_____ НАНОМАТЕРИАЛЫ, __ КЕРАМИКА

УДК 548.02

РЕНТГЕНОДИФРАКЦИОННОЕ ИССЛЕДОВАНИЕ СТРУКТУРНЫХ ИЗМЕНЕНИЙ ВЫСОКОПРОЧНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ С ДОБАВКАМИ ОКСИДОВ ИТТЕРБИЯ И НЕОДИМА ПОСЛЕ ГИДРОТЕРМАЛЬНОЙ ОБРАБОТКИ

© 2022 г. В. П. Сиротинкин^{1,*}, Л. И. Подзорова¹, Н. А. Михайлина¹, О. И. Пенькова¹

¹Институт металлургии и материаловедения им. А.А. Байкова РАН, Москва, Россия

**E-mail: sir@imet.ac.ru* Поступила в редакцию 20.10.2020 г. После доработки 28.02.2021 г. Принята к публикации 28.02.2021 г.

Методом Ритвельда по рентгенодифракционным данным проведено структурное исследование поверхности спеченных при 1550°С двух керамических образцов стабилизированного в тетрагональной форме оксида циркония (ZrO₂) до и после гидротермальной обработки. Первый образец представлял собой оксид циркония с добавлением оксида иттербия (3 мол. %), а второй содержал и оксид иттербия (3 мол. %), и оксид неодима (0.25 мол. %). Установлено изменение фазового состава, вызванное гидротермальной обработкой. В исходном состоянии существуют две тетрагональные формы ZrO_2 (*t* и *t*). В процессе гидротермальной обработки протекают процессы растворения поверхностного слоя и кристаллизации моноклинной модификации ZrO_2 . Кристаллы ZrO_2 имеют форму пластин, вытянутых в направлении [111], с развитыми гранями {001}. Добавление оксида неодима замедляет образование моноклинной фазы.

DOI: 10.31857/S0023476122020199

ВВЕДЕНИЕ

Керамики на основе твердых растворов диоксида циркония, стабилизированного в тетрагональной форме, принадлежат классу трансформационно упрочненных материалов. За счет полиморфных превращений в ряду моноклиннаятетрагональная-кубическая модификации диоксида циркония, протекающих с увеличением объема, данные материалы обладают большой устойчивостью к хрупкому разрушению. Коэффициент трещиностойкости у них достигает 20 МПа·м^{1/2}, что гораздо выше, чем у других видов керамики [1]. В настоящее время керамика на основе твердого раствора диоксида циркония тетрагональной модификации, стабилизированного оксидом иттрия, используется при эндопротезировании суставов [2, 3] и в стоматологической ортопедии [4]. При длительном нахождении in vivo была выявлена нестабильность прочностных характеристик этой керамики, которую обусловливает изменение фазового состава. Данное явление называют эффектом низкотемпературной деградации [5-7]. Устранение подобного эффекта возможно путем смены стабилизирующего катиона и модифицирования керамики. В частности, в [8, 9] показана возможность использования иттербия для замещения циркония. Согласно рентгеноструктурным исследованиям при различных замещениях возможно образование трех форм $ZrO_2 c$ тетрагональной симметрией: *t*, *t*' и *t*", которые характеризуются одной и той же пр. гр. $P4_2/nmc$. Различия между этими формами состоят в большем или меньшем искажении идеальной кубической флюоритовой ячейки [10–12].

Целью настоящей работы было установление структуры поверхностного слоя керамики на основе твердого раствора ZrO_2 , стабилизированного в тетрагональной форме путем добавления оксидов иттербия (3 мол. % Yb_2O_3) и неодима (3 мол. % Yb_2O_3 и 0.25 мол. % Nd_2O_3), до и после гидротермальной обработки, имитирующей длительное нахождение *in vivo*.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные порошки двух составов – 97 мол. % ZrO_2 , 3 мол. % Yb_2O_3 и 96.75 мол. % ZrO_2 , 3 мол. % Yb_2O_3 , 0.25 мол. % Nd_2O_3 – получали методом гидролизного золь-гель-синтеза. Проводили одновременное осаждение гидрогелей из смеси 1 М растворов солей $ZrOCl_2$, $Yb(NO_3)_3$, $Nd(NO_3)_3$ 6 н раствором аммиака, фильтрование и промывку полученных осадков от анионных остатков и

Рис. 1. Участок дифрактограммы образца 2 (кружки) и модельные дифрактограммы: тетрагональной формы *t* (крестики), тетрагональной формы *t*' (треугольники), суммарный спектр (сплошная линия). В нижней части рисунка приведена разностная дифрактограмма.

сушку на воздухе при температуре 180°С в среде этанола. Использовали реактивы марки ЧДА. Термообработку полученных ксерогелей проводили при температуре 950°С. Заготовки для спекания формовали в виде дисков диаметром 18 мм полусухим прессованием при удельном давлении 200 МПа. Полученные заготовки спекали при температуре 1550°С в течение 4 ч в электрических печах с воздушной средой. После спекания получены образцы (в дальнейшем образцы 1 и 2), относительная плотность которых не менее 98% теоретической. Их подвергли гидротермальной обработке по методике ускоренного старения в соответствии с ISO 13356-2008: температура 134°С, давление 2 бар, выдержка 5 ч (в дальнейшем образцы 1h и 2h).

Дифрактограммы всех образцов получены в одних и тех же условиях: рентгеновский дифрактометр Ultma IV фирмы Rigaku (Япония); напряжение 40 кВ; ток 30 мА; излучение Cu K_{α} ; никелевый фильтр; высокоскоростной детектор D/tex; щели Соллера 2.5°; щель, ограничивающая расходимость падающего пучка 0.5°; скорость движения детектора 2 град/мин; шаг 0.01°. При проведении рентгеноструктурного анализа методом Ритвельда применяли программные пакеты Роw-

derCell [13] и FullProf [14]. Уточняемыми параметрами были: нулевая точка по углу рассеяния, фоновая составляющая (полином пятой степени), шкальные факторы, профильные характеристики дифракционных пиков, параметры элементарных ячеек, координаты и изотропные тепловые факторы атомов. Поскольку введенные добавки были незначительны, расчеты проводили в предположении полного заселения соответствующих кристаллографических позиций атомами циркония.

Контроль элементного состава образцов 1 и 2 с использованием рентгеноспектрального микроанализатора Orbis фирмы EDAX (США) показал хорошее совпадение расчетных и экспериментальных значений. Расчетное содержание металлов в образце 1 составляет: Zr 94.0 ат. %, Yb 6.0 ат. %; в образце 2: Zr 93.5 ат. %, Yb 6.0 ат. %, Nd 0.5%. Определенные в отсутствие эталона значения составили для образца 1: Zr 94.0 ат. %, Hf 1 ат. %, Yb 5.0 ат. %; для образца 2: Zr 93.0 ат. %, Hf 1 ат. %, Yb 5.5 ат. %, Nd 0.5 ат. %. Микроскопическое исследование поверхности образцов 1h и 2h проведено в растровом электронном микроскопе MIRA3 фирмы Tescan (Чехия).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исходные кристаллографические данные для тетрагональных форм t и t' были взяты из [11]. Первоначально для образцов 1 и 2 было сделано предположение о присутствии только одной формы *t*, что оказалось неверным. Присутствие двух форм t и t' наглядно демонстрирует рис. 1, на котором показаны соответствующие дифракционные пики 002 и 110. После предварительного анализа с использованием программы PowderCell проведено окончательное уточнение по программе FullProf. Графические результаты уточнения для образцов 1 и 2 показаны на рис. 2, а основные численные результаты приведены в табл. 1. Из таблицы следует, что фазовые составы образцов 1 и 2 близки: содержание формы t составляет около 60 об. %, остальное – форма t'. Форма t характеризуется большим, чем форма t', искажением исходной кубической ячейки флюорита, которое оценивается отношением c/a_f . В табл. 2 приведены уточненные значения координат и тепловых факторов атомов тетрагональных форм t и t', присутствующих в образцах 1 и 2. Атомы Zr и O характеризуются гораздо более высокими значениями тепловых факторов в случае форм *t* по сравнению формами t, что свидетельствует о разупорядочении атомов при заполнении соответствующих позиций (наличии вакансий).

Гидротермальная обработка керамических образцов, содержащих тетрагональную форму ZrO₂, приводит к появлению моноклинной модификации [8, 9, 15]. Перед проведением уточнения ме-

Рис. 2. Графические результаты уточнения структуры поверхности образцов 1 (а) и 2 (б) методом Ритвельда.

тодом Ритвельда эта фаза была дополнительно введена в рассматриваемую модель. Кристаллографические данные были взяты из [16]. Графические результаты уточнения образцов 1h и 2h показаны на рис. 3, а основные численные результаты приведены в табл. 1. Присутствующая в образцах 1h и 2h моноклинная модификация $ZrO_2(m)$ имеет ряд особенностей. Для их определения дополнительно получены порошкообразный образец ZrO_2 без добавления Yb₂O₃ (макси-

КРИСТАЛЛОГРАФИЯ том 67 № 2 2022

СИРОТИНКИН и др.

Образец	1	2	1h	2h
$R_{wp}, \%$	7.23	7.42	7.31	7.60
$V_t, \%$	58	59	18	28
<i>R</i> _B , %	3.20	3.42	2.62	2.79
<i>a</i> , <i>c</i> , Å	3.60420(3), 5.17482(5)	3.60394(2), 5.17688(5)	3.60379(7), 5.1711(1)	3.60289(4), 5.17489(8)
c/a_f	1.015	1.016	1.015	1.016
$V_{t'}$, %	42	41	32	38
<i>R</i> _B , %	4.67	3.41	2.94	2.71
<i>a</i> , <i>c</i> , Å	3.6149(1), 5.1549(3)	3.61972(7), 5.1497(1)	3.6133(1), 5.1748(3)	3.6210(1), 5.1605(2)
c/a_f	1.008	1.005	1.013	1.009
$V_m, \%$			50	34
<i>R</i> _B , %			5.99	5.51

Таблица 1. Основные результаты уточнения методом Ритвельда структуры поверхности образцов ZrO₂

Примечание. a_f – параметр кубической ячейки флюорита, рассчитан согласно [11] по формуле $a_f = a\sqrt{2}$; c/a_f – искажение исходной кубической ячейки флюорита. V_t , V_t , V_m – объемное содержание форм t, t' и моноклинной фазы соответственно.

Атом,	Образец				
параметр	1	2	1h	2h	
Форма <i>t</i>					
Zr, B_{iso} , Å ²	1.05(3)	1.201(9)	0.31(2)	0.27(2)	
0, <i>z</i>	0.459(1)	0.458(1)	0.460(1)	0.466(1)	
O, B_{iso} , Å ²	2.07(7)	2.19(7)	0.31(2)	0.78(9)	
Форма ť					
Zr, B_{iso} , Å ²	4.03(8)	3.46(2)	3.14(8)	3.02(4)	
0, <i>z</i>	0.478(4)	0.49(1)	0.477(7)	0.464(3)	
O, B_{iso} , Å ²	5.9(2)	5.8(1)	4.4(3)	4.9(2)	

Таблица 2. Уточненные координаты и изотропные тепловые факторы атомов тетрагональных форм ZrO_2

Примечание. Обе формы *t* и *t*' характеризуются пр. гр. $P4_2/nmc$ (№ 137). Атомы Zr заполняют позицию Уайкова 2*a* (3/4, 1/4, 3/4), а атомы O позицию 4*d* (1/4, 1/4, *z*).

мальная температура обжига 950° С) и керамический образец моноклинной модификации ZrO₂ с добавлением 1 мол. % Yb₂O₃ (температура спекания 1550°С). По данным [17] максимальная растворимость Yb₂O₃ в ZrO₂ составляет именно 1 мол. %. В табл. 3 для сопоставления приведены параметры элементарных ячеек моноклинных фаз, присутствующих в дополнительно полученных образцах 1h и 2h, и сведений из [16]. Можно заметить, что объем элементарных ячеек и параметр *а* больше у образцов после гидротермальной обработки по сравнению с дополнительными образцами без добавления и с добавлением 1% Yb_2O_3 . Эти факты согласуются с данными [15] и сделанным предположением о вхождении в кристаллическую структуру моноклинных фаз гидроксильных групп OH⁻. В табл. 4 приведены уточненные значения координат и тепловых факторов атомов моноклинных фаз, присутствующих в образцах lh и 2h. Видно их хорошее совпадение, а также хорошее соответствие с данными [16]. Еще одной особенностью этих моноклинных фаз является несо-

Рис. 3. Графические результаты уточнения структуры поверхности образцов 1h (а) и 2h (б) методом Ритвельда.

ответствие относительных интенсивностей дифракционных пиков с данными базы PDF2, в частности, с карточкой 83-940. Это несоответствие хорошо видно на рис. 4. Пик 111 значительно выше пика 111 моноклинной фазы образца 1h, в случае порошкообразного образца ZrO_2 интенсивности этих пиков близки. То же самое наблюдается для пиков 011 и 110. Объяснением для этих фактов является пластинчатая форма образовавшихся в процессе гидротермальной обработки

КРИСТАЛЛОГРАФИЯ том 67 № 2 2022

Образец	1h	2h	ZrO ₂ (1 мол. % Yb ₂ O ₃)*	ZrO ₂ **	[16]
<i>a</i> , Å	5.1732(5)	5.1737(8)	5.1598(1)	5.14605(6)	5.1451(3)
b, Å	5.2066(4)	5.2012(6)	5.2139(1)	5.20952(7)	5.2023(4)
<i>c</i> , Å	5.3318(3)	5.3337(3)	5.3171(1)	5.31476(7)	5.3219(4)
β, град	99.104(4)	99.071(7)	99.233	99.2026(9)	99.15(3)
<i>V</i> , Å ³	141.8	141.7	141.2	140.6	140.6

Таблица 3. Параметры элементарных ячеек моноклинных фаз ZrO₂

* Температура спекания 1550°С.

** Температура обжига 950°С.

Таблица 4. Уточненные координаты и изотропные тепловые факторы атомов моноклинных фаз ZrO₂

Атом	Параметр	Образец 1h	Образец 2h	[16]
Zr	x	0.2728(4)	0.2708(7)	0.2760(5)
	У	0.0354(3)	0.0334(6)	0.0401(4)
	z	0.2103(3)	0.2104(4)	0.2091(4)
	$B_{\rm iso}, {\rm \AA}^2$	1.40(6)	2.74(9)	0.461(4)
O 1	x	0.058(2)	0.044(3)	0.072(3)
	У	0.381(2)	0.393(3)	0.333(2)
	z	0.402(1)	0.409(1)	0.347(2)
	$B_{\rm iso}, {\rm \AA}^2$	2.2(4)	2.74(9)	0.461(4)
O2	x	0.409(2)	0.403(3)	0.449(3)
	У	0.835(1)	0.848(2)	0.758(2)
	ζ.	0.472(2)	0.483(3)	0.476(4)
	$B_{\rm iso},{\rm \AA}^2$	0.4(2)	2.74(9)	0.461(4)

кристаллов *m*-ZrO₂. Пластины вытянуты в направлении [111] и имеют развитые грани {001}. Соответствующие поправки были внесены в уточняемую методом Ритвельда модель, что позволило достичь низких факторов расходимости (табл. 1). Моноклинная фаза образца 2h также имеет эту особенность. О пластинчатой или игольчатой форме кристаллов m-ZrO₂, вытянутых в направлении [111], которые образуются в условиях гидротермальной обработки, уже сообщалось ранее [18, 19]. Также отметим, что дифракционные пики, соответствующие моноклинным фазам образцов 1h и 2h, уширены по сравнению с пиками тетрагональных форм. Причиной этого уширения может быть малый размер областей когерентного рассеяния, который обычно связывают с геометрическим размером частиц. Чтобы проверить это предположение, был проведен рас-

чет для самого интенсивного пика $\overline{1}$ 11 моноклинных фаз образцов 1h и 2h по программе WinFit [20]. В качестве эталонного образца был взят спеченный при 1550°С керамический образец ZrO₂ с добавлением 1 мол. % Yb₂O₃. Размеры областей когерентного рассеяния составили 83 и 87 нм соответственно.

Результаты исследований с помощью растрового электронного микроскопа иллюстрирует рис. 5. Выбран характерный для образцов 1h и 2h участок. Видно, что поверхность образца 1h после гидротермальной обработки неровная, имеются "бугры и впадины", образовавшиеся при частичном растворении поверхностного слоя. Зерна керамики имеют в основном размер около 0.5 мкм, отдельные зерна достигают размера до 3–5 мкм. Такой размер зерен характерен для керамики

Рис. 4. Участки дифрактограмм образца lh (а) и синтезированного при 950°С порошка моноклинной модификации ZrO₂ (б). Проиндицированы отражения моноклинной модификации.

 ZrO_2 , стабилизированной в тетрагональной форме после спекания при 1500°С [21]. При выбранном увеличении кристаллы моноклинной модификации ZrO_2 не видны.

выводы

Проведенное методом Ритвельда рентгенодифракционное исследование показывает, что керамические образцы, состоящие из оксида циркония с добавлением оксида иттербия (3 мол. %) и оксидов иттербия (3 мол. %) и неодима (0.25 мол. %), после спекания при 1550°С содержат две тетрагональные формы ZrO_2 (*t* и *t*). В процессе гидротермальной обработки изменяется фазовый состав поверхности, протекают процессы растворения и кристаллизации моноклинной модификации

Рис. 5. Общий вид поверхности образца 1h после гидротермальной обработки.

ZrO₂. На поверхности образцов присутствуют две тетрагональные формы (t и t') и моноклинная фаза (m). Кристаллы моноклинной фазы имеют форму пластин, вытянутых в направлении [111], с развитыми гранями {001}. Добавление оксида неодима замедляет образование моноклинной фазы.

СПИСОК ЛИТЕРАТУРЫ

- Chevalier J., Liens A., Reveron H. et al. // J. Am. Ceram. Soc. 2020. V. 103. P. 1482. https://doi.org/10.1111/jace.16903
- 2. *Piconi C., Maccauro G.* // Biomaterials. 1999. V. 20. P. 1. https://doi.org/10.1016/S0142-961(98)00010-6
- Chevalier J. // Biomaterials. 2006. V. 27. P. 535. https://doi.org/10.1016/j.biomaterials.2005.07.034
- 4. *Kelly J.R., Denry I.* // Dental Mater. 2008. V. 24. P. 289. https://doi.org/10/1016/j/dental.2007.05.005
- Borshers L., Stiesch M., Bach F.-W. et al. // Acta Biomater. 2010. V. 6. P. 4547. https://doi.org/10/1016/j.actbio.2010.07.025
- 6. *Cattani-Lorente M., Scherrer S., Ammann P. et al.* // Acta Biomater. 2011. V. 7. P. 858. https://doi.org/10.1016/j.actbio.2010.09.020
- Kohorst P., Borchers L., Strempel J. et al. // Acta Biomater. 2012. V. 8. P. 1213. https://doi.org/10.1016/j.actbio.2011.11.016
- 8. Подзорова Л.И., Титов С.А., Ильичева А.А. и др. // Материаловедение. 2015. № 7. С. 52.
- 9. Подзорова Л.И., Ильичева А.А., Михайлиной Н.А. и др. // Перспективные материалы. 2017. № 2. С. 27.

- Yashima M., Ishizawa N., Yoshimura M. // J. Am. Ceram. Soc. 1993. V. 76. P. 641. https://doi.org/10.1111/j.1151-2916.1993.tb03654.x
- Yashima M., Sasaki S., Kakihana M. et al. // Acta Cryst. B. 1994. V. 50. P. 663 https://doi.org/10.1107/S0108768194006257
- Yashima M., Kakihana M., Yoshimura M. // Solid State Ionics. 1996. V. 86–88. P. 1131. https://doi.org/10.1016/0167-2738(96)00386-4
- 13. *Kraus W., Nolze G.* // J. Appl. Cryst. 1996. V. 29. P. 301. https://doi.org/10.1107/S0021889895014920
- 14. *Rodriguez-Carvajal J.* // Physica B. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-1
- Yoshimura M., Noma T., Kawabata K., Somiya S. // J. Mater. Sci. Lett. 1987. V. 6. P. 465. https://doi.org/10.1007/BF01756800

- Winterer M., Delaplane R., McGreevy R. // J. Appl. Cryst. 2002. V. 35. P. 434. https://doi.org/10.1107/S0021889802006829
- Gonzalez M., Moure C., Jurado J.R., Duran P. // J. Mater. Sci. 1993. V. 28. P. 3451. https://doi.org/10.1007/BF01159821
- Kumari L., Li W.Z. // Cryst. Growth Des. 2009. V. 9. P. 3874. https://doi.org/10.1021/cg800711m
- Nishizawa H., Yamasaki N., Matsuoka K., Mitsushio H. // J. Am. Ceram. Soc. 1982. V. 65. P. 343. https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
- Krumm S. // Mater. Sci. Forum. 1996. V. 228–231. P. 183. https://doi.org/10.4028www.scientific.net/MSF.228-231
- Hallmann L., Ulmer P., Reusser E. et al. // J. Eur. Ceram. Soc. 2012. V. 32. P. 4091. https://doi.org/10.1016/j.jeurceramsoc.2012.07.032