РОСТ КРИСТАЛЛОВ

УДК 548.55 + 546.161

ИССЛЕДОВАНИЕ ОСЕВОГО РАСПРЕДЕЛЕНИЯ КОМПОНЕНТОВ КРИСТАЛЛОВ ТВЕРДОГО РАСТВОРА $\mathbf{Sr}_{1-x}\mathbf{Tb}_x\mathbf{F}_{2+x}$ ПРИ ЕГО НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ ИЗ РАСПЛАВА

© 2021 г. Н. И. Сорокин^{1,*}, Д. Н. Каримов¹, Н. А. Ивановская¹

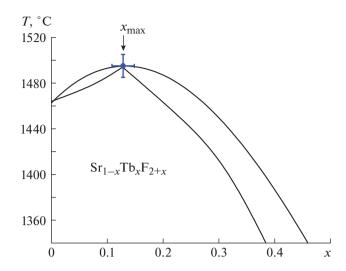
¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия *E-mail: nsorokin1@yandex.ru

Поступила в редакцию 30.06.2020 г. После доработки 30.06.2020 г. Принята к публикации 21.07.2020 г.

Кристаллы флюоритового твердого раствора $\mathrm{Sr}_{1-x}\mathrm{Tb}_x\mathrm{F}_{2+x}$ выращены методом Бриджмена из расплавов исходного состава $x_0=0.05,\,0.12$ и 0.15. Методами денситометрии и рентгенофазового анализа изучено распределение x(L) компонентов по длине кристаллов. В рамках модели Пфанна для случая конвективного механизма массопереноса в расплаве рассчитаны эффективные коэффициенты распределения примеси k_{eff} в этих кристаллах. Уточнено положение состава температурного максимума на кривых плавкости твердого раствора $\mathrm{Sr}_{1-x}\mathrm{Tb}_x\mathrm{F}_{2+x}$. Показана применимость разработанной методики для неразрушающего контроля состава кристаллов твердых растворов, имеющих инкогруэнтный характер плавления.

DOI: 10.31857/S0023476121060394

ВВЕДЕНИЕ


В настоящее время поиск новых функциональных фторидных материалов связан с переходом к многокомпонентным системам и синтезом кристаллов сложного химического состава. Варьируя состав многокомпонентных материалов, можно изменять их дефектную структуру и физические свойства. Однако усложнение состава кристаллов часто приводит к инконгруэнтному характеру их плавления, поэтому выращенные из многокомпонентных расплавов фторидные кристаллы, как правило, характеризуются неоднородным распределением компонентов, как осевым, так и радиальным [1-6]. Однородное распределение компонентов при выращивании многокомпонентных кристаллов наблюдается только в особых случаях – для составов, отвечающих температурным экстремумам на кривых плавкости [7-11].

Необходимым признаком появления максимумов на кривых плавкости является образование гетеровалентных твердых растворов (**TP**) [12]. В большинстве бинарных систем MF_2 — RF_3 (M — щелочноземельные элементы Ca, Sr, Ba, Cd, Pb; R — редкоземельные элементы La—Lu, Y, Sc) образуются широкие (вплоть до $x \approx 0.5$) области гетеровалентных $TP M_{1-x}R_xF_{2+x}$ со структурой типа флюорита [10], которые можно получать в виде объемных кристаллов из расплава методами на-

правленной кристаллизации в вакууме или с использованием фторирующей атмосферы.

С ростом содержания примесного компонента дефектная структура и физические свойства кристаллов $M_{1-x}R_xF_{2+x}$ существенно изменяются. Например, ионная проводимость ТР $M_{1-x}R_xF_{2+x}$ увеличивается с ростом x на 8 порядков [13, 14]. Кристаллы концентрированных ТР $M_{1-x}R_xF_{2+x}$ (x > 1> 0.01) обладают ценным сочетанием физических и химических характеристик и являются уникальными модельными объектами (в методическом, теоретическом и практическом плане) для изучения гетеровалентного изоморфизма, условий образования ТР, взаимодействия структурных дефектов и их влияния на термическую стабильность и структурно-чувствительные физические свойства, связанные с сильным разупорядочением анионной (фторной) подрешетки [13, 14]. В практическом плане кристаллы $M_{1-x}R_xF_{2+x}$ являются перспективными материалами для ионики твердого тела (твердые электролиты, сенсоры, химические источники тока), конструкционной оптики и фотоники (пассивные и активные оптические элементы, сцинтилляторы, лазерные среды) [14-18].

Для исследований используют образцы, полученные из различных частей выращенных из расплава кристаллов $M_{1-x}R_xF_{2+x}$, состав которых может значительно отличаться от состава исходной

Рис. 1. Участок фазовой диаграммы системы SrF_2 — TbF_3 в области существования флюоритового твердого раствора $Sr_{1-x}Tb_xF_{2+x}$ (по данным [31]).

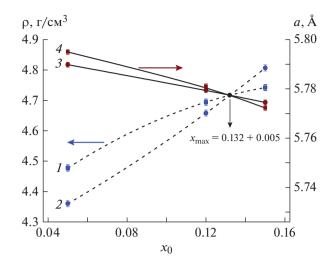
шихты. Физические свойства (например, ионная проводимость, твердость, теплопроводность) ТР $M_{1-x}R_x F_{2+x}$ в сильной степени определяются их химическим составом. С учетом сложностей прямого контроля химического состава фторидных материалов особенно важными являются исследование реального, зависящего от ростовых условий, распределения компонентов в кристаллических заготовках $M_{1-x}R_x F_{2+x}$ и сопоставление его с теоретическим распределением.

Большинство работ по изучению распределения редкоземельного компонента проводилось на слаболегированных (x < 0.01) кристаллах $M_{1-x}R_xF_{2+x}$ [1, 19–21]. Работ по экспериментальному исследованию распределения редкоземельного компонента в сильно нестехиометрических кристаллах $M_{1-x}R_xF_{2+x}$ (x > 0.01) немного. Такие исследования проводились для монокристаллов TP $Ca_{1-x}Gd_xF_{2+x}$ (x = 0.01-0.1) [22], $Ca_{1-x}Ho_xF_{2+x}$ (x = 0.1) [23] и $Sr_{l-x}Gd_xF_{2+x}$ (x = 0.05-0.15) [20, 24] с использованием трудоемких, технически сложных, требующих специального оборудования методов локального рентгеноспектрального микроанализа [23, 24], рентгенофлюоресцентного анализа [22], масс-спектрометрии высокого разрешения [25], радиоактивных индикаторов [20].

В настоящее время основным методом уточнения химического состава ТР $M_{1-x}R_xF_{2+x}$ является рентгенофазовый анализ (РФА), позволяющий определять параметры кристаллической решетки ТР a и его состав x по известной аналитической зависимости вида a=f(x). Так, в [26] сравнением параметров решетки различных частей кристаллов флюоритовой фазы $Pb_{1-x}Cd_xF_2$ был уточнен ее конгруэнтно плавящийся состав. Однако для

многих флюоритовых фаз $M_{1-x}R_xF_{2+x}$ наблюдается слабая зависимость параметров решетки от состава (например, для TP $Sr_{1-x}Nd_xF_{2+x}$ эта зависимость вообще отсутствует, a(x) = const [27]), поэтому рентгенографический метод неприменим. Кроме того, он является разрушающим.

Альтернативным, технически несложным методом неразрушающего контроля состава является денситометрия. В [28] сравнением плотностей различных частей кристаллов, выращенных из расплава методом Бриджмена, были уточнены конгруэнтные составы для кристаллов R_{1-y} Sr_yF_{3-y} (R = La, Ce, Pr, Nd) со структурой тисонита.


Практика выращивания кристаллов TP $M_{1-x}R_xF_{2+x}$ требует изучения особенностей и закономерностей реального макрораспределения компонентов в процессе их направленной кристаллизации. В настоящей работе объектом исследований выбраны кристаллы $Sr_{1-x}Tb_xF_{2+x}$, которые являются среднетемпературными суперионными проводниками и перспективными магнитооптическими материалами [29, 30].

Цель работы заключается в исследовании распределения компонентов по длине кристаллов гетеровалентных $TP Sr_{l-x} Tb_x F_{2+x}$, полученных направленной кристаллизацией расплава разного исходного состава, с использованием методов денситометрии и $P\Phi A$.

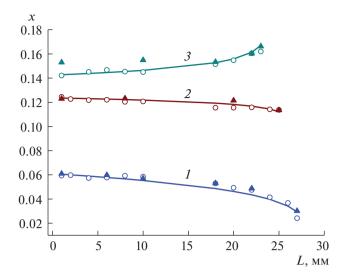
ЭКСПЕРИМЕНТ

Выращивание кристаллов. Фазовая диаграмма системы SrF_2 — TbF_3 была изучена в [31]. Область гомогенности флюоритового $TP Sr_{1-x}Tb_xF_{2+x}$ простирается до $x=0.43\pm0.02$ (рис. 1). Конгруэнтный состав раствора, соответствующий температурному максимуму на кривой плавкости, определяется при $x_{\max}=0.13\pm0.02$ по данным дифференциально-термического анализа (ДТА). Для ростового эксперимента выбраны три исходных состава шихты с содержанием $TbF_3 x_0 = 0.05$, 0.12 и 0.15, которые удовлетворяют условиям $x_0 < x_{\max}, x_0 \approx x_{\max}$ и $x_0 > x_{\max}$ соответственно.

Кристаллы $Sr_{l-x}Tb_xF_{2+x}$ выращены методом Бриджмена в графитовом тигле. В качестве исходных компонентов использовали коммерческие порошки SrF_2 и TbF_3 (99.99%, LANHIT). Расплав компонентов фторировали и гомогенизировали в течение 1 ч при 1500° С. Фторирующую атмосферу создавали продуктами пиролиза политетрафторэтилена. Направленную кристаллизацию осуществляли со скоростью 3×10^{-4} см/с (скорость опускания тигля). Температурный градиент в зоне роста составлял ~ 70 град/см. Потери на испарение не превышали 1 мас. %. Были получены кристаллические були $Sr_{l-x}Tb_xF_{2+x}$ диамет-

Рис. 2. Зависимости плотности и параметра решетки для нижней (1, 3) и верхней (2, 4) частей кристаллов $S_{1-x}Tb_xF_{2+x}$ от исходного состава расплава x_0 .

ром 6 мм и длиной \sim 30 мм, которые разрезали для дальнейших экспериментов перпендикулярно оси роста на диски толщиной \sim 2 мм.


Измерение плотности $\rho(x)$ образцов выполняли гидростатическим методом в дистиллированной воде при комнатной температуре. Погрешность измерения плотности составила $\Delta \rho = \pm 10^{-2} \ r/cm^3$.

 $P\Phi A$ проводили на порошковом рентгеновском дифрактометре Rigaku MiniFlex 600 (излучение CuK_{α}) в диапазоне углов дифракции $2\theta = 10^{\circ} - 120^{\circ}$. Параметры элементарных ячеек определяли методом полнопрофильного анализа Ритвельда в рамках пр. гр. $Fm\overline{3}$ m с использованием программного обеспечения X'Pert HighScore Plus (PANanalytical, Нидерланды).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Точность метода ДТА часто бывает недостаточной для точного определения состава максимума на кривых плавкости флюоритовых ТР $M_{1-x}R_x\mathrm{F}_{2+x}$. Это осложняется и наблюдаемым пологим (тангенциальным) характером максимумов на кривых плавкости флюоритовых ТР $M_{1-x}R_x\mathrm{F}_{2+x}$ [28]. В [26, 28, 32] для определения конгруэнтно плавящегося состава изо- и гетеровалентных ТР в таких случаях предложено использовать метод направленной кристаллизации расплава.

На рис. 2 приведены концентрационные зависимости $\rho(x_0)$ и $a(x_0)$ для верхней и нижней частей выращенных кристаллических буль $\mathrm{Sr}_{1-x}\mathrm{Tb}_x\mathrm{F}_{2+x}$. Из рисунка видно, что конгруэнтный состав для

Рис. 3. Распределение компонентов по длине кристаллов $Sr_{1-x}Tb_xF_{2+x}$ для состава исходного расплава: $x_0 = 0.05$ (I), 0.12 (I), 0.15 (I

флюоритового TP в системе SrF_2 — TbF_3 (точка пересечения кривых) находится при $x_{max}=0.132\pm0.005$ и хорошо согласуется со значением, полученным для него из данных ДТА этой системы (рис. 1).

Осевое распределение компонентов в кристаллах $Sr_{1-x}Tb_xF_{2+x}$ определяли двумя способами. В первом состав TP x в каждом срезе кристалла определяли по аналитической концентрационной зависимости плотности [33]:

$$\rho(x) = 4.28 + 3.539x \tag{1}$$

с погрешностью определения состава $\Delta x = 0.003$. Во втором способе использовали аналитическую зависимость параметра решетки TP от состава [34]:

$$a(x) = 5.800 - 0.1669x.$$
 (2)

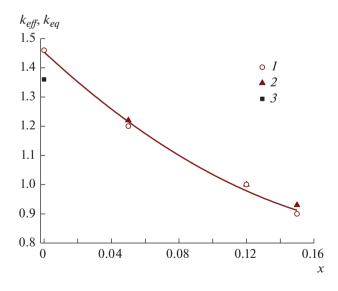
Погрешность определения $\Delta x = 0.006$.

На рис. З показано распределение компонентов x(L) по длине кристаллов $\mathrm{Sr}_{1-x}\mathrm{Tb}_x\mathrm{F}_{2+x}$, выращенных из расплавов с исходным содержанием $x_0=0.05,\,0.12$ и 0.15. Данные для x(L), полученные из измерений плотности и параметра решетки, хорошо совпадают. Зависимость x(L) имеет убывающий при $x_0=0.05,\,$ слабо убывающий при $x_0=0.15$.

Экспериментальные распределения x(L) обрабатывали в рамках модели Пфанна для случая полного выравнивания концентрации примеси в расплаве и отсутствия выравнивания в твердой

Таблица 1. Коэффициенты распределения примеси в кристаллах $Sr_{1-x}Tb_xF_{2+x}$ при направленной кристаллизации из расплава

	Коэффициент распределения	
Исходный состав расплава	$k_{\it eff},$ направленная кристаллизация	k_{eq} , метод криоскопии
$x_0 \rightarrow 0$	1.36 ± 0.16 * [5]	1.46 ± 0.11 [3]
$x_0 = 0.05$	1.22 ± 0.03	1.2 [4]
$x_0 = 0.12$	1.00 ± 0.03	1 [4]
$x_0 = 0.15$	0.93 ± 0.03	0.9 [4]


Примечание. Метод радионуклидов, концентрация $x_0 = 0.005$, скорость кристаллизации 2.5—25 мм/ч.

фазе [35]. Распределение примесного компонента в кристалле имеет вид

$$x(g) = k_{eff} x_0 (1 - g)^{k_{eff} - 1},$$
 (3)

где k_{eff} — эффективный коэффициент распределения примеси (предполагается $k_{eff}(g) = const$), x_0 — исходная концентрация примеси в расплаве, g — объемная часть закристаллизовавшегося расплава. Факторами, влияющими на эффективный коэффициент распределения примеси k_{eff} , являются скорость кристаллизации, степень перемешивания расплава, неустойчивость фронта кристаллизации.

В табл. 1 приведены значения коэффициента распределения примеси, рассчитанные в соответ-

Рис. 4. Концентрационные зависимости эффективного k_{eff} и равновесного k_{eq} коэффициентов распределения $\mathrm{TbF_3}$ в кристаллах $\mathrm{Sr_{l-x}Tb_xF_{2+x}}$: $l-k_{eq}$ ($x_0\to 0$ [3], $0.05 \le x_0 \le 0.15$ [4]), $2-k_{eff}$ ($0.05 \le x_0 \le 0.15$, наши данные), $3-k_{eff}$ ($x_0\to 0$ [5]), линия — аппроксимация точек для k_{eq} .

ствии с уравнением (3) при направленной кристаллизации расплава. Здесь же приведены данные по коэффициенту распределения примеси k_0 при бесконечном разбавлении для $TP Sr_{l-x}Tb_xF_{2+x}$, полученные методом направленной кристаллизации расплава [5] и традиционным методом криоскопии [3], а также оценочные значения эффективных коэффициентов $k_{\it eff}$ для ${\rm Sr_{l-x}Tb_xF_{2+x}}$ (при $x_0 = 0.05$, 0.12 и 0.15), рассчитанные с помощью модифицированного метода криоскопии [4] и данных фазовой диаграммы системы SrF₂-TbF₃. Концентрационные зависимости эффективного $k_{\it eff}$ (направленная кристаллизация расплава) и равновесного k_{eq} (расчет из фазовой диаграммы) коэффициентов распределения ТbF₃ показаны на рис. 4. Можно видеть, что значения коэффициентов k_{eff} и k_{eq} для кристаллов $\mathrm{Sr}_{1-x}\mathrm{Tb}_x\mathrm{F}_{2+x}$ при $0.05 \le$ $\leq x_0 \leq 0.15$ хорошо согласуются между собой, что указывает на близость условий кристаллизации к равновесным.

Следует учесть, что скорость установления равновесия в расплаве намного больше, чем в кристалле. Расплав с исходным составом примесного компонента x_0 находится в равновесии с твердой фазой на фронте кристаллизации. При $k_{eff} > 1$ растворимое вещество повышает температуру кристаллизации ТР, а при $k_{eff} \le 1$ наоборот. Для $x_0 = 0.05$ коэффициент распределения примеси равен k_{eff} = 1.22, т.е. происходит инконгруэнтный рост, приводящий к обеднению примесным компонентом растущего кристалла. Для $x_0 = 0.12$ коэффициент $k_{\it eff} \approx 1$, происходит конгруэнтная кристаллизация TP, изменений состава по длине практически не наблюдается. При $x_0 = 0.15$ коэффициент распределения $k_{eff} = 0.93 - происходит$ инконгруэнтный рост и обогащение примесным компонентом растущего кристалла (рис. 3).

Состав по длине выращенных кристаллов (от верхней до нижней части) изменяется на величину $\Delta x = 0.035$, 0.01 и 0.02 для $x_0 = 0.05$, 0.12 и 0.15соответственно. Чем больше значение $k_{\it eff}$ будет отклоняться от 1 для твердых растворов $M_{1-x}R_xF_{2+x}$ с инконгруэнтным плавлением ($k_{eff} \neq$ ≠ 1), тем более значительные изменения содержания примесного компонента будут наблюдаться по длине кристаллов. В технике выращивания $TP \ M_{1-x}R_xF_{2+x}$ именно условия направленной кристаллизации (скорость выращивания, температурный градиент в зоне роста кристаллов и др.) определяют параметры процесса сегрегации компонентов и их осевое распределение и, наоборот, по виду кривых распределения компонентов можно судить о характеристических параметрах ростового процесса.

Найдя модифицированным методом криоскопии [2–4, 36] из данных фазовых диаграмм си-

стем MF_2 — RF_3 значения коэффициентов k_{eq} для TP $M_{1-x}R_xF_{2+x}$ и предполагая $k_{eff}=k_{eq}$, можно оценить по уравнению Пфанна (3) положение участков кристаллов по длине, в которых химический состав твердой фазы практически совпадает с составом исходного расплава ($x=x_0$) или имеет необходимый заданный химический состав.

ЗАКЛЮЧЕНИЕ

Экспериментально получено распределение компонентов по длине кристаллов $Sr_{1-x}Tb_xF_{2+x}$ с исходным составом расплава $x_0=0.05,\,0.12$ и 0.15 в результате их направленной кристаллизации, установлены участки монокристаллов, в которых состав твердой фазы практически совпадает с составом исходного расплава. Уточнено положение состава температурного максимума на кривой плавкости твердого раствора $Sr_{1-x}Tb_xF_{2+x}$.

Показано, что денситометрические измерения применимы в качестве экспресс-метода для получения распределения компонентов в монокристаллах TP фторидов щелочно- и редкоземельных элементов. Этот метод не требует разрушения монокристаллических образцов, позволяет сократить время анализа и удобен при исследовании большого количества образцов. Он позволяет проводить отбор частей кристаллического слитка с заданной концентрацией компонентов для проведения фундаментальных исследований гетеровалентного характера изоморфных замещений, дефектной структуры и свойств флюоритовых фаз $M_{1-x}R_xF_{2+x}$.

Авторы выражают благодарность Т.М. Туркиной за помощь в проведении экспериментов.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ангервакс А.Е., Щеулин А.С., Рыскин А.И. и др.* // Неорган. материалы. 2014. Т. 50. № 7. С. 789.
- 2. *Иванов С.П., Бучинская И.И., Федоров П.П.* // Неорган. материалы. 2000. Т. 36. № 4. С. 484.
- 3. *Федоров П.П., Туркина Т.М., Лямина О.И. и др. //* Высокочистые вещества. 1990. Т. 4. № 6. С. 67.
- 4. *Соболев Б.П., Жмурова З.И., Карелин В.В. и др. //* Рост кристаллов. М.: Наука, 1986. Т. 16. С. 58.
- 5. *Карелин В.В., Казакевич М.З., Редкин А.Ф. и др. //* Кристаллография. 1975. Т. 20. Вып. 4. С. 758.
- Bollmann W. // Cryst. Res. Technol. 1982. V. 17. № 11. P. K107.
- Каримов Д.Н., Бучинская И.И., Сорокин Н.И. и др. // Кристаллография. 2019. Т. 64. № 5. С. 818.
- 8. *Каримов Д.Н., Бучинская И.И., Сорокин Н.И. и др. //* Неорган. материалы. 2019. Т. 55. № 5. С. 534.
- 9. *Каримов Д.Н., Бучинская И.И., Иванова А.Г. и др.* // Кристаллография. 2018. Т. 63. № 6. С. 972.

- 10. *Sobolev B.P.* The Rare Earth Trifluorides. Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona, Spain, 2000–2001. 980 p.
- Федоров П.П., Бучинская И.И. // Успехи химии. 2012. Т. 81. № 1. С. 1.
- 12. *Федоров П.П., Соболев Б.П.* // Журн. неорган. химии. 1979. Т. 24. № 4. С. 1038.
- Соболев Б.П., Голубев А.М., Эрреро П. // Кристаллография. 2003. Т. 48. № 1. С. 148.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. // Photonic and Electronic Properties of Fluoride Materials / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465.
- 15. Fedorov P.P., Kuznetsov S.V., Osiko V.V. // ibid. P. 7.
- 16. Reddy M.A., Fichtner M. // ibid. P. 449.
- 17. *Сорокин Н.И.*, *Соболев Б.П.* // Кристаллография. 2007. Т. 52. № 5. С. 870.
- Multicomponent Crystals based on Heavy Metals Fluorides for Radiation Detectors / Ed. Sobolev B.P. Institut d'Estudis Catalans, Barcelona, Spain, 1994. 261 p.
- 19. *Карелин В.В.* "Физико-химические основы получения монокристаллических материалов в твердых растворах фторидов щелочноземельных и редкоземельных элеметов" Дис. ... д-ра. хим. наук. М.: МГУ, 1985.
- Delbove F., Lallemand-Chatain S. // C. R. Acad. Sci. C. 1970. V. 270. № 11. P. 964.
- 21. Nassau K. // J. Appl. Phys. 1961. V. 32. P. 1820.
- 22. *Туркина Т.М.* "Морфологическая устойчивость фронта кристаллизации твердых растворов $M_{1-x}R_x$ F_{2+x} (где M= Ca, Sr, Ba, R- P3 Θ)" Дис. ... канд. физ.-мат. наук. М.: ИК АН СССР, 1990.
- 23. *Мелешина В.А., Смирнова В.А.* // Кристаллография. 2003. Т. 48. № 6. С. 1146.
- 24. Сейранян К.Б. "Исследование диаграмм состояния систем SrF_2 -(Y,Ln) F_3 и получение монокристаллов на их основе" Дис. ... канд. хим. наук. Ереван, Госуниверситет, 1975.
- Chuchina V., Gubal A., Lyalkin Y. et al. // Rapid Commun. Mass. Spectrom. 2020. V. 34. № 11. P. e8786.
- 26. *Сорокин Н. Й.*, *Бучинская И.И.*, *Соболев Б.П.* // Журн. неорган. химии. 1992. Т. 37. № 12. С. 2653.
- 27. *Федоров П.П.*, *Соболев Б.П.* // Кристаллография. 1992. Т. 37. № 5. С. 1210.
- 28. *Кривандина Е.А., Жмурова З.И., Глушкова Т.М. и др. //* Кристаллография. 2003. Т. 48. № 5. С. 940.
- Sorokin N.I., Breiter M.W. // Solid State Ionics. 1999.
 V. 116. P. 157.
- 30. Баранов Г.Н., Бурков В.И., Быстрова А.А., Кривандина Е.А. Межвед. сб. науч. тр. "Оптические и электронные средства обработки информации". М.: МФТИ, 1991. С. 73.
- 31. *Sobolev B.P., Seiranian K.B.* // J. Solid State Chem. 1981. V. 39. № 3. P. 337.
- 32. *Кривандина Е.А., Жмурова З.И., Лямина О.И. и др. //* Кристаллография. 1996. Т. 41. № 5. С. 958.
- 33. *Сорокин Н.И., Кривандина Е.А., Жмурова З.И.* // Кристаллография. 2013. Т. 58. № 6. С. 952.
- 34. Sobolev B.P., Seiranian K.B., Garashina L.S., Fedorov P.P. // J. Solid State Chem. 1979. V. 28. P. 51.
- 35. Pfann W.G. Zone Melting. New York: Wiley, 1958. 236 p.
- Федоров П.П., Кузнецов С.В., Конюшкин В.А. // Конденсированные среды и межфазные границы. 2012. Т. 14. № 4. С. 480.