——— КРИСТАЛЛОХИМИЯ —

УДК 548.736

ОСОБЕННОСТИ СТРОЕНИЯ СМЕШАННЫХ АНИОНОВ (Mo_{7 - x}W_xO₂₄)⁶⁻ И ИХ УПАКОВКИ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ [Pd(NH₃)₄]₃(Mo_{7 - x}W_xO₂₄) · 6H₂O

© 2022 г. А. С. Сухих¹, С. П. Храненко¹, А. В. Задесенец¹, С. А. Громилов^{1,*}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

**E-mail: grom@niic.nsc.ru* Поступила в редакцию 18.03.2021 г. После доработки 30.03.2021 г. Принята к публикации 05.04.2021 г.

При кристаллизации смеси водных растворов Na₆W₇O₂₄, Na₆Mo₇O₂₄ и [Pd(NH₃)₄](NO₃)₂ образуются кристаллы [Pd(NH₃)₄]₃(Mo_{7 – x}W_xO₂₄) · 6H₂O с разными соотношениями Mo/W. Изучены 10 кристаллов с $0.8 \le x \le 3.4$. Атомы Мо и W располагаются в полианионе не статистически, а в предпочтительных позициях. Кристаллографические характеристики [Pd(NH₃)₄]₃(Mo_{3.6}W_{3.4}O₂₄) · 6H₂O: a = 17.4294(2), b = 28.9215(4), c = 30.4435(4) Å, пр. гр. *Ibca*, V = 15346.1(3) Å³, Z = 16. Проведен анализ упаковки анионов в структуре, показан псевдогексагональный мотив их расположения. Изучены продукты термического разложения в атмосфере H₂, показано, что при 800°C образуется смесь твердых растворов замещения на основе решеток Pd и Mo(W).

DOI: 10.31857/S0023476122020230

ВВЕДЕНИЕ

Молибдаты и вольфраматы металлов достаточно интенсивно изучаются и находят самое широкое применение. Для улучшения функциональных характеристик постоянно ведутся работы по модификации составов, среди последних публикаций можно отметить [1, 2]. Менее изучены и востребованы соединения с паравольфрамат(молибдат)-анионами, одна из причин связана с определенными трудностями их синтеза. Настоящая работа посвящена изучению солей, содержащих гептамолибдат- и гептавольфраматанионы. Анализ современных баз рентгеноструктурных данных [3, 4] показывает достаточно большое (около 60) число структур с указанными анионами и органическими катионами и относительно небольшое число неорганических структур (7).

Гептаполианионы могут быть получены несколькими способами, например при подкислении водных растворов нормальных молибдатов (вольфраматов) щелочных металлов. Введение в раствор комплексных катионов позволяет получать комплексные соли (**KC**). Основная особенность получения их монокристаллов заключается в длительности процесса: обычно время роста кристаллов, пригодных для проведения рентгеноструктурного анализа (**PCA**), достигает нескольких месяцев. Такая ситуация наблюдалась в [5–7] при синтезе Na₂[Pd(NH₃)₄]₅(W₇O₂₄)₂ · 16H₂O, Na[Pd(NH₃)₄]₂HW₇O₂₄ · 7H₂O, [Pd(NH₃)₄]₃W₇O₂₄ · · 4.4H₂O и [Co*En*₃]₂W₇O₂₄ · 6H₂O (*En* – этилендиамин). Указанные КС нашли применение в качестве однокомпонентных предшественников ряда практически важных материалов. Так, в [7] соль $[CoEn_3]_2(W_7O_{24}) \cdot 6H_2O$ использовали для получения сверхтвердых покрытий методом кумулятивного напыления. В [8] термическое разложение [Pd(NH₃)₄]₃W₇O₂₄ · 4.4H₂O позволило при относительно низкой температуре 1000°С получить сплав W_{0.7}Pd_{0.3}. Образование сплавов из КС при температурах значительно меньше температур плавления индивидуальных металлов обычно сопровождается образованием наночастиц [9]. Очевидное преимущество биметаллических КС заключается в их исходной гомогенности: атомы металлов перемешаны на атомном уровне и находятся на достаточно коротких расстояниях (в данном случае до 7 Å). Такой ситуации трудно достичь при использовании смесей соединений. Например, в [10] при синтезе одностенных углеродных нанотрубок в качестве катализатора использовали интерметаллид W₆Co₇, который получали достаточно сложным способом из смеси $(NH_4)_6(W_7O_{24}) \cdot 6H_2O$ и Co(CH₃COO) · 4H₂O.

Цель настоящей работы — выяснение возможности образования КС с одновременным участием гептамолибдат- и гептавольфрамат-анионов. Предполагаемый состав такого однокомпонентного предшественника — [Pd(NH₃)₄]₃(Mo₇O₂₄)_{0.5}(W₇O₂₄)_{0.5} —

Рис. 1. Дифрактограммы продуктов термического разложения монокристаллов в атмосфере H_2 : а – $[Pd(NH_3)_4]_3(Mo_{3.6}W_{3.4}O_{24}) \cdot 6H_2O$ при $800^{\circ}C$; б – $[Pd(NH_3)_4]_3(Mo_{3.6}W_{3.4}O_{24}) \cdot 6H_2O - 1000^{\circ}C$. Рефлексы ГЦК-фазы отмечены – F, ОЦК – I. На вставках показаны дебаеграммы и фотография псевдоморфной частицы.

позволяет рассчитывать на получение сплавов системы Pd-Mo-W.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При синтезе КС использовали $[Pd(NH_3)_4]$ (NO₃)₂, полученный кипячением Pd(NO₃)₂ · 2H₂O в концентрированном аммиачном растворе в течение 30 мин с последующей кристаллизацией продукта при охлаждении реакционной смеси до комнатной температуры.

Водный раствор Na₆Mo₇O₂₄ был приготовлен по методике [11] нейтрализацией смеси растворов Na₂MoO₄ и Na₂CO₃ (объемное отношение 3: 1) до pH ~ 5.5. Раствор Na₆W₇O₂₄ получен аналогично из Na₂WO₄. В эквимолярную смесь указанных свежеприготовленных растворов вносили водный раствор [Pd(NH₃)₄](NO₃)₂. Стакан с реакционной смесью закрыли пленкой, сделали в ней небольшое отверстие и оставили на кристаллизацию. За два месяца сформировался мелкокристаллический продукт белого цвета, его отфильтровали, промыли ацетоном и высушили на воздухе. Рентгенографическое исследование (Shimadzu 7000, CuK_α-излучение, Ni-фильтр) выделенного продукта показало, что целевая фаза $[Pd(NH_3)_4]_3(Mo_7O_{24})_{0.5}(W_7O_{24})_{0.5} \cdot 6H_2O$ образуется в смеси с $Na_2[Pd(NH_3)_4]_5W_7O_{24} \cdot 16H_2O$ [5]. Несколько дополнительных попыток синтеза однофазного продукта к успеху не привели.

Рентгеноструктурный анализ 10 монокристаллов (линейные размеры не превышали 0.1 мм) проведен на дифрактометре Bruker DUO (MoK_{α} излучение, графитовый монохроматор, CCD-детектор) при 150 К. Структуры решены с использованием программы SHELXT-2014/5 [12] и уточнены в анизотропном (изотропном – для атомов воприближении. Атомы дорода) Η заланы геометрически. Уточнение структур выполнено с использованием программы SHELXL-2018/3 [13]. Во всех случаях значение R_1 не превышало 4%, а $R_1 [I > 2\sigma(I)] - 3\%$. Установлено, что соотношение атомов Мо и W в изученных кристаллах меняется от 6.2/0.8 до 3.6/3.4, а сами атомы занимают предпочтительные позиции. Координаты и тепловые параметры атомов для 10 изученных кристаллов [Pd(NH₃)₄]₃(Mo_{7 - x}W_xO₂₄) · 6H₂O депонированы в банк структурных данных ССDС [3] и могут быть получены по адресу www.ccdc.cam. ac.uk/structures/. Кристаллографические данные, условия проведения экспериментов и характеристики уточнения трех кристаллических структур приведены в табл. 1.

Для проведения термического разложения были отобраны два монокристалла $[Pd(NH_3)_4]_3(Mo_{7-x}W_xO_{24})$. ·6H₂O с *x* ≈ 3.6/3.4 (по данным PCA). В обоих случаях линейные размеры монокристаллов не превышали 200 мкм. Для нагрева использовали трубчатую печь SNOL, которую продували водородом. Первый кристалл (кристалл 4) нагревали до 800°С (другие характеристики даны в табл. 2). Далее кварцевый реактор извлекали из печи и проводили продувку гелием до комнатной температуры. Во втором опыте (кристалл 7) температуру повысили до 1000°С, а время выдерживания до 1 ч. В обоих случаях после нагревания частицы демонстрировали ярко выраженный псевдоморфизм, т.е. наследовали форму исходных монокристаллов (вставка на рис. 1б).

Рентгенографическое исследование продуктов термического разложения проведено в схеме Дебая—Шеррера на дифрактометре Bruker D8 Venture (микрофокусная трубка Incoteac IµS 3.0, Cu K_{α} -излучение, трехкружный гониометр, детектор PHOTON 3, разрешение 768 × 1024, размер пикселя 135 мкм, D = 39 мм, $2\theta_D = -60^\circ$). Полученные дебаеграммы показаны на вставках рис. 1. Рентгенофазовый анализ (**РФА**) проведен с использованием базы данных PDF [14]. Для введения поправок на внешний эталон (Si, a = 5.4309 Å) и перехода к стандартному виду $I(2\theta)$ (рис. 1) использовали программу DIOPTAS [15].

ОСОБЕННОСТИ СТРОЕНИЯ СМЕШАННЫХ АНИОНОВ

Структура	3	6	4	
Размер образца, мкм	$60 \times 50 \times 40$	$50 \times 50 \times 40$	$50 \times 50 \times 40$	
Mo/W	6.2/0.8	4.1/2.9	3.6/3.4	
<i>a</i> , Å	17.4028(2)	17.4229(2)	17.4294(2)	
$\Delta a, \text{\AA}$	0	0.0201	0.0266	
b, Å	28.9332(3)	28.9315(4)	28.9215(4)	
$\Delta b, \text{\AA}$	0	-0.0017	-0.0117	
<i>c</i> , Å	30.3221(4)	30.4122(4)	30.4435(4)	
Δc , Å	0	0.0901	0.1214	
<i>V</i> , Å ³	15267.7(3)	15329.9(3)	15346.1(3)	
ΔV , Å ³	0	62.2	78.4	
$d_{\rm выч}$, г/см ³	3.051	3.347	3.428	
μ, мм ⁻¹	5.794	11.340	12.742	
Диапазон θ, град	3.83-66.29	3.82-66.28	3.82-66.29	
N _{незав}	129647	130910	129692	
$N_{\text{He3aB}} \left[I > 2\sigma(I) \right]$	14564	14606	14630	
R _{интегр}	0.0528	0.0627	0.0604	
Полнота сбора данных (2 θ = 50°), %	100	99.9	100	
Число уточняемых параметров	530	531	530	
S -фактор по F^2	1.041	1.108	1.162	
$R_1 \left[I > 2\sigma(I) \right]$	0.0266	0.0281	0.0256	
$wR_2 [I > 2\sigma(I)]$	0.0539	0.0521	0.0542	
<i>R</i> ₁ (все данные)	0.0371	0.0387	0.0301	
<i>wR</i> ₂ (все данные)	0.0567	0.0543	0.0553	
CCDC №**	2040613	2040614	2040615	

Таблица 1. Результаты уточнения кристаллических структур $[Pd(NH_3)_4]_3(Mo_{7-x}W_xO_{24}) \cdot 6H_2O^*$

* Пр. гр. *Ibca* (№ 73), *Z* = 16.

** Для других структур, депонированных в ССDС [3]: 1 – 2064925, 2 – 2064926, 5 – 2064927, 7 – 2064928, 8 – 2064929, 9 – 2064930, 10 – 2064931.

Соотношение Pd/Mo/W	<i>T</i> , °C; атмосфера; <i>t</i> , мин	Тип решетки	<i>a</i> , Å	<i>V</i> , Å ³ <i>V</i> _{атом} , Å ³ *	Оценка Pd/Mo/W, %; V _{атом} , Å ³
3/3.6/3.4 кристалл 4	800 H ₂	ГЦК	3.920(3)	60.236 15.059	71/0/29 15.059
	10	ОЦК	3.162(3)	31.614 15.807	2/42/56 15.714
3/3.6/3.4 кристалл 7	1000 H ₂	ГЦК	3.906(3)	59.593 14.898	78/22/0 14.900
	60	ОЦК	3.156(3)	31.434 15.717	2/43/55 15.714

Таблица 2. Результаты рентгенофазового анализа продуктов термического разложения

* $V_{\text{Pd}} = 14.714 \text{ Å}^3$; $V_{\text{Mo}} = 15.586 \text{ Å}^3$, $V_{\text{W}} = 15.849 \text{ Å}^3$.

КРИСТАЛЛОГРАФИЯ том 67 № 2 2022

Формула; литература	<i>М</i> –О _{конц.} , Å; <i>М</i> –О _{мост2} , Å	<i>М</i> –О _{мост3} , Å; <i>М</i> –О _{мост4} , Å	∠ <i>M</i> − <i>M</i> − <i>M</i> (□), град; ∠ <i>M</i> 5− <i>M</i> 6− <i>M</i> 7, град; <i>V</i> _M , Å ³
(NH ₄) ₆ Mo ₇ O ₂₄ · 4H ₂ O [4; № 4153]	1.707-1.770 1.731-2.557	1.887–2.252 2.156–2.251	89.83–90.22 163.96 18.46
Na ₆ Mo ₇ O ₂₄ · 14H ₂ O [4; № 174349]	1.707–1.742 1.716–2.612	1.880–2.282 2.118–2.298	89.50–90.35 164.13 18.80
Кристалл 3 Mo/W = 6.2/0.8 Наст. работа	1.712–1.738 1.740–2.502	1.902–2.245 2.150–2.263	87.70–94.42 164.56 18.35
Кристалл 6 Mo/W = 4.1/2.9 Наст. работа	1.718–1.746 1.751–2.481	1.905–2.245 2.146–2.240	87.87–92.29 165.55 18.32
Кристалл 4 Mo/W = 3.6/3.4 Наст. работа	1.719–1.747 1.752–2.475	1.904–2.249 2.116–2.238	87.90–92.26 165.69 18.59
(C ₅ H ₁₂ N) ₆ W ₇ O ₂₄ [3; PIPHWO]	1.523–1.884 1.759–2.046	2.012–2.323 2.094–2.244	89.12–90.93 168.29 19.03
$[CoEn_3]_2W_7O_{24} \cdot 6H_2O$ [7]	1.714–1.755 1.770–2.398	1.947–2.246 2.165–2.235	89.96, 90.04 167.90 18.70
Na ₆ W ₇ O ₂₄ · 14H ₂ O [4; № 417338]	1.681–1.740 1.902–2.545	1.908–2.299 2.110–2.260	89.50–90.35 166.73 18.63
$[Pd(NH_3)_4]_3W_7O_{24} \cdot 4.4H_2O$ [6]	$1.731 - 1.745 \\ 1.930 - 2.406$	1.882–2.234 2.192–2.220	89.85, 90.15 168.70 18.55
$Na_{2}[Pd(NH_{3})_{4}]_{5}(W_{7}O_{24})_{2} \cdot 16H_{2}O$ [5]	1.68–1.75 1.76–2.55	2.23–2.30 2.17–2.26	88.64–91.19 168.95 18.79

Таблица 3. Геометрические характеристики анионов M_7O_{24} (M = Mo, W)

Примечание. $O_{\text{конц}}$ – концевые атомы O; $O_{\text{мост2}}$ – мостиковые атомы O, связывающие два атома M; $O_{\text{мост3}}$ – три атома M и $O_{\text{мост4}}$ – четыре атома M.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным проведенного РФА термическое разложение (атмосфера H_2 , 800°С) кристалла 4 привело к образованию смеси двух твердых растворов на основе ГЦК-решетки Pd и ОЦК-решетки Mo(W) (кристаллографические характеристики приведены в табл. 2) и следовых количеств Mo₂C. Последняя фаза образовалась, по-видимому, из остатка не отмытой эпоксидной смолы, использованной для крепления кристалла при проведении PCA. Более тщательная промывка кристалла 7 позволила избежать образования этой фазы при термическом разложении в атмосфере H_2 при 1000°С, в результате получена смесь только металлических фаз. В табл. 2 даны оценки со-

ставов этих фаз (твердых растворов замещения) исходя из сходного вида фазовых диаграмм Pd– Mo [16] и Pd–W [17] (в обоих случаях при 1000°С в решетке Pd может быть замещено не более ~25% атомов, а в решетке Mo(W) ~3%) и атомных объемов ($V_{\rm атом}$). Количественный фазовый анализ продукта термического разложения кристалла 7 привел к соотношению ГЦК- и ОЦК-фаз 45/55 мас. %. Итоговое соотношение металлов Pd/Mo/W 36/34/30 удовлетворительно коррелирует с данными PCA для кристалла 7 (табл. 4). Подчеркнем, что сплавы получены при температурах, заметно меньших температур плавления чистых металлов (Pd – 1555, Mo – 2623, W – 3422°C).

Рентгеноструктурный анализ 10 монокристаллов показал, что общее соотношение Мо/W в них

Структура	Общее соотношение Мо и W в анионе			Соотношение Мо и W в позиции 6			∠ <i>M</i> 5− <i>M</i> 6−	M6 M6 Å
	Мо	W	W, %	Мо	W	W, %	<i>M</i> 7, °	<i>M</i> 0 <i>M</i> 0, A
3	6.22	0.78	11.1	0.78	0.22	22.0	164.56	5.351
6	4.13	2.87	41.0	0.33	0.67	66.9	165.55	5.404
2	3.76	3.24	46.3	0.25	0.75	74.7	165.65	5.410
1	3.74	3.26	46.6	0.26	0.74	74.02	165.67	5.410
10	3.70	3.30	47.1	0.26	0.75	74.5	165.67	5.411
8	3.69	3.31	47.3	0.25	0.75	74.8	165.69	5.411
9	3.69	3.31	47.3	0.26	0.74	74.3	165.66	5.410
5	3.67	3.33	47.6	0.25	0.75	74.8	165.70	5.412
7	3.62	3.38	48.3	0.24	0.76	76.1	165.72	5.415
4	3.61	3.39	48.4	0.24	0.76	76.4	165.69	5.410

Таблица 4. Характеристики анионов, связанные с предпочтительной занятостью позиции в вершине треугольника

варьируется от 6.2/0.8 до 3.6/3.4. Таким образом, в маточном водном растворе анионы $(Mo_7O_{24})^{6-}$ и $(W_7O_{24})^{6-}$ за время кристаллизации обменивались своими фрагментами. Увеличение доли W приводит к закономерному увеличению объема элементарной ячейки, хотя параметры элементарной ромбической ячейки ведут себя по-разному: значения *a* и *c* увеличиваются, а *b* – уменьшается (табл. 1).

На рис. 2 показано взаимное расположение атомов M (Мо или W) в анионах. Четыре нижние позиции образуют немного искаженный прямоугольник $M1M2M3M4 \sim 3.2 \times 4.3$ Å с углами $\angle M - M(\Box)$ от 87.7 до 94.4° (табл. 3). В большинстве случаев указанный прямоугольник имеет перегиб по диагонали. Взаимное расположение трех верхних позиций представляет собой немного искаженный равнобедренный треугольник M5M6M7 с углом при вершине ~165°. В целом полиэдр можно разбить на четыре неправильные треугольные пирамиды и провести вычисление общего объема V_M (значения даны в последнем столбце табл. 3). Значения V_M для гептавольфрамат-анионов больше, чем для гептамолибдат-анионов всего на ~ 0.3 Å³.

Атомы Мо и W занимают вершины полиэдра не статистически, а в предпочтительных позициях. На рис. 2 показана заселенность позиций M для трех структур. Хорошо видно, что атомы W предпочитают занимать позиции 1 и 3 по одной из диагоналей прямоугольника (т.е. в *транс*-положении), а также в вершине треугольника M5M6M7. В табл. 4 проведено сравнение общего соотношения Mo/W в изученных структурах и заселенности позиции 6. В этой позиции превышение доли W в структурах 2–10 составляет 26–28%: в структуре 1 (с наибольшим содержанием Mo) – 11%.

Выявленная тенденция заселения вершины треугольника атомами W приводит к изменению геометрии аниона. В табл. 4 даны значения углов

КРИСТАЛЛОГРАФИЯ том 67 № 2 2022

 $\angle M5-M6-M7$. В изученных структурах 1–10 по мере увеличения содержания W этот угол увеличивается от 164.6° до 165.7°. Действительно, это

Рис. 2. Взаимное расположение атомов металла в анионах в кристаллических структурах $[Pd(NH_3)_4]_3(Mo_{7-x}W_xO_{24}) \cdot 6H_2O$. Даны значения расстояний между атомами металлов, а также соотношение Mo/W в каждой позиции (черным показана доля W).

Рис. 3. Фрагмент кристаллической структуры $[Pd(NH_3)_4]_3(Mo_{7-x}W_xO_{24}) \cdot H_2O$. Комплексные катионы $[Pd(NH_3)_4]^{2+}$ и молекулы кристаллизационной воды не показаны.

общая тенденция: в структурах с гептамолибдатанионами ((NH₄)₆Mo₇O₂₄ · 4H₂O и Na₆Mo₇O₂₄ · · 14H₂O) его значения ~164°, а в структурах с гептавольфрамат-анионами значения увеличиваются до 169°.

Значения расстояний *M*–O в структурах 3, 6 и 4 даны в табл. 3 в сравнении с литературными данными. Сравнивая полученные расстояния, следует учитывать, что в структурах с такими "тяжелыми" атомами, как Мо и особенно W, локализация атомов O имеет ограничения.

Так как анионы значительно крупнее комплексных катионов, в первую очередь рассмотрим именно их взаимное расположение. Анализ проведен по методике [18, 19]. Для выделения преимущественного вклада атомов, принадлежащих анионам, была вычислена теоретическая дифрактограмма только по атомам Mo(W) и O. Согласно методике, был проведен анализ индексов троек наиболее интенсивных дифракционных отражений, что свидетельствует об их заселенности тяжелыми атомами. Такой подход был использован, например, при анализе упаковки [Co En_3]₂W₇O₂₄ · 6H₂O [7] и [Pd(NH₃)₄]₃W₇O₂₄ · · 4.4H₂O [6]. В данном случае использование ин-

дексов hkl троек сильнейших отражений (с учетом симметрично-связанных) привело с использованием программы [20] к детерминанту 8, что в 2 раза меньше числа анионов в элементарной ячейке. Это указывает на заметное попарное сближение анионов (ряд таких примеров рассмотрен в [19]). Наиболее симметричная подрешетка образована пересечением семейств плоскостей $\{121\}, \{12\overline{1}\}$ и $\{200\}$. Она построена на вектоpax: $\mathbf{a}_{T} = \mathbf{b}/4 - \mathbf{c}/2$, $\mathbf{b}_{T} = \mathbf{b}/4 + \mathbf{c}/2$, $\mathbf{c}_{T} = \mathbf{a}/2 - \mathbf{b}/4$. Метрики подъячейки – $a_{\rm T} = = b_{\rm T} = 16.85$, $c_{\rm T} = 11.32$ Å, $\alpha_{\rm T} = \beta_{\rm T} = 105.9^{\circ}$, $\gamma_{\rm T} = 129.2^{\circ}$ (для структуры 4) – позволяют рассматривать структуру как повторение псевдогексагональных слоев в направлении а через половину трансляции. Подчеркнем, что узлам найденной подрешетки должны следовать (т.е. располагаться вблизи) сдвоенные анионы. Рассмотрим их реальное расположение в слое $\mathbf{a}_{\mathrm{T}}\mathbf{b}_{\mathrm{T}}$ или bc.

На рис. 3 показано реальное расположение полианионов M_7O_{24} в слое *bc*. Хорошо видно, что полианионы действительно располагаются парами, расстояния *M6*...*M*6 на уровне 5.4 Å (значения даны в табл. 4) значительно меньше параметров элементарной ячейки. Отметим, что расстояние

Рис. 4. Поверхность Хиршвельда двух соседних анионов. На вставке отображены контакты О···H, где d_i (Å) – расстояние от внутреннего атома кислорода до ПХ, d_e (Å) – расстояние от внешнего атома водорода до ПХ.

*М*6...*М*6 увеличивается от 5.35 до 5.41 Å при увеличении доли W. Центры псевдодимеров образуют сетку 16.78 × 16.94 Å с углом 128.0°. Эти характеристики хорошо коррелируют с метриками подъячейки: $a_{\rm T} = b_{\rm T} = 16.85$ Å, $\gamma_{\rm T} = 129.2^\circ$.

В пустотах анионной подрешетки располагаются комплексные катионы $[Pd(NH_3)_4]^{2+}$ и молекулы кристаллизационной воды. Анализ окружения анионов проведен путем построения поверхности Хиршвельда (ПХ). На рис. 4 контраст ПХ соответствует параметру d_{norm} (нормализованное контактное расстояние) в диапазоне от -0.63 до 1.66 Å. Расчет выполнен по программе CrystalExplorer 17.5 [21] с использованием библиотеки квантово-химических расчетов Tonto [22]. Пунктиром показаны контакты О…Н, большинство из которых принадлежит комплексным катионам. Нижняя граница диапазона *d_{norm}* равна –0.63, это означает, что минимальное расстояние между парой атомов внутри и снаружи данной ПХ меньше суммы их ван-дер-ваальсовых радиусов на 0.63 Å. Таким образом, можно говорить о серии сильных водородных связей между концевыми атомами анионов, комплексных катионов и молекул кристаллизационной воды. Вставка на рис. 4 отображает все близкие контакты между отдельными парами атомов в виде точек на 2D-графике. Положение каждой точки по оси абсцисс (d_i , Å) соответствует расстоянию от атома, находящегося внутри ПХ, до ее границы. Аналогично положение точки по оси ординат (d_e , Å) соответствует расстоянию от атома, находящегося снаружи ПХ. Контакты между атомами О аниона и атомами Н занимают 87.1% ПХ. Основная часть контактов О…Н лежит

в области с $d_i < 1.4$ Å и $d_e < 1$ Å, минимальное расстояние от атомов О до ПХ составляет ~1.1 Å, а минимальное расстояние от внешнего атома Н до ПХ – 0.73 Å.

Таким образом, в настоящей работе показано, что при кристаллизации из смеси водных растворов Na₆W₇O₂₄, Na₆Mo₇O₂₄ и [Pd(NH₃)₄](NO₃)₂ образуются кристаллы со смешанной анионной частью – [Pd(NH₃)₄]₃(Mo_{7-x}W_xO₂₄) · 6H₂O. Проведенный PCA 10 кристаллов показал, что они имеют разный состав: соотношение Mo/W варьируется от 6.2/0.8 до 3.6/3.4, а атомы Мо и W располагаются в предпочтительных позициях.

СПИСОК ЛИТЕРАТУРЫ

- Stenzel D., Issac I., Wang K. et al. // Inorg. Chem. 2021. V. 60. P. 115.
- Wang W.S., Zhe L., Xu C.Y. et al. // Cryst. Growth Des. 2009. V. 9. P. 1558.
- 3. Allen F.H. //Acta Cryst. B. 2002. V. 58. P. 380.
- Inorganic Crystal Structure Database. ICSD. Release 2020, Fashinformationszentrum Karlsruhe, D – 1754 Eggenstein – Leopoldshafen, Germany. 2020.
- Khranenko S.P., Sukhikh A.S., Gromilov S.A. // J. Struct. Chem. 2020. V. 61. P. 293.
- Khranenko S.P., Sukhikh A.S., Komarov V.Yu. et al. // J. Struct. Chem. 2020. V. 61. P. 449.
- Kuratieva N.V., Tereshkin I.O., Khranenko S.P. et al. // J. Struct. Chem. 2013. V. 54. P. 1133.
- 8. *Gromilov S.A., Khranenko S.P., Semitut E.Yu. et al.* // Combust. Explos. Shock Waves. 2013. V. 49. P. 238.

- 9. Korenev S.V., Venediktov A.B., Shubi Y.V. et al. // J. Struct. Chem. 2003. V. 44. P. 46.
- Zhao X., Yang F., Chen J. et al. // Nanoscale. 2018.
 V. 10. P. 6922.
- Бурцева К.Г., Кочубей Л.А., Воропанова Л.А., Горбаткова Б.Х. // Журн. неорган. химии. 1981. Т. 26. № 8. С. 2121.
- 12. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3.
- 13. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3.
- 14. Powder Diffraction File. PDF-2. International Centre for Diffraction Data. USA.
- Prescher C., Prakapenka V.B. // High Press. Res. 2015.
 V. 35. № 3. P. 223.

- Savitskii T.M., Tylkina M.A., Khamidov O.Kh. // Rus. J. Inorg. Chem. 1964. V. 9. P. 2738.
- 17. *Shunk F.A.* Constitution of Binary Alloys. Second Supplement. McGraw-Hill Book Company, 1969. 720 p.
- 18. Borisov S.V. // J. Struct. Chem. 1986. V. 27. P. 164.
- Gromilov S.A., Borisov S.V. // J. Struct. Chem. 2003. V. 44. P. 680.
- Gromilov S.A., Bykova E.A., Borisov S.V. // Crystallography Reports. 2011. V. 56. P. 947.
- 21. Turner M.J., McKinnon J.J., Wolff S.K. et al. CrystalExplorer17. 2017. University of Western Australia.
- 22. Jayatilaka D., Grimwood D.J. // Computational Science. ICCS. 2003. № 4. P. 142.