——— РОСТ КРИСТАЛЛОВ ——

УДК 548, 538.9

ПОЛУЧЕНИЕ СЛОЖНЫХ ГИДРОСУЛЬФАТОВ РЯДА К₃H(SO₄)₂-Rb₃H(SO₄)₂. ЧАСТЬ II. ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ К₂SO₄-Rb₂SO₄-H₂SO₄-H₂O

© 2022 г. И. С. Тимаков^{1,*}, В. В. Гребенев¹, В. А. Коморников¹, О. Б. Зайнуллин¹, И. П. Макарова¹, Е. В. Селезнёва¹, И. И. Кузьмин²

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ² Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия

> **E-mail: i.s.timakov@gmail.com* Поступила в редакцию 03.09.2021 г. После доработки 10.11.2021 г. Принята к публикации 17.11.2021 г.

Исследованы фазовые равновесия системы $K_2SO_4 - Rb_2SO_4 - H_2O_8$ изотермических условиях (при 25°С). Определены концентрационные границы кристаллизации твердых растворов с общими формулами (K_xRb_{1-x})₂SO₄, (K_xRb_{1-x})₃H(SO₄)₂, (K_xRb_{1-x})₉H₇(SO₄)₈ · H₂O, K_xRb_{1-x} HSO₄ и фазы $K_{0.55}Rb_{0.45}HSO_4$. Выявлены зависимости равновесий насыщенных растворов от исходных условий приготовления. Определены условия получения крупных монокристаллов сложных кислых сульфатов калия–рубидия. Построена диаграмма фазовых равновесий системы.

DOI: 10.31857/S0023476122030225

ВВЕДЕНИЕ

Настоящая работа является продолжением исследований фазовых равновесий в сечении $K_3H(SO_4)_2-Rb_3H(SO_4)_2-H_2O$ четырехкомпонентной системы $K_2SO_4-Rb_2SO_4-H_2SO_4-H_2O$ [1]. Ранее была получена часть ряда твердых растворов $(K_xRb_{1-x})_3H(SO_4)_2$ на основе структуры $Rb_3H(SO_4)_2$. Эти кристаллы относятся к семейству соединений с общей формулой M_mH_n (AO_4)_{(m+n)/2} · yH₂O ($M = NH_4$, K, Rb, Cs; A = P, As, S, Se).

Первыми кристаллами этого семейства, привлекшими пристальное внимание исследователей, были CsHSO₄ и CsHSeO₄ [2]. Их отличительной особенностью являются структурные фазовые переходы ($\Phi\Pi$) при повышенных температурах, приводящие к высокой протонной проводимости.

При ФП значения проводимости σ в кристаллах-суперпротониках возрастают скачкообразно и достигают величин, сопоставимых с проводимостью в расплаве. При этом само соединение по агрегатному состоянию остается твердым. Высокая протонная проводимость этих кристаллов обусловлена в первую очередь особенностями структуры и ее изменениями при повышении температуры [3, 4]. ФП в соединениях $M_m H_n (AO_4)_{(m+n)/2} \cdot yH_2O$, как правило, сопровождается повышением симметрии структуры и разупорядочением протонной подрешетки. Именно трансформация протонной подсистемы в кристаллах при изменении температуры является ключевым структурным фактором, определяющим наблюдаемые физические свойства.

Сочетание свойств высокой протонной проводимости ($\sigma \approx 10^{-3} \text{ Om}^{-1} \text{ cm}^{-1}$) в твердом агрегатном состоянии при умеренных (140–230°С) температурах привлекает внимание к указанному семейству кристаллов с точки зрения возможности использования их в качестве материалов для протонобменных мембран топливных элементов [5, 6].

Отметим, что систематических исследований фазообразования и поиска новых соединений протонных проводников семейства $M_m H_n$ $(AO_4)_{(m+n)/2} \cdot yH_2O$ практически не проводится. Поэтому цель данной работы заключается в изучении фазовых равновесий в четырехкомпонентной системе K₂SO₄-Rb₂SO₄-H₂SO₄-H₂O, исследовании фазообразования и определении условий получения не описанных в литературе сложных гидросульфатов рубидия-калия в виде крупных монокристаллов, пригодных для дальнейшего исследования их физико-химических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали Rb₂SO₄ (марки Ч, TУ 6-09-04-198-83), H₂SO₄ (ОСЧ, ГОСТ 14262-78) и K₂SO₄ (ХЧ, ТУ 6-09-04-201-82). Все реактивы применяли без дополнительной очистки. Метод исследования фазовых равновесий аналогичен методу, примененному в [1].

Изучение фазовых равновесий в системе K_2SO_4 - Rb_2SO_4 - H_2SO_4 - H_2O проводили методом одновременных параллельных кристаллизаций. Данное исследование проводили в специальном лабораторном термостате-шейкере WSB-18 (Witeg Labortechnik, Германия) с подвижным кассетным держателем (для обеспечения перемешивания в термостатируемых сосудах) и программируемым ПИД-регулятором температуры.

Готовили серию маточных растворов в одинаковых герметичных сосудах (кристаллизаторах) с переменным соотношением исходных сухих компонентов и минимальным количеством дистиллированной воды (~5 мл). Затем при температуре, незначительно превышающей комнатную (50°С), проводили определение растворимости навесок компонентов посредством повторяющегося добавления воды малыми порциями (1–5 мл) до получения насыщенных растворов с минимальным содержанием осадка (не более 3–5 кристалликов соли) на дне сосуда.

Дополнительно контроль количества растворенной в насыщенном растворе соли осуществляли по содержанию сульфат-ионов весовым методом, описанным в [7].

После определения растворимости маточные растворы дополнительно выдерживали в течение двух суток при установленной температуре. Такая выдержка необходима для установления в кристаллизаторе динамического межфазного равновесия между насыщенным раствором и осадком. После указанной выдержки температуру кристаллизаторов снижали несколько суток по одинаковой программе до требуемого значения. Образовавшиеся при таком подходе кристаллы имели размеры 2–5 мм и легко отделялись от маточного раствора. Отбор кристаллов для рентгенофазового анализа проводили непосредственно из кристаллизатора с помощью пинцета с тефлоновыми наконечниками.

Элементный анализ кристаллов осуществляли с использованием рентгенофлюоресцентного энергодисперсионного спектрометра Orbis Micro-XRF (EDAX Inc., США) на свежих сколах монокристаллов в вакууме и на воздухе.

Для количественного определения соотношения калия к рубидию в исследуемых кристаллах применяли метод атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (**АЭС-ИСП**). Анализ проводили на АЭС-ИСПспектрометре IRIS Intrepid II XDL Duo (Thermo Electron Corp., США) с СІD-детектором. В качестве стандартных растворов при определении К и Rb использовали многоэлементный калибровочный стандарт ICP-MS 68B solution A ("High-Purity Standards", США) с исходной концентрацией

КРИСТАЛЛОГРАФИЯ том 67 № 3 2022

элементов 100 мг/л. Аналитические линии определяемых элементов выбирали на основании библиотеки программного обеспечения прибора. Использовали следующие аналитические линии: 766.491 нм (порядок спектра 44) при определении калия и 780.023 нм (порядок спектра 43) при определении рубидия. Пробоподготовка образцов для АЭС-ИСП-анализа включала в себя кислотное разложение при комнатной температуре: навески кристаллов массой 10 мг разводили до 50 мл 0.01%-ным раствором дважды перегнанной азотной кислоты, затем аликвоты разбавляли в 10 раз 0.01%-ной азотной кислотой.

Рентгенофазовый анализ (**РФА**) размолотых в порошок монокристаллических образцов выполняли при комнатной температуре на настольном рентгеновском дифрактометре Miniflex 600 (Rigaku, Япония) (Си K_{α} -излучение, непрерывный режим съемки со скоростью 1.0–3.0 град/мин, величина шага 0.01°, в интервале углов 20 5°–75°, неподвижный образец, атмосфера окружающей среды).

РЕЗУЛЬТАТЫ

Результаты, изложенные ранее [1], однозначно указывали на необходимость определения фазовых равновесий в растворах с большим содержанием серной кислоты. Учитывая это, логичным было проведение полноценного исследования фазовых равновесий в широком интервале содержания серной кислоты с целью построения полноценной фазовой диаграммы системы K₂SO₄-Rb₂SO₄-H₂SO₄-H₂O. Для этого в дополнение к сечению при 35.3 мол. % серной кислоты, описанному в [1], были построены сечения при 47.6, 56, 62 и 75 мол. % H₂SO₄ (без учета воды) по девять точек в каждом (с переменным соотношением K:Rb в растворе от 1:9 до 9:1 с шагом в 10%). Помимо этого, для упрощения построения фазовых полей в четырехкомпонентной системе K₂SO₄-Rb₂SO₄-H₂SO₄-H₂O дополнительно исследовали образующие тройные системы K₂SO₄-H₂SO₄-H₂O (в интервале 20-90 мол. % H₂SO₄, без учета воды) и Rb₂SO₄-H₂SO₄-H₂O (в интервале 30-95 мол. % H_2SO_4 , без учета воды).

Определение растворимости проводили при температуре 50° , кристаллизации осуществляли посредством программируемого снижения температуры до 25° .

Более наглядно концентрационные координаты указанных точек на плоскости составов K_2SO_4 - Rb_2SO_4 - H_2SO_4 (без учета воды) показаны на рис. 1.

После проведения кристаллизаций в результате РФА равновесных кристаллов определены области кристаллизаций следующих фаз: непре-

Рис. 1. Концентрационные координаты составов исходных маточных растворов на плоскости составов $K_2SO_4 - Rb_2SO_4 - H_2SO_4$ (в мол. %, без учета воды).

рывные ряды твердых растворов (K_xRb_{1-x})₂SO₄ и $(K_x Rb_{1-x})_3 H(SO_4)_2$; ограниченные ряды твердых растворов ($K_x Rb_{1-x}$)₉H₇(SO₄)₈ · H₂O, $K_x Rb_{1-x}$ HSO₄ со структурой КНSO₄, Rb_xK_{1-x}HSO₄ со структурой RbHSO₄ и ограниченный ряд твердых растворов на основе структуры K_{0.55}Rb_{0.45}HSO₄. Представленные фазы перечислены в порядке увеличения содержания серной кислоты в равновесных маточных растворах, из которых они кристаллизуются. На рис. 2 приведены порошковые дифрактограммы полученных кристаллов индивидуальных фаз и твердых растворов. Результаты, относящие к кристаллам фаз *M*HSO₄, согласуются с известными структурными данными: кристалл КНSO₄ является ромбическим (пр. гр. Pbca, a = 8.415, b = 9.796, c = 18.967 Å, Z = 16) [9]; RbHSO₄ – моноклинным (пр. гр. $P2_1/n$, a = 14.350, *b* = 4.619, *c* = 14.393 Å, β = 118.03°, *Z* = 8) [10]. Кристалл K_{0.55}Rb_{0.45}HSO₄ также является моноклинным (пр. гр. *P*2₁/*c*, *a* = 7.07, *b* = 14.10, *c* = 8.17 Å, β = $= 103.9^{\circ}, Z = 8)$ [11], при этом в упомянутой работе он выделен в отдельный, отличный от KHSO₄ и RbHSO₄, структурный тип. Анализ соотношений щелочных катионов в составе кристаллов, полученных при данном количестве серной кислоты, также указывает на два интервала изменений соотношения K:Rb, разделенных промежуточным значением, по-видимому, относящемуся к фазе $K_{0.55}Rb_{0.45}HSO_4$, табл. 3. Кристаллы твердых растворов (K_xRb_{1-x})₃H(SO₄)₂ и (K_xRb_{1-x})₉H₇(SO₄)₈ · H₂O получены впервые.

Фаза ($K_x Rb_{1-x}$)₂SO₄ является конгруэнтно растворимой при любых значениях параметра х. Для фазы ($K_x Rb_{1-x}$)₃H(SO₄)₂ при изменении параметра х тип растворимости изменяется: при увеличении значения от 0 до 1 тип растворимости меняется с конгруэнтного (в случае $Rb_3H(SO_4)_2$) на инконгруэнтный (в случае К₃H(SO₄)₂). Фаза $(K_x Rb_{1-x})_9 H_7 (SO_4)_8 \cdot H_2 O$ инконгруэнтно растворима при всех рассмотренных значениях параметра х. Ограниченный ряд твердых растворов $K_{x}Rb_{1-x}HSO_{4}$ со структурой KHSO₄ и ограниченный ряд твердых растворов на основе структуры $K_{0.55}Rb_{0.45}HSO_4$ инконгруэнтно растворимы, а ограниченный ряд твердых растворов Rb_xK_{1-x} HSO₄ со структурой RbHSO₄ - конгруэнтно. Дифрактограммы полученных фаз представлены на рис. 2.

Nº 3

2022

Рис. 2. Рентгенофазовый анализ соединений, образующихся в системе $K_2SO_4 - Rb_2SO_4 - H_2SO_4 - H_2O$: *1* – RbHSO₄, *2* – $K_{0.55}Rb_{0.45}HSO_4$, *3* – KHSO₄, *4* – (K,Rb)₉H₇(SO₄)₈ · H₂O, *5* – (K,Rb)₃H(SO₄)₂, *6* – (K,Rb)₂SO₄.

Результаты установления фазовых равновесий, а также концентрационные координаты всех проведенных кристаллизаций в системе K_2SO_4 — Rb_2SO_4 — H_2SO_4 — H_2O изложены в табл. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По результатам РФА равновесных твердых фаз в зависимости от составов исходных растворов можно построить диаграмму фазовых равновесий для рассматриваемой системы $K_2SO_4-Rb_2SO_4-H_2SO_4-H_2O$, рис. 3.

Данная диаграмма содержит восемь точек нонвариантного равновесия: три точки нонвариантных равновесий, обозначенные как e_{K1} , e_{K2} и e_{K3} , принадлежат образующей системе $K_2SO_4-H_2SO_4-H_2SO_4-H_2O$; другие две точки, обозначенные как e_{Rb1} и e_{Rb2} , — образующей системе $Rb_2SO_4-H_2SO_4-H_2O$; и, наконец, оставшиеся три точки нонвариантных равновесий, обозначенные как E_1 , E_2 и E_3 , принадлежат самой четырехкомпонентной си-

КРИСТАЛЛОГРАФИЯ том 67 № 3 2022

стеме K₂SO₄–Rb₂SO₄–H₂SO₄–H₂O. Не менее важными для описания системы точками являются ω_{K2SO4} и ω_{Rb2SO4} , представляющие величины растворимости в воде исходных компонентов, а также точки ω_{KHSO4} и ω_{RbHSO4} , описывающие растворимости соединений KHSO₄ и RbHSO₄ в 100%-ной серной кислоте.

Перечисленные точки соединены шестнадцатью линиями моновариантных равновесий — восемь из них относятся к тройным образующим системам и являются ветвями кристаллизаций фаз K_2SO_4 , $K_3H(SO_4)_2$, $K_9H_7(SO_4)_8 \cdot H_2O$, KHSO₄, Rb_2SO_4 , $Rb_3H(SO_4)_2$, RbHSO₄, а также непрерывного ряда твердых растворов (K_xRb_{1-x})₂SO₄. Еще восемь линий принадлежат четырехкомпонентной системе K_2SO_4 -Rb₂SO₄-H₂SO₄-H₂O и являются линиями совместных кристаллизаций соседствующих фаз. Данные линии разграничивают области (поверхности) кристаллизации

					T			7 +	
Кристал-		Мол	ьные %			Macco	BbIe %		Οαριτινοά πρωτικού μους
лизация	$\rm K_2SO_4$	Rb_2SO_4	H_2SO_4	H_2O	$\rm K_2SO_4$	Rb_2SO_4	H_2SO_4	H_2O	т авповестая твердая фаза
1–3	0.80-2.33	7.24-5.47	4.38-4.26	87.58-87.94	3.41-10.49	47.41-37.79	10.53-10.79	38.65-40.93	(Rb,K) ₃ H(SO ₄) ₂
4	2.85	4.31	3.91	88.92	13.69	31.69	10.56	44.05	$(Rb,K)_3H(SO_4)_2+(Rb,K)_2SO_4$
59	3.03 -4.95	3.05 - 0.55	3.32-3.02	90.59-91.48	16.01 - 29.22	24.71-5.01	9.88-10.02	49.40-55.75	$(Rb,K)_2SO_4$
10-15	0.46-4.02	4.13-2.68	4.07-5.95	91.33-87.34	2.48-19.63	34.21-20.05	12.38-16.32	50.93-43.99	$(Rb,K)_3H(SO_4)_2+(Rb,K)_9H_7(SO_4)_8\cdot H_2O_{10}$
16-18	5.71-8.72	2.45-0.97	7.24-8.59	84.60-81.72	25.65-37.14	16.85-6.32	18.29-20.59	39.22-35.94	$(Rb,K)_3H(SO_4)_2$
19-20	0.94-1.92	8.55-7.75	12.07-12.31	78.43-78.01	3.26-6.69	45.28-41.27	23.47-24.06	27.99	$Rb_xK_{1-x}HSO_4$
21-27	2.34-5.76	5.50 - 0.64	9.98-8.18	82.18-85.41	9.41-28.54	33.88-4.89	22.58-22.83	34.13-43.73	$(Rb,K)_9H_7(SO_4)_8\cdot H_2O$
28 - 30	0.43-1.50	3.90-3.52	7.08-8.22	88.59-86.75	2.20-7.32	30.59-26.36	20.38-22.59	46.83-43.73	$Rb_xK_{1-x}HSO_4$
31	2.04	3.08	8.39	86.48	10.00	23.14	23.13	43.73	$Rb_xK_{1-x}HSO_4 + K_{0.55}Rb_{0.45}HSO_4$
32-33	2.68-2.87	2.70 - 1.93	8.83-7.86	85.79-87.35	12.99–14.89	20.05-15.32	24.05-22.96	42.90-46.83	$K_{0.55}Rb_{0.45}HSO_4$
34-35	3.25-3.95	1.40 - 0.99	7.65-8.12	87.69-86.93	17.34-20.77	11.47 - 8.01	22.93-24.02	48.26-47.20	$(Rb,K)_9H_7(SO_4)_8\cdot H_2O+K_{0.55}Rb_{0.45}HSO_4$
36	4.13	0.46	7.56	87.85	22.76	3.90	23.40	49.94	$(Rb,K)_9H_7(SO_4)_8\cdot H_2O+K_xRb_{1-x}HSO_4$
37-38	0.27-0.55	2.41 - 2.22	8.02-8.32	89.30-88.90	1.50 - 3.10	20.88-19.12	25.51-26.28	52.11-51.51	$Rb_xK_{1-x}HSO_4$
39-40	0.88-1.22	2.07-1.84	8.84-9.18	88.22-87.76	4.85-6.67	17.46-15.44	27.43-28.29	50.26-49.61	$Rb_xK_{1-x}HSO_4 + K_{0.55}Rb_{0.45}HSO_4$
41-42	1.55-1.98	1.56 - 1.33	9.33-9.94	87.56-86.75	8.49-10.65	13.10-10.96	28.80-30.13	49.61-48.26	$K_{0.55}Rb_{0.45}HSO_4$
4344	2.19-2.54	0.94 - 0.64	9.42-9.58	87.44-87.23	12.18-14.19	8.05-5.47	29.51-30.08	50.26	$\mathbf{K}_{0.55}\mathbf{Rb}_{0.45}\mathbf{HSO}_4 + \mathbf{K}_x\mathbf{Rb}_{1-x}\mathbf{HSO}_4$
45	2.73	0.31	9.14	87.83	15.67	2.69	29.54	52.11	$K_x Rb_{1-x} HSO_4$
46-47	3.75-4.34	0.00	0.94-1.86	95.31–93.81	26.57-28.78	0.00	3.74-6.94	64.70 -64.29	K_2SO_4
48-51	6.98-5.91	0.00	4.66–7.22	88.36-86.87	37.29-31.18	0.00	13.99–21.45	48.72-47.37	K ₃ H(SO ₄) ₃
52	5.14	0.00	7.71	87.16	27.81	0.00	23.47	48.72	$K_9 H_7 (SO4)_8 \cdot H_2 O$
53-54	4.61-3.19	0.00	8.57-9.58	86.81-87.23	25.08-18.15	0.00	26.21-30.63	48.72-51.22	KHSO ₄
55-57	0.00	5.21-7.12	2.23-5.83	92.55-87.05	0.00	42.49-47.08	6.69-14.14	50.82-38.78	$Rb_3H(SO_4)_2$
58-63	0.00	7.41-2.84	7.41-8.53	85.18-88.63	0.00	46.69-23.79	17.14-26.21	36.17-50.00	RbHSO ₄

Таблица 1. Концентрационные координаты исследованных точек и фазовые равновесия в системе K₂SO₄-R₂SO₄-H₂SO₄-H₂O

492

ТИМАКОВ и др.

Рис. 3. Вид фазовой диаграммы системы K₂SO₄-Rb₂SO₄-H₂SO₄-H₂O: а – развертка с указанием ключевых точек и линий (стрелками показаны направления изменения составов растворов при сокристаллизации на линиях моновариантного равновесия); б – изометрическая проекция фазовой диаграммы (показаны характерные габитусы кристаллов и размерность образцов).

КРИСТАЛЛОГРАФИЯ том 67 № 3 2022

ТИМАКОВ и др.

Точка (мас. %)		Rb ₂ SO ₄ , мол. %	SO_4 , мол. % H_2SO_4 , мол. % H_2O , мол. % Pавновесие		Равновесие		
	(Mac. 70)	(Mac. 70) (Mac. 70) (Mac. 70)					
ω_{K2SO4}	1.99 (16.4)	$98.1 (83.6) \qquad \qquad K_2SO_4 \leftrightarrow L$			$K_2SO_4 \leftrightarrow L$		
$\omega_{\rm Rb2SO4}$	^v _{Rb2SO4} 3.49 (34.9) 96.51 (65.1)		96.51 (65.1)	$Kb_2SO_4 \leftrightarrow L$			
$\omega_{\rm KHSO4}$	10 (16)*	$\begin{array}{c c} 90 (84)^{*} \\ 95 (60)$		$KHSO_4 \leftrightarrow L$			
$\omega_{\rm RbHSO4}$		$15 (32)^* \qquad 85 (68)^* \qquad RbHSO_4 \leftrightarrow L$					
$e_{\rm K1}$	6.41 (36.77)	$ \begin{bmatrix} 2.94 (9.49) \\ 90.00 (53.74) \\ K_2 SO_4 + K_3 H \\ 6.722 (20.0) \\ 87 133 (47.54) \\ K_2 H(SO_4) + 4 \end{bmatrix} $			$K_2SO_4 + K_3H(SO_4)_2 \leftrightarrow L$		
$e_{\rm K2}$	6.15 (32.46)		6.722 (20.0)	87.133 (47.54)	$K_{3}H(SO_{4})_{2} + K_{9}H_{7}(SO_{4})_{8} \cdot H_{2}O \leftrightarrow L$		
$e_{\rm K3}$	4.92 (26.60)		8.16 (24.84)	86.93 (48.56)	$K_9H_7(SO_4)_8 \cdot H_2O + KHSO_4 \leftrightarrow L$		
$e_{\rm Rb1}$		7.52 (50.52)	3.77 (9.3)	88.72 (40.18)	$Rb_2SO_4 + Rb_3H(SO_4)_2 \leftrightarrow L$		
$e_{\rm Rb2}$		7.41 (46.68)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$Rb_3H(SO_4)_2 + RbHSO_4 \leftrightarrow L$		
E_1	2.33 (10.93)	$\begin{array}{c c} 3.51 (25.3) \\ \hline 8.39 (22.1/) \\ $					
E_2	3.86 (17.75)	2.59 (18.25) 9.27 (24.0) 84.27 (40.0) $K_{0.55}Rb_{0.45}HSO_4 + (K_{1-x}Rb_x)_9H_7(SO_4)_8 \cdot H_2O + Rb_xK_{1-x}HSO_4 \leftrightarrow L$					
E_3	2.25 (9.25)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
Лин	ия (ветвь)			Наблюдае	мое рариоресие		
(со)кри	сталлизации			Паолюдае	мос равновсене		
ω_{K2SO4}	e _{K1}	$K_2SO_4 \leftrightarrow L$					
$e_{\rm K1} - e_{\rm K2}$		$K_3H(SO_4)_2 \leftrightarrow$	→ L				
$e_{\rm K2}-e_{\rm K3}$		$K_9H_7(SO_4)_8$ ·	$H_2O \leftrightarrow L$				
$e_{\rm K3} - \omega_{\rm KH}$	ISO4	$KHSO_4 \leftrightarrow L$					
ω _{Rb2SO4} -	$-e_{\rm Rb1}$	$Rb_2SO_4 \leftrightarrow L$					
$e_{\rm Rb1} - e_{\rm Rb2}$		$Rb_3H(SO_4)_2 \in$	\rightarrow L				
$e_{\rm Rb2} - \omega_{\rm RbHSO4}$		$RbHSO_4 \leftrightarrow L$					
$\omega_{K2SO4} - \omega_{Rb2SO4}$		$(K_x Rb_{1-x})_2 SO_4 \leftrightarrow L$					
$e_{\rm K1} - e_{\rm Rb1}$		$(K_x Rb_{1-x})_2 SO_4 + (K_x Rb_{1-x})_3 H(SO_4)_2 \leftrightarrow L$					
$e_{\rm K2}-E_3$		$(K_x Rb_{1-x})_3 H(SO_4)_2 + (K_x Rb_{1-x})_9 H_7(SO_4)_8 \cdot H_2 O \leftrightarrow L$					
$E_3 - e_{\text{Rb2}}$		$(K_x Rb_{1-x})_3 H(SO_4)_2 + Rb_x K_{1-x} HSO_4 \leftrightarrow L$					
$e_{\rm K3}-E_1$		$(K_x Rb_{1-x})_9 H_7(SO_4)_8 \cdot H_2O + K_x Rb_{1-x} HSO_4 \leftrightarrow L$					
$E_1 - E_2$		$(K_x Rb_{1-x})_9 H_7(SO_4)_8 \cdot H_2 O + K_{0.55} Rb_{0.45} HSO_4 \leftrightarrow L$					
$E_2 - E_3 \qquad (K_x Rb_{1-x})_9 H_7 (SO_4)_8$		$(SO_4)_8 \cdot H_2O +$	\cdot H ₂ O + Rb _x K _{1-x} HSO ₄ \leftrightarrow L				
$E_1 - **$ $K_x Rb_{1-x} HSO_4 + K_{0.55} Rb_{0.45} HSO_4 \leftrightarrow$			$_4 + K_{0.55}Rb_{0.45}$	$HSO_4 \leftrightarrow L$			
$E_2 - **$	$-** \qquad \qquad Rb_{x}K_{1-x}HSO_{4} + K_{0.55}Rb_{0.45}HSO_{4} \leftrightarrow L$						
Область (поверхность) кристалл			ристаллизаци	И	Фаза		
ω_{K2SO4}	$e_{\rm K1} - \omega_{\rm Rb2SO4} - e_{\rm I}$	Rb1			$(K_x Rb_{1-x})_2 SO_4$		
$e_{\rm K1} - e_{\rm K2}$	$-E_3 - e_{\text{Rb2}} - e_{\text{Rb1}}$				$(K_x Rb_{1-x})_3 H(SO_4)_2$		
$e_{\text{K2}} - e_{\text{K3}} - E_1 - E_2 - E_3$					$(K_x Rb_{1-x})_9 H_7 (SO_4)_8 \cdot H_2 O$		

Таблица 2. Основные элементы системы K₂SO₄-Rb₂SO₄-H₂SO₄-H₂O

* Значения установлены с меньшей точностью.

** Координаты точек не определялись.

 $e_{\rm K3} - \omega_{\rm KHSO4} - E_1$ $E_2 - E_3 - e_{\rm Rb2} - \omega_{\rm RbHSO4}$

-*E*₁-*E*₂-

 $K_x Rb_{1-x} HSO_4$

 $Rb_xK_{1-x}HSO_4$

K_{0.55}Rb_{0.45}HSO₄

494

Кристаллизация	Содержание К, ат. %	Содержание Rb, ат. %	Формула
1	2.75	24.62	$(K_{0.9}Rb_{0.1})_3H(SO_4)_2$
2	3.58	16.22	$(K_{0.18}Rb_{0.82})_3H(SO_4)_2$
3	7.75	20.38	$(K_{0.28}Rb_{0.72})_3H(SO_4)_2$
4	10.59	17.64	$(K_{0.38}Rb_{0.62})_3H(SO_4)_2$
15	35.51	19.79	$(K_{0.64}Rb_{0.36})_3H(SO_4)_2$
16	41.75	6.55	$(K_{0.86}Rb_{0.14})_3H(SO_4)_2$
17	43.23	4.87	$(K_{0.90}Rb_{0.10})_3H(SO_4)_2$
18	47.05	2.27	$(K_{0.95}Rb_{0.05})_3H(SO_4)_2$
21	9.38	40.82	$(K_{0.19}Rb_{0.81})_9H_7(SO_4)_8 \cdot H_2O$
22	11.29	41.96	$(K_{0.21}Rb_{0.79})_9H_7(SO_4)_8 \cdot H_2O$
23	15.57	33.1	$(K_{0.32}Rb_{0.68})_9H_7(SO_4)_8 \cdot H_2O$
24	21.04	25.43	$(K_{0.45}Rb_{0.55})_9H_7(SO_4)_8 \cdot H_2O$
25	23.11	22.87	$(K_{0.5}Rb_{0.5})_9H_7(SO_4)_8 \cdot H_2O$
26	27.61	16.54	$(K_{0.63}Rb_{0.37})_9H_7(SO_4)_8 \cdot H_2O$
27	35.92	6.72	$(K_{0.84}Rb_{0.16})_9H_7(SO_4)_8 \cdot H_2O$
37	2.16	35.14	$K_{0.06}Rb_{0.94}HSO_4$
38	4.66	34.27	$K_{0.12}Rb_{0.88}HSO_4$
39	8.53	32.3	$K_{0.21}Rb_{0.79}HSO_4$
40	13.44	25.89	K _{0.34} Rb _{0.66} HSO ₄
41	18.02	20.25	K _{0.47} Rb _{0.53} HSO ₄
42	24.11	14.86	K _{0.62} Rb _{0.38} HSO ₄
43	26.93	11.76	$K_{0.70}Rb_{0.30}HSO_4$
44	36.13	4.54	$K_{0.89}Rb_{0.11}HSO_4$
45	39.53	1.96	K _{0.95} Rb _{0.05} HSO ₄

Таблица 3. Соотношение К : Rb в кристаллах твердых растворов по результатам элементного анализа

следующих фаз: твердых растворов $(K_x Rb_{1-x})_2 SO_4$, $(K_x Rb_{1-x})_3 H(SO_4)_2$, $(K_x Rb_{1-x})_9 H_7(SO_4)_8 \cdot H_2O$; твердых растворов $K_x Rb_{1-x} HSO_4$ со структурой KHSO₄ и $Rb_x K_{1-x} HSO_4$ со структурой RbHSO₄, разделенных областью кристаллизации твердых растворов на основе двойного кислого сульфата состава $K_{0.55} Rb_{0.45} HSO_4$. Более подробно перечисленные элементы диаграммы, их концентрационные координаты и соответствующие фазовые равновесия приведены в табл. 2.

Отдельного пояснения заслуживают некоторые элементы табл. 2. Значения концентрационных координат для точек ω_{KHSO4} и ω_{RbHSO4} установлены с меньшей точностью, нежели для остальных точек системы. Это связано с тем, что увеличение содержания серной кислоты в растворах приводит к образованию расплывающихся на воздухе осадков, что не позволило провести РФА. Поэтому значения ω_{KHSO4} и ω_{RbHSO4} определяли следующим образом: проводили синтез серии растворов K_2SO_4 и Rb_2SO_4 в серной кислоте при содержании последней 80, 85, 90 и 95 мол. %. На-

КРИСТАЛЛОГРАФИЯ том 67 № 3 2022

веска K_2SO_4 полностью растворилась при содержании H_2SO_4 в 90 мол. %, а Rb_2SO_4 – при 95 мол. %. Эти значения использовали при построении диаграммы.

Определение ветви кристаллизации твердых растворов на основе $K_{0.55}Rb_{0.45}HSO_4$ (образующая система $K_2SO_4-Rb_2SO_4-H_2SO_4$) также осложнено расплыванием осадков на воздухе. Поэтому координаты эвтонических точек для этой ветви кристаллизации не определяли, что отмечено в табл. 2.

Помимо определения областей существования твердых растворов $(K_x Rb_{1-x})_3 H(SO_4)_2$, являвшихся первоначальной целью исследования, результаты исследования фазовых равновесий в системе $K_2SO_4-Rb_2SO_4-H_2SO_4-H_2O$ выявили еще одну интересную с точки зрения протонной проводимости систему твердых растворов – $(K_x Rb_{1-x})_9 H_7 (SO_4)_8 \cdot H_2O$. Их область кристаллизации оказалась довольно обширна по соотношению K_2SO_4 : Rb_2SO_4 , табл. 3. Ранее [8, 12, 13] были исследованы и соединение $K_9H_7(SO_4)_8 \cdot H_2O$, и его твердый раствор с аммонием $(K_x(NH_4)_{1-x})_9H_7(SO_4)_8$ ·

• H₂O. Однако область кристаллизации и, соответственно, степень замещения катионов калия катионами аммония была значительно меньше, нежели в случае замещения калия рубидием. Сравнительный анализ структурных параметров и свойств рассматриваемых твердых растворов на основе кристалла $K_9H_7(SO_4)_8 \cdot H_2O$ должны являться объектом отдельного исследования.

Твердые растворы на основе простых кислых сульфатов и фаза $K_{0.55}Rb_{0.45}HSO_4$ также заслуживают отдельного разъяснения.

Из насыщенных растворов, содержащих более 12 мол. % (23 мас. %) серной кислоты (табл. 1), кристаллизуются твердые растворы со структурным типом простых кислых сульфатов – *M*HSO₄.

При этом кристаллизуется не непрерывный ряд твердых растворов, как в случае $(K_x Rb_{1-x})_3 H$ $(SO_4)_2$, а три различные фазы. Это упомянутые твердые растворы $K_x Rb_{1-x} HSO_4$ со структурой KHSO₄ и $Rb_x K_{1-x} HSO_4$ со структурой RbHSO₄, разделенные областью кристаллизации твердого раствора со структурой двойного кислого сульфата $K_{0.55} Rb_{0.45} HSO_4$.

Таким образом, более широкое исследование фазообразования и фазовых равновесий в системе $K_2SO_4-Rb_2SO_4-H_2SO_4-H_2O$ позволило достичь цели, заявленной в [1], а именно: определить концентрационные и температурные условия получения непрерывного ряда твердых растворов (K_xRb_{1-x})₃H(SO₄)₂ (0 $\le x \le 1$).

выводы

По результатам работы построена диаграмма фазовых равновесий для исследуемой четырехкомпонентной водно-солевой системы K_2SO_4 — Rb_2SO_4 — H_2O_4 — H_2O_8 широком интервале содержания серной кислоты (рис. 3).

Определены концентрационные координаты ключевых точек и линий сокристаллизации со-

единений в системе $K_2SO_4-Rb_2SO_4-H_2SO_4-H_2O_4$, а также определены области кристаллизации отдельных фаз системы и их характер растворимости.

В результате проведенных исследований впервые получены монокристаллы твердых растворов $(K_x Rb_{1-x})_3 H(SO_4)_2 и (K_x Rb_{1-x})_9 H_7(SO_4)_8 \cdot H_2O.$

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН. Исследования с использованием АЭС-ИСП проводили в рамках госзадания № 0137-2019-0018.

СПИСОК ЛИТЕРАТУРЫ

- 1. Коморников В.А., Гребенев В.В., Тимаков И.С. и др. // Кристаллография. 2019. Т. 64. № 3. С. 447. https://doi.org/10.1134/S0023476119060109
- 2. Баранов А.И., Шувалов Л.А., Щагина Н.М. // Письма в ЖЭТФ. 1982. Т. 36. № 11. С. 381.
- 3. *Баранов А.И.* // Кристаллография. 2003. Т. 48. № 6. С. 1081.
- 4. *Иванов-Шиц А.К., Мурин И.В.* Ионика твердого тела. В 2 т. СПб.: Изд-во СПбГУ, 2010. Т. 2.
- 5. Norby T. // Nature. 2001. V. 410. P. 877.
- 6. Fitzergerald R. // Physics Today. 2001. V. 54. P. 21.
- Научный совет по аналитическим методам (HCAM). Химико-аналитические методы. Инструкция № 3-Х. Сера. М. 1965.
- Дмитричева Е.В., Макарова И.П., Гребенев В.В. и др. // Кристаллография. 2014. Т. 59. № 6. С. 966.
- Swain D., Row T.N.G. // Inorgan. Chem. V. 47. № 19. P. 8613.
- Nalini G., Row T.N.G. // Phase Trans. 2003. V. 76. № 11. P. 923. https://doi.org/10.1080/0141159031000155482
- 11. *Mumme W.G.* // Acta Cryst. B. 1973. 29. № 5. P. 1076. https://doi.org/10.1107/S0567740873003894
- 12. *Makarova I.P., Grebenev V.V., Selezneva E.V.* // Acta Cryst. B. 2014. V. 70. № 2. P. 218.
- 13. Selezneva E.V., Makarova I.P., Grebenev V.V. // Solid State Ionics. 2014. V. 268. P. 68.