная структура и аминокислотные остатки SsoIF2 γ дикого типа показаны черным, аминокислотные остатки мутантной формы – белым. N-концевая α -спираль (Ser2-Pro19) SsoIF2 β , участвующая в формировании $\beta\gamma$ -комплекса, показана серым; δ – положения атомов CG1 в изолейцине белка дикого типа и OG1 в треонине мутантной формы совпадают в пределах ошибки измерения (0.26 Å). В мутантной форме остаток Thr181 связан с двумя молекулами воды.

жайшее окружение Thr181 в свободной мутантной форме SsoIF2 γ , сохраняют свое положение при образовании $\beta\gamma$ -гетеродимера, что позволяет этому остатку образовать все возможные для него водородные связи. Таким образом, анализ структурных данных показывает, что миссенс-мутация в SsoIF2 не создает стерических или каких-либо других ограничений, мешающих связыванию субъединиц. Это подтверждают проведенные биохимические эксперименты по связыванию мутантной формы Ile181Thr SsoIF2 γ c SsoIF2 β дикого типа (рис. 3). Обе субъединицы по-прежнему связываются друг с другом со сродством в соотношении 1 : 1.

Сравнение аминокислотных последовательностей архейных и эукариотических факторов инициации трансляции 2 (рис. 1) показывает, что

Рис. 3. Профиль элюции комплекса SsoIF2 $\beta\gamma$ и его компонентов, полученный с использованием гельхроматографии и колонки Superdex 75 10/30. Тонкая черная пунктирная линия — SsoIF2 γ дикого типа, тонкая серая пунктирная линия — Ile181Thr SsoIF2 γ , черная пунктирная линия — SsoIF2 β , черная сплошная линия — SsoIF2 $\gamma\beta$.

некоторые остатки области межмолекулярного взаимодействия $\beta\gamma$, сохраняющие идентичность в археях, кардинально меняются в случае эукариот. Это остатки в позициях 167, 177, 187, 189, 194 и 197 (номенклатура SsoIF2 γ). Возможно, именно замены в каких-то из этих положений при наличии миссенс-мутации влияют на сродство β - и γ -субъединиц в эукариотических IF2. Исследование влияния замен в этих положениях на сродство Ile181Thr SsoIF2 γ и SsoIF2 β SsoIF2 является целью дальнейшей работы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-04-01331-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Algire M.A., Maag D., Lorsch J.R. // Mol. Cell. 2005. V. 20. P. 251.
- https://doi.org/10.1016/j.molcel.2005.09.008
- Kap L.D., Lorsch J.R. // Annu. Rev. Biochem. 2004. V. 73. P. 657. https://doi.org/10.1146/annurev.biochem.73.030403.080419
- Jackson R.J., Hellen C.U., Pestova T.V. // Nat. Rev. Mol. Cell. Biol. 2010. V. 11. P. 113. https://doi.org/10.1038/nrm2838
- 4. Pedulla N., Palermo R., Hasenohrl D. et al. // Nucl.c Acids Res. 2005. V. 33. P. 1804. https://doi.org/10.1093/nar/gki321
- Yatime L., Schmitt E., Blanquet S., Mechulam Y. // J. Biol. Chem. 2004. V. 279. P. 15984. https://doi.org/10.1074/jbc.M311561200

КРИСТАЛЛОГРАФИЯ том 66 № 5 2021

- Laurino J.P., Thompson G.M., Pacheco E., Castilho B.A. // Mol. Cell. Biol. 1999. V. 19. P. 173. https://doi.org/10.1128/MCB.19.1.173
- Borck G., Shin B-S., Stiller B. et al. // Mol. Cell. 2012. V. 48. P. 641. https://doi.org/10.1016/j.molcel.2012.09.005
- Dmitriev S.E., Stolboushkina E.A., Terenin I.M. et al. // J. Mol. Biol. 2011. V. 413. P. 106. https://doi.org/10.1016/j.jmb.2011.08.026
- 9. Schmitt E., Blanquet S., Mechulam Y. // EMBO J. 2002. V. 21. P. 1821. https://doi.org/10.1093/emboj/21.7.1821
- Roll-Mecak A., Alone P., Cao C. et al. // J. Biol. Chem. 2004. V. 279. P. 10634. https://doi.org/10.1074/jbc.M310418200
- Yatime L., Mechulam Y., Blanquet S., Schmitt E. // Structure. 2006. V. 14. P. 119. https://doi.org/10.1016/j.str.2005.09.020
- Sokabe M., Yao M., Sakai N., Toya S., Tanaka I. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 13016. https://doi.org/10.1073/pnas.0604165103
- Yatime L., Mechulam Y., Blanquet S., Schmit E. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 18445. https://doi.org/10.1073/pnas.0706784104
- Stolboushkina E., Nikonov S., Nikulin A. et al. // J. Mol. Biol. 2008. V. 382. P. 680. https://doi.org/10.1016/j.jmb.2008.07.039

- Thompson G.M., Pacheco E., Melo E.O., Castilho B.A. // Biochem. J. 2000. V. 347. P. 703. https://doi.org/10.1042/bj3470703
- Nikonov O., Kravchenko O., Arkhipova V. et al. // Biochimie. 2016. V. 121. P. 197. https://doi.org/10.1016/j.biochi.2015.11.029
- Nikonov O., Stolboushkina E., Nikulin A. et al. // J. Mol. Biol. 2007. V. 373. P. 328. https://doi.org/10.1016/j.jmb.2007.07.048
- Nikonov O., Stolboushkina E., Arkhipova V. et al. // Acta Cryst. D. 2014. V. 70. P. 658. https://doi.org/10.1107/S1399004713032240
- Storoni L.C., McCoy A.J., Read R.J. // Acta Cryst. D. 2004. V. 60. P. 432. https://doi.org/10.1107/S0907444903028956
- Collaborative Computational Project. Number 4 // Acta Cryst. D. 1994. V. 50. P. 760. https://doi.org/10.1107/S0907444994003112
- Adams P.D., Grosse-Kunstleve R.W., Hung L.W. et al. // Acta Cryst. D. 2002. V. 58. P. 1948. https://doi.org/10.1107/S0907444902016657
- 22. Emsley P., Lohkamp B., Scott W., Cowtan K. // Acta Cryst. D. 2010. V. 66. P. 486. https://doi.org/10.1107/S0907444910007493