_____ СТРУКТУРА ОРГАНИЧЕСКИХ __ СОЕДИНЕНИЙ

УДК 548.3 + 54.02

СТРУКТУРА ДВУХ АЦЕТИЛЕНОВЫХ ПРОИЗВОДНЫХ САЛИЦИЛОВОЙ КИСЛОТЫ

© 2022 г. С. А. Найферт¹, Д. А. Жеребцов^{1,*}, К. Раджакумар¹, Д. А. Южакова¹, Д. В. Спиридонова², М. А. Полозов¹, А. А. Осипов^{1,**}, А. И. Луценко¹

¹ Южно-Уральский государственный университет, Челябинск, Россия

² Научный парк, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

*E-mail: zherebtsov_da@yahoo.com **E-mail: darkforshine2015@mail.ru Поступила в редакцию 29.08.2021 г. После доработки 05.10.2021 г. Принята к публикации 11.10.2021 г.

Описан синтез метил-2-гидрокси-5-[(триметилсилил)этинил]бензоата и метил-2-гидрокси-5-этинилбензоата, представлены их кристаллографические данные. Особенность структуры обоих соединений — их слоистое строение, являющееся следствием плоской структуры молекул. Вместе с тем плоские молекулы не образуют стопочной упаковки. В метил-2-гидрокси-5-этинилбензоате молекулы в слое связаны между собой водородными связями, в том числе с участием терминального протона этинильной группы. Для обоих соединений приведены ИК-спектры и интерпретированы основные полосы поглощения. Приведен спектр фотолюминесценции метил-2-гидрокси-5-[(триметилсилил)этинил]бензоата: максимум эмиссии в твердом состоянии находится около 566 нм, а в растворе в хлороформе — 500 нм.

DOI: 10.31857/S0023476122030146

ВВЕДЕНИЕ

Салициловая кислота и ее производные широко применяются в медицине и аналитической химии. Ацетиленовые производные салициловой кислоты, такие как метил-2-гидрокси-5-[(триметилсилил)этинил]бензоат (1) и метил-2-гидрокси-5-этинилбензоат (2), были получены ранее [1], однако их структура до сих пор не была известна. Данные соединения являются важными прекурсорами для получения более сложных производных, например, 2 путем окислительной димеризации по реакции Гляйзера может быть преобразован в диметиловый эфир диацетилендисалициловой кислоты, перспективной жесткой линкерной молекулы для синтеза металлоорганических каркасов [2], ковалентных органических каркасов [3], а также графеновых нанолент [4]. В работе приводятся и обсуждаются структуры данных производных салициловой кислоты, а также их ИК-спектры и спектры фотолюминесценции 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез 5-иодсалициловой кислоты (2-гидрокси-5-иодобензойной кислоты). В круглодонную колбу объемом 250 мл поместили 14 г металлического йода (0.055 моль), 100 мл уксусной кислоты, затем добавили 7 г салициловой кислоты (0.05 моль). Через полчаса добавили 13.5 г (NH_4)₂S₂O₈ (0.06 моль), и нагревали смесь при 80°C в течение суток с обратным холодильником. После того как на верхних стенках колбы начал конденсироваться йод, добавили 8 мл CCl₄ для смывания йода со стенок в раствор. Через 24 ч смесь охладили до комнатной температуры. Затем полученный раствор влили в 10%-й водный раствор Na₂SO₃ со льдом для того, чтобы нейтрализовать непрореагировавший йод и выделить целевой продукт, выпадающий в осадок. Раствор отфильтровали через воронку Бюхнера, а полученный осадок серого цвета высушили. Выход продукта составил 12.1 г (95%).

Синтез метилового эфира 5-иодсалициловой кислоты (5-иодметилсалицилата). В круглодонную колбу объемом 250 мл поместили 2-гидрокси-5-иодбензойную кислоту (10.5 г, 39.8 ммоль), 100 мл метанола и 5 мл концентрированного раствора H_2SO_4 . Полученный раствор перемешивали на магнитной мешалке с кипячением в течение 24 ч. Затем смесь охладили до комнатной температуры и отогнали основную часть метанола на роторном испарителе. Далее неочищенную смесь смешали с CHCl₃ и промыли водой. Органическую часть после испарения растворителя очи-

Эмпирическая формула	$C_{13}H_{16}O_3Si$	Эмпирическая формула
М, г/моль	248.35	М, г/моль
<i>Т</i> , К	100(2)	<i>Т</i> , К
Сингония, пр. гр., Z	Триклинная, <i>Р</i> 1, 2	Сингония, пр. гр., Z
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.1105(3), 9.7128(3), 9.9672(2)	a, b, c, Å
α, β, γ , град	101.704(2), 92.679(3), 97.752(3)	β, град
<i>V</i> , Å ³	665.94(4)	$V, Å^3$
$ρ_{pacy}$, $Γ/cm^3$	1.239	$\rho_{\text{расч}}, \Gamma/cM^3$
μ, мм ⁻¹	1.520	μ, мм ⁻¹
F(000)	264.0	<i>F</i> (000)
Размер кристалла, мм	$0.28 \times 0.24 \times 0.2$	Размер кристалла, мм
Излучение; λ, Å	Cu K_{α} ; 1.54184	Излучение; λ, Å
20, град	9.088-139.9	20, град
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-8 \le h \le 8, -10 \le k \le 11,$ $-12 \le l \le 12$	Пределы <i>h</i> , <i>k</i> , <i>l</i>
Количество отражений: измеренных/независи- мых ($N1$), R_{int} , R_{σ} /с $I \ge 2\sigma(I)$ ($N2$)	6988/2490, 0.0284, 0.0327/2259	Количество отражений: измеренных/независи- мых (<i>N</i> 1), R_{int} , R_{σ}/c $I \ge 2\sigma(I)$ (<i>N</i> 2)
Количество параметров	159	Количество параметров
<i>R</i> ₁ / <i>wR</i> ₂ по <i>N</i> 1	0.0387/0.0936	R_1/wR_2 по $N1$
<i>R</i> ₁ / <i>wR</i> ₂ по <i>N</i> 2	0.0355/0.0919	<i>R</i> ₁ / <i>wR</i> ₂ по <i>N</i> 2
S	1.055	S
$\Delta \rho_{min} / \Delta \rho_{max}$, 3 Å ⁻³	-0.24/0.37	$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im Å^{-3}$

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры соединения 1

Таблица 2. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры соединения 2

> 176.16 100(2)

7.14552(18) 90, 95, 436(2), 90

832.82(4)

 $0.14 \times 0.12 \times 0.1$ CuK_a; 1.54184

9.664-139.838

0.0367/0.0923

0.0338/0.0902

5560/1562, 0.0253, 0.0251/1412

 $-8 \le l \le 8$

 $-11 \le h \le 11, -15 \le k \le 15,$

1.405 0.872 368.0 $C_{10}H_8O_3$

Моноклинная, $P2_1/c$, 4

9.1938(2), 12.7346(3),

S	1.073		
$\Delta \rho_{min} / \Delta \rho_{max}$, э Å ⁻³	-0.20/0.19		
7.97 (<i>d</i> , <i>J</i> = 2.1 Гц, 1Н)	, 7.53 (dd , $J = 8.6$, 2.1 Гц,		
111) $f = 0 f = 0 f = 111$ 2.05 (a. 211) 0.24 x a			

120

стили методом колоночной хроматографии (элюент – гексан). Конечный продукт – твердое вещество белого цвета. Выход продукта составил 65%.

Синтез метил-2-гидрокси-5-[(триметилсилил)этинил /бензоата (1). В двугорлую колбу объемом 250 мл поместили 5-иодометилсалицилат (4.00 г, 14.39 ммоль), Pd(PPh₃)₄ (0.16 г, 0.14 ммоль), триметилсилилацетилен (2.54 мл, 17.99 ммоль) и CuI (27 мг, 0.14 ммоль) с добавлением триэтиламина (5 мл) и тетрагидрофурана (30 мл). Смесь перемешивали при 40°С в течение 24 ч в инертной атмосфере (Ar). Полученный раствор промыли водой и экстрагировали хлороформом. После испарения органического растворителя образовалось желтовато-коричневое твердое вещество. Его очистку провели методом колоночной хроматографии (силикагель, элюент – гексан). При испарении гексана были получены кристаллы светло-коричневого цвета (1.1 г, 45%), пригодные для структурного анализа. ¹Н ЯМР-спектроскопия подтвердила строение молекулы 1: ¹H NMR (400 МГц, CDCl₃) δ 10.88 (s, 1 H),

1H), 6.91 (*d*, *J* = 8.6 Гц, 1H), 3.95 (*s*, 3H), 0.24 м.д. (s, 9H).

Синтез метил-2-гидрокси-5-этинилбензоата (2). В коническую колбу объемом 100 мл добавили 28 мл метилового спирта, K₂CO₃ (10 ммоль) и 1.1 г (4 ммоль) метил-2-гидрокси-5-[(триметилсилил)этинил бензоата. Смесь перемешивали при комнатной температуре в течение 12 ч. Затем реакционный раствор отфильтровали и осадок промыли CHCl₃. Полученную смесь промыли водой, экстрагировали CHCl₃, органическую часть осушили с помощью Na₂SO₄. Раствор упарили, при этом удалось найти монокристаллы. Выход составил 0.48 г (61%). ¹Н ЯМР-спектроскопия подтвердила строение молекулы 2: ¹Н NMR (400 МГц, CDCl₃) δ 10.90 (s, 1H), 8.00 (d, J = 2.1 Γμ, 1H), 7.55 (dd, J = $= 8.6, 2.1 \Gamma_{\text{II}}, 1\text{H}, 6.94 (d, J = 8.6 \Gamma_{\text{II}}, 1\text{H}), 3.96 (s, 3\text{H}),$ 2.99 м.д. (s, 1H).

Рентгеноструктурное исследование образцов проведено с использованием монокристального

Рис. 1. Проекция структуры соединения **1** на плоскости: а – *bc*, б – *ac*. Пунктирные линии обозначают водородные связи.

дифрактометра Rigaku XtaLab Synergy-S с детектором HyPix-6000HE (Cu K_{α} , $\lambda = 1.54184$ Å). Температуру съемки 100 К поддерживали с помощью системы Oxford Cryostream 800. ИК-спектры по-

лучены на спектрометре Shimadzu IRAffinity-1S, в качестве матрицы использовали бромид калия. ¹Н ЯМР-спектроскопия проведена на спектрометре Bruker Avance III 400 МГц.

Рис. 2. ИК-спектр соединения 1.

Первичная обработка экспериментальных данных, поправка на поглощение, введенная при помощи алгоритма SCALE3 ABSPACK, выполнены в пакете программ CrysAlisPro [5]. Структуры соединений 1 и 2 решены с использованием программ Olex2 [6], SHELXT [7] и уточнены в анизотропном приближении смещений для всех атомов, кроме водорода с помощью программы SHELXL [8]. Атомы водорода помещали в геометрически рассчитанные положения и уточняли с использованием модели "наездника" ($U_{iso}(H) = nU_{eq}(C)$, где n = 1.5 для CH₃-групп, n = 1.2 для CH- и CH₂-групп).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджский банк структурных данных (№ 2098429 для 1 и № 2098428 для 2; deposit@ccdc.cam.ac.uk; http:// www.ccdc.cam.ac.uk). Кристаллографические данные, параметры эксперимента и уточнения структур соединений 1 и 2 приведены в табл. 1 и 2.

Плоская форма молекул 1 обусловила их упаковку в слоистую структуру (рис. 1). Расстояние между слоями составляет $\sim 3.532(2)$ Å, что несколько больше, чем расстояние между слоями графена в графите (3.35 Å).

Водородные связи в 1 – только интрамолекулярные, между протоном гидроксогруппы и кислородом карбонильной группы. Их длина обу-

КРИСТАЛЛОГРАФИЯ том 67 № 3 2022

словлена геометрией молекулы и составляет 1.872(2) Å.

ИК-спектр соединения 1 (рис. 2) хорошо соответствует его структуре. В ИК-спектре отчетливо видна интенсивная полоса валентных колебаний С=С-связей около 2156 см⁻¹, полоса валентных колебаний С–Н-связей четырех метильных групп около 2957 см⁻¹, широкая полоса валентных колебаний О–Н-связей гидроксогрупп около 3119 см⁻¹, слабая полоса валентных колебаний С–Н-связей ароматического ядра около 2895 см⁻¹, сильная полоса валентных колебаний С=О-связей карбонильных групп около 1682 см⁻¹, многочисленные полосы колебаний других групп и связей между 400 и 1650 см⁻¹.

Особенностью упаковки молекул 2 также является формирование слоистой структуры (рис. 3). Расстояние между слоями составляет ~3.230(2) Å, что меньше, чем в 1 и в графите. Образование слоев становится возможным благодаря плоской жесткой структуре молекул.

Доминирующим фактором формирования слоев является образование сетки водородных связей. Наиболее прочные водородные связи – интрамолекулярные связи между протоном гидроксогруппы и кислородом карбонильной группы. Ее длина обусловлена геометрией молекулы 2, однако по сравнению с 1 она увеличена и составляет 1.878(2) Å. Удлинение этой связи можно объяснить участием как протона, так и карбонильного кислорода в образовании водородных связей с другими атомами. Связывание соседних молекул

Рис. 3. Структура соединения **2**: а – проекция на плоскость *ac*, б – произвольная проекция. Пунктирные линии обозначают водородные связи.

между собой происходит за счет формирования водородных связей между протоном этинильной группы и атомом кислорода той же карбонильной группы. В этом случае длина связи составляет 2.296(2) Å. Именно эти сравнительно короткие

связи формируют цепочки молекул, а цепочки формируют слои. Кратчайший О…Н-контакт между цепочками молекул составляет 2.619(2) Å, что можно интерпретировать как слабую водородную связь.

Рис. 4. ИК-спектр соединения 2.

Рис. 5. Спектр фотолюминесценции соединения **1** в растворе в хлороформе (*1*) и в твердом состоянии (*2*). Длина возбуждающей волны 369 нм.

Снятие триметилсилильной группы в **2** приводит к появлению в ИК-спектре валентных колебаний (H—C≡C) протона при тройной связи около 3260 см⁻¹ (рис. 4). Интересной особенностью спектра является практически полное исчезновение полосы валентных колебаний С≡С-связи, что может быть обусловлено ее малой полярностью после удаления электродонорной триметилсилильной группы. Снятие триметилсилильной группы выразилось и в резком снижении интенсивности полосы С–Н метильных групп около 3002 см⁻¹. Полоса поглощения ОН-группы около 3142 см⁻¹

КРИСТАЛЛОГРАФИЯ том 67 № 3 2022

осталась уширенной. Полоса валентных колебаний С=О-связей карбонильных групп — около 1676 см⁻¹.

Несмотря на то что оба соединения бесцветны, при возбуждении УФ-источником с длиной волны 369 нм, они способны флуоресцировать в голубой области (рис. 5). Максимум эмиссии соединения 1 в твердом состоянии находится около 566 нм, а в растворе в хлороформе — около 500 нм.

ЗАКЛЮЧЕНИЕ

Успешно проведен синтез метил-2-гидрокси-5-[(триметилсилил)этинил]бензоата и метил-2гидрокси-5-этинилбензоата. Отмечены особенности формирования их структур: слоистая упаковка плоских молекул и сетка водородных связей в метил-2-гидрокси-5-этинилбензоате. Образование слоев в структуре не характерно для такого родственного соединения, как их прекурсор 2-гидрокси-5-йодбензоат [9], образующий стопки молекул, связанные галогенными связями йод-кислород.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 21-73-20019). Исследование ¹Н ЯМР выполнено в Научном парке СПбГУ "Магнитно-резонансные методы исследования", а дифракционные исследования — в Научном парке СПбГУ "Рентгенодифракционные методы исследования". ИКспектры получены в научно-образовательном центре Нанотехнологий ЮУрГУ.

СПИСОК ЛИТЕРАТУРЫ

- Takalo H., Kankare J., Haenninen E. // Acta Chem. Scand. B. 1988. V. 42 (7). P. 448.
- Gomez-Gualdron D.A., Gutov O.V., Krungleviciute V. et al. // Chem. Mater. 2014. V. 26. P. 5632. https://doi.org/10.1021/cm502304e
- Huang N., Wang P., Jiang D. // Nat. Rev. Mater. 2016.
 V. 1. Article 16068. https://doi.org/10.1038/natreymats.2016.68
- Li Y.L., Zee C.-T., Lin J.B. et al. // J. Am. Chem. Soc. 2020. V. 142 (42). P. 18093. https://doi.org/10.1021/jacs.0c07657
- 5. CrysAlisPro 1.171.41.103a (Rigaku Oxford Diffraction, 2021).
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 8. *Sheldrick G.M.* // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 9. CCDC №1403121. Y. Wang, R.M. Strongin, F.R. Fronczek. (2015) Private Communication.