КРИСТАЛЛОГРАФИЯ, 2022, том 67, № 2, с. 249–253

_____ СТРУКТУРА ОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 539.21:537.31

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА АНИОН-РАДИКАЛЬНОЙ СОЛИ (N-*Me*-DABCO)(TCNQ)₂

© 2022 г. Т. Н. Стародуб^{1,*}, М. А. Колосов², Д. Фенске^{3,4,5}, О. Фур^{4,5}, С. В. Шишкина⁶, В. Пиотровска¹

¹Институт химии Университета им. Яна Кохановского, Кельце, Польша ²Харьковский национальный университет им. В.Н. Каразина, Харьков, Украина ³Институт неорганической химии Технологического института, Карлсруэ, Германия ⁴Институт нанотехнологии и Карлсруэ наномикроотделение Технологического института Карлсруэ, *Еггеништайн-Деопольдсгафен, Германия* ⁵Лен-институт функциональных материалов Института химии и химической инженерии Университета Сень-Ят-Сена, Гуанчжоу, Китай ⁶НПО "Институт монокристаллов", НАНУ, Харьков, Украина **E-mail: tstarodub@ujk.edu.pl* Поступила в редакцию 21.01.2021 г. После доработки 04.03.2021 г.

Принята к публикации 15.03.2021 г.

Синтезирована анион-радикальная соль 7,7,8,8-тетрацианохинодиметана (TCNQ) сложного состава: $(N-Me-DABCO)(TCNQ)_2$ (1). Кристаллическая структура 1 определена методом рентгеновской дифракции. Структура соли представляет собой практически гомогенные стопки частиц TCNQ, разделенные слоями катионов. В стопках наблюдается чередование межплоскостных расстояний: 3.25 и 3.29 Å соответственно. Вследствие чередования расстояний и гомогенного распределения заряда в стопках в структуре формируются проводящие каналы, обусловливающие проявление свойств органического металла или узкозонного полупроводника, что подтверждается ИК-спектрами: в них наблюдаются особенности, связанные с электрон-фононным взаимодействием. В частности, колебательные линии наблюдаются на фоне непрерывного поглощения — ширина запрещенной зоны не превышает 0.06 эВ. В результате проявляются линии полносимметричных колебаний (эти линии в отсутствие электрон-фононного взаимодействия в ИК-спектрах запрещены).

DOI: 10.31857/S0023476122020217

ВВЕДЕНИЕ

Анион-радикальные соли (АРС) на основе 7,7,8,8-тетрацианохинодиметана (ТСОО) привелекают интерес с 60-х годов прошлого столетия [1, 2]. Такое внимание обусловлено тем, что АРС TCNO обладают рядом необычных свойств: среди них обнаружены первые органические металлы; АРС ТСЛО могут плавиться без разложения, что открывает широкие возможности использования органических проводников, например, при производстве батарей с твердым электролитом [3, 4]; на основе АРС ТСЛО можно создавать ультратонкие пленки. Эти АРС могут быть использованы для производства электронных устройств, размеры которых сравнимы с молекулярными размерами [5]; проводящие APC TCNQ можно применять для получения эффективных переходов в кремниевых полупроводниках или в полупроводниковых устройствах на основе сульфида кадмия [6]. Использование в синтезе АРС катионов TCNQ, содержащих донорные атомы, способных к образованию межмолекулярных связей, открывает возможность синтеза проводящих APC TCNQ и спиновых лестниц [7, 8].

В [9] описаны использование одного из таких катионов, а именно, 1,4-диазабицикло[2.2.2]октана (DABCO), и его реакция с пара-бис (дицианометил)-бензолом (H₂TCNQ). В результате этой реакции образуются бесцветные кристаллы соли, содержащей дианион $TCNQ^{2-}$ и супрамолекулярный катион [(DABCO–H)₂DABCO]²⁺ (рис. 1). Заметим, что в этом случае $TCNQH_2$ ведет себя как кислота C–H, а DABCO – как акцептор протонов (основание).

С целью расширения данных проведено исследование новой APC TCNQ с катионом на основе DABCO: представлены результаты структурных и оптических измерений. Использование данного катиона интересно и с той точки зрения, что DABCO образует кристаллические аддукты

Рис. 1. DABCO и его супрамолекулярный катион $[(DABCO-H)_2DABCO]^{2+}$.

состава 2:1 с пероксидом водорода и диоксидом серы, является тушителем синглетного кислорода и эффективным антиоксидантом, может быть применен для повышения качества красителей. DABCO используют в лазерах, а также для фиксации образцов во флуоресцентной микроскопии (в комбинации с глицерином) [10].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе TCNQ фирмы Aldrich был дополнительно очищен перекристаллизацией. Соль (N– *Me*–DABCO)⁺I[–] синтезировали по реакции

$$N(C_2H_4)_3N + CH_3I \rightarrow \{N(C_2H_4)_3N^{+} - CH_3\}I^{-}$$

Для этого *MeI* (4.18 г, 29.4 ммол) добавляли порциями к кипящему раствору DABCO (3.00 г, 26.7 ммол) в 10 мл MTBE (трет-бутил-метилового эфира и 10 мл изо-пропанола *i-Pr*OH. Полученную смесь перемешивали в течение 30 мин с помощью обратного холодильника. Желтоватый осадок отфильтровывали, промывали дважды порциями по 20 мл смесью (1 : 1) MTBE:*i-Pr*OH и сушили на воздухе. Выход желтого сырого продукта 5.10 г (75%). Его перекристаллизовывали из метанола (охлаждали, отфильтровывали, промывали тремя порциями по 5 мл ацетона) до получения бесцветных кристаллов продукта (3.12 г, 46%). Данные ¹H ЯМР соответствуют данным [11].

Для синтеза АРС использовали реакцию

$$3/2\{N(C_{2}H_{4})_{3}N^{+}-CH_{3}\}I^{-}+2TCNQ \rightarrow \rightarrow \{N(C_{2}H_{4})_{3}N^{+}-CH_{3}\}(TCNQ)_{2}^{-}+ + 1/2\{N(C_{2}H_{4})_{3}N^{+}-CH_{3}\}I_{3}.$$

Горячие растворы $\{N(C_2H_4)_3N^+-CH_3\}I^-$ и TCNQ в ацетонитриле смешивали и помещали в сосуд Дьюара для медленного охлаждения. В течение недели образовывались темно-зеленые кристаллы, которые отделяли, промывали холодным ацетонитрилом и диэтиловым эфиром и сушили на воздухе.

Состав АРС был определен спектрофотометрически, как описано в [7]. Он соответствует формуле {N (C_2H_4)₃N⁺–CH₃} (TCNQ)⁻₂ (1). Элементный анализ синтезированной АРС выполнен с помощью анализатора VarioMICRO Superuser. Найдено: С 69.43, N 26.30, H 4.42 мас. %. Для

C₃₁H₂₃N₁₀ вычислено: С 69.52, N 26.15, H 4.33 мас. %. Температура плавления 217°С.

Рентгенографическое исследование 1 проведено на монокристальном дифрактометре Stoe StadiVari при 180 К (мультислойная оптика, метод вращений). Коррекция сферического поглощения проведена с помощью STOE LANA. Структура расшифрована прямыми методами с последующим построением разностного синтеза Фурье с использованием программного обеспечения SHELXS [12] и уточнена полноматричным методом наименьших квадратов в анизотропном приближении смещений всех атомов аниона TCNQ, кроме водорода, с помощью программного обеспечения SHELXTL [13].

Катион разупорядочен по двум одинаково заселенным позициям. Разупорядоченные части симметричны относительно центра инверсии. Поэтому все атомы, из которых состоит катион, кроме атомов водорода, уточнены в изотропном приближении смещений, также были наложены ограничения на длины связей N–Csp³ (1.47 Å) и Csp³–Csp³ (1.54 Å). Позиции атомов водорода определены из разностных карт электронной плотности и уточнены в изотропном приближении для аниона TCNQ. Атомы водорода в катионе были помещены в идеализированные положения и уточнены по модели "наездника" с $U_{iso} =$ = nU_{eq} (n = 1.5 для метильной группы и n = 1.2 для других атомов водорода) атома-носителя.

Основные кристаллографические и экспериментальные данные представлены в табл. 1. Длины связей и углы указаны в табл. 2, 3.

Спектры ИК-поглощения порошкообразных образцов **1** регистрировали в диапазоне частот от 500 до 4000 см⁻¹ при комнатной температуре на спектрометре Nicolet 380, диск KBr.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследуемая соль образована двумя анион-радикалами TCNQ и катионом N-*Me*-DABCO (рис. 2). Анион-радикал практически плоский, все его атомы лежат внутри плоскости с точностью до 0.05 Å. Катион находится в особом положении по отношению к центру симметрии и разупорядочен по двум одинаково заселенным позициям.

В кристаллах APC 1 можно выделить слои катионов и анионов (рис. 3). Слои анионов образованы стопками, в которых молекулы TCNQ связаны стэкинг-взаимодействиями. Стэкинг-взаимодействия молекулы TCNQ с двумя соседними молекулами внутри стопки разные (рис. 4). Катионы и анионы соединены очень слабыми водородными связями: C(18)–H(18*b*)···N(4) (*x*, *y*, 1 + *z*; H···N 2.62 Å, C–H···N 151°); C(17)–H(17*a*)···N(1) (*x* – 1, *y* – 1, *z*; H···N 2.60 Å, C–H···N 99°);

КРИСТАЛЛОГРАФИЯ том 67 № 2 2022

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры **1**

Брутто-формула	$C_{31}H_{23}N_{10}$
Система, пр. гр., Z	Триклинная, <i>P</i> , 1
<i>Т</i> , К	180
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.36 (1), 7.55 (1), 13.765 (2)
α, β, γ , град	92.3 (1), 92.60 (14), 117.46 (14)
<i>V</i> , Å ³	677.49 (2)
$D_{\rm выч},$ г/см ³	1.313
μ, мм ⁻¹	0.084
Размеры образца, мм	0.18 imes 0.04 imes 0.03
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
Дифрактометр	Stoe StadiVari
Тип сканирования	ω
2θ _{max} , град	56
Число отражений: измеренных, R_{int} /неза- висимых с $I > 2\sigma$ (I)	5621, 0.026/3155
<i>R</i> _{sigma}	0.060
R_1/wR_2	0.095/0.314
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.61/1.62
Программы	SHELXS [12], SHELXTL [13]

C(13)-H(13c)···N(4) (-x, 1 – y, 1 – z; H···N 2.39 Å, C-H···N 117°).

Как следует из формулы APC 1, средний заряд на частице TCNQ равен -1/2e. Заряд можно оценить на основе структурных данных: если заряд на частице TCNQ^{-q} уменьшается, это сопровождается изменением структуры от хиноидной до ароматической. При этом происходит закономерное изменение длин связей С—С.

Кистенмахером [14, 15] предложена формула, позволяющая рассчитать заряд молекулы TCNQ на основе длин связей (табл. 2) *b*, *c* и *d* в частице TCNQ:

$$q = -41.67[c/(b+d)] + 19.83.$$

Схема 1. Параметры, используемые в уравнении Кистенмахера.

КРИСТАЛЛОГРАФИЯ том 67 № 2 2022

Таблица 2. Длины связей в структуре 1

Связь	Длина, Å	Связь	Длина, Å
N1-C8	1.141(4)	С7-С9	1.438(4)
N2-C9	1.142(4)	C10-C11	1.429(5)
N3-C11	1.139(4)	C10-C12	1.419(5)
N4-C12	1.150(5)	N5-C13	1.337(9)
C1-C2	1.432(4)	N5-C14	1.531(9)
C1-C6	1.435(4)	N5-C16	1.512(9)
C1–C7	1.388(4)	N5-C18	1.468(10)
C2–C3	1.354(5)	N6-C15	1.541(9)
C3–C4	1.440(4)	N6-C17	1.476(9)
C4–C5	1.425(4)	N6-C19	1.492(9)
C4-C10	1.403(4)	C14–C15	1.436(10)
C5-C6	1.353(4)	C16-C17	1.507(11)
C7–C8	1.423(5)	C18–C19	1.533(10)

Таблица 3. Валентные углы в структуре 1

		15 51	
Связь	Угол, град	Связь	Угол, град
C2-C1-C6	117.6(3)	N3-C11-C10	178.8(4)
C7–C1–C2	121.3(3)	N4-C12-C10	178.7(4)
C7–C1–C6	121.1(3)	C13-N5-C14	116.4(11)
C3–C2–C1	121.1(3)	C13-N5-C16	103.3(10)
C2–C3–C4	121.0(3)	C13-N5-C18	121.7(11)
C5–C4–C3	117.9(3)	C16-N5-C14	102.8(6)
C10-C4-C3	121.2(3)	C18-N5-C14	103.5(6)
C10-C4-C5	120.9(3)	C18-N5-C16	107.2(7)
C6–C5–C4	121.0(3)	C17-N6-C15	106.6(6)
C5-C6-C1	121.4(3)	C17-N6-C19	107.6(6)
C1–C7–C8	122.0(3)	C19-N6-C15	105.4(6)
C1–C7–C9	122.6(3)	C15-C14-N5	117.0(7)
С8-С7-С9	115.4(3)	C14-C15-N6	110.5(6)
N1-C8-C7	178.8(4)	C17-C16-N5	113.3(7)
N2-C9-C7	178.8(4)	N6-C17-C16	112.7(7)
C4-C10-C11	121.7(3)	N5-C18-C19	114.0(7)
C4-C10-C12	122.3(3)	N6-C19-C18	111.3(7)
C12-C10-C11	116.0(3)		

Используя длины связей в APC 1 (табл. 2), получили заряд частицы TCNQ в APC 1: q = -0.43e.

Обычно в APC состава Kt^+ (TCNQ^{•–})₂ стопки TCNQ тетрамеризованы из-за неустойчивости Пайерлса [1]. Если учесть, что в APC 1 стопки од-

Рис. 2. Структуры молекул анион-радикала $\text{TCNQ}^{\bullet-}$ и катиона N-Me-DABCO согласно данным рентгеноструктурного анализа. Тепловые эллипсоиды для TCNQ даны для уровня вероятности 50%.

нородны, то она должна обладать свойствами органического металла. Переход Пайерлса должен реализовываться при низких температурах. Как видно из рис. 2, APC 1 должна быть сильно анизотропной, поскольку стопки TCNQ разделены слоями катионов, которые не образуют коротких контактов с анион-радикалами.

Вывод о высокой электропроводности APC 1 подтверждают данные ИК-спектроскопии (рис. 5). Как известно [16, 17], в APC TCNQ имеет место сильное взаимодействие электронов проводимости с внутримолекулярными фононами. Это взаимодействие определяет ряд особенностей ИКспектров солей TCNQ, в частности наличие очень интенсивных и аномально широких линий поглощения в области 500, 1100–1300 и 2100– 2200 см⁻¹ в ИК-спектре соли 1 (рис. 5). В спектре APC 1 наблюдается непрерывное поглощение излучения во всем исследуемом диапазоне на фоне электрон-фононного взаимодействия, в результате которого становятся активными полносимметричные колебания (тип A_g), разрешенные только в спектрах комбинационного рассеяния света. Начало непрерывного поглощения в ИКспектре соли $1 - 500 \text{ см}^{-1}$ – позволяет оценить ширину запрещенной зоны ($hv_0 = \Delta$, где v_0 – начало непрерывного поглощения, Δ – ширина запрещенной зоны) в 0.06 эВ. Таким образом, APC 1 представляет собой либо органический металл, либо узкозонный полупроводник.

ЗАКЛЮЧЕНИЕ

Синтезирована новая анион-радикальная соль TCNQ с алициклическим диамином, которая содержит почти однородные стопки молекул TCNQ. Эти стопки практически изолированы. Согласно теории одномерных систем в стопках должна происходить тетрамеризация. Однако данные рентгеноструктурного анализа показывают, что тетрамеризация стопок очень слабая. Строение кристаллов 1 благоприятствует образованию проводящего состояния соли, что подтверждается данными ИК-спектроскопии. Использование в качестве противоиона органического катиона N-*Me*-DABCO либо других катионов на основе DABCO может привести к появлению но-

Рис. 3. Упаковка катионов и анионов в кристаллах **1**. Проекция вдоль кристаллографического направления [010].

Межплоскостное расстояние равно 3.25 Å Сдвиг составляет 2.91 Å

Межплоскостное расстояние равно 3.29 Å Сдвиг составляет 0.99 Å

Рис. 4. Относительные позиции анион-радикалов в стопках.

Рис. 5. ИК-спектр АРС 1.

вых органических проводников на основе APC TCNQ.

Окончательные координаты атомов и кристаллографические данные АРС 1 депонированы в Кембриджский кристаллографический центр, 12 Union Road, CB2 1EZ, UK (факс +44 1223 336 033; электронная почта: deposit@ccdc.cam.ac.uk) и доступны по запросу с указанием ССDС 2007582.

СПИСОК ЛИТЕРАТУРЫ

- Melby L.R., Harder R.J., Hertler W.R. et al. // J. Am. Chem. Soc. 1962. V. 84. P. 3374. https://doi.org/10.1021/ja00876a029
- Starodub V.A., Starodub T.N. // Russ. Chem. Rev. 2014.
 V. 83. № 5. P. 391.
- https://doi.org/10.1070/RC2014v083n05ABEH004299
- Starodub V.A., Gluzman E.M., Krikunov K.V. et al. // SSSR Byull. Izobret. 1991. V. 45. P. 92.

- 4. *Starodub V.A., Gluzman E.M., Pokhodnya K.I., Valakh M.Ya.* // Theor. Exper. Chem. 1993. V. 29. P. 240. https://doi.org/10.1007/BF00530303
- Murata T., Enomoto Y., Saito G. // Solid State Sci. 2008. V.10. P. 1364.
 - https://doi.org/10.1016/j.solidstatesciences.2008.01.007
- Jeszka J.K., Tracz A., Boiteux G. et al. // Synth. Met. 1995. V. 71. P. 2205. https://doi.org/10.1016/0379-6779(94)03223-S
- Ziolkovsky D.V., Kravchenko A.V., Starodub V.A. et al. // Functional Mater. 2005. V. 12. P. 577. http://dspace.nbuv.gov.ua/handle/123456789/138860
- Lapinski A., Golub M., Starodub V.A. Proceed. 10th Int. Conf. ERPOS (Electrical and Related Properties of ORGANIC Solids and Polymers). Cargese, 2005. P. A094.
- 9. Hudson T.A., Robson R. // Cryst. Growth Des. 2009. V. 9. P. 1658. https://doi.org/10.1021/cg801400j
- 10. *Bugaenko D.I., Karchava A.V., Yurovskaya M.A.* // Chem. Heterocyclic Comp. 2020. V. 56. № 2. P. 128. https://doi.org/10.1007/s10593-020-02636-1
- 11. Samulak B.M., Niu Sh., Andrews Ph.C., Ruotolo B.T. // Anal. Chem. 2016. V. 88. № 10. P. 5290. https://doi.org/10.1021/acs.analchem.6b00518
- 12. *Sheldrick G.M.* // Acta Cryst. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
- 13. *Sheldrick G.M.* // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 14. Kistenmacher Th.J., Emge Th.J., Bloch A.N., Cowan D.O. // Acta Cryst. B. 1982. V. 38. P. 1193. https://doi.org/10.1107/S0567740882005275
- Üngör Ö., Phan H., Choi E.S. et al. // J. Magn. Magn. Mater. 2020. V. 497. P. 165984. https://doi.org/10.1016/j.jmmm.2019.165984
- 16. *Starodub V.A., Starodub T.N., Kazheva O.N., Bregadze V.I.* Materials of Modern Electronics and Spintronics. M.: Fizmatlit, 2018. 424 p.
- Lipari N.O., Duke C.B., Pietronero L. // J. Chem. Phys. 1976. V. 65. P. 1165. https://doi.org/10.1063/1.433192