# \_\_\_\_\_ СТРУКТУРА НЕОРГАНИЧЕСКИХ \_\_ Соединений

УДК 548.736

# СИНТЕЗ И СТРУКТУРА МОНОКРИСТАЛЛОВ Sc<sub>2 - x</sub>Tm<sub>x</sub>(BO<sub>3</sub>)<sub>2</sub>

© 2022 г. А. М. Антипин<sup>1,\*</sup>, Е. А. Волкова<sup>2</sup>, В. Н. Ковалев<sup>2</sup>, Е. Ю. Боровикова<sup>2,3</sup>, В. О. Япаскурт<sup>2</sup>

<sup>1</sup>Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия <sup>2</sup>Московский государственный университет им. М.В. Ломоносова, Москва, Россия

<sup>3</sup>Лаборатория природоподобных технологий и техносферной безопасности Арктики, Кольский научный центр РАН, Апатиты, Россия

> \**E-mail: antipin@physics.msu.ru* Поступила в редакцию 12.12.2021 г. После доработки 10.01.2022 г. Принята к публикации 10.01.2022 г.

Впервые методом спонтанной кристаллизации из раствора в расплаве в тройной системе  $Tm_2O_3$ - $Sc_2O_3$ - $BO_3$  получены пластинчатые монокристаллы  $Sc_2_{x}Tm_x(BO_3)_2$ . Их химический состав и структурные особенности изучены методами энергодисперсионного анализа, ИК-спектроскопии и рентгеноструктурного анализа. Установлено, что структурным прообразом соединений является доломит, однако в структуре обнаружены две дополнительные низкозаселенные позиции атомов скандия и дефицит атомов бора.

**DOI:** 10.31857/S0023476122040038

#### **ВВЕДЕНИЕ**

Синтез и комплексные исследования новых кристаллических материалов сложного химического состава – актуальная научная задача. Подобные материалы могут обладать полифункциональными свойствами, необходимыми для создания новейших высокоэффективных технических устройств. Так, использование полифункциональных материалов является одним из способов миниатюризации устройств лазерной магнитоэлектронной техники. К перспективным объектам, обладающим полифункциональными оптои магнитоэлектронными свойствами, относятся бораты редкоземельных элементов, в частности хантитоподобные ортобораты с химической формулой  $RM_3(BO_3)_4$ , где ( $R^{3+} = Y$ , La-Lu,  $M^{3+} = Al$ , Fe, Cr, Ga, Sc) [1-5]. Однако фазообразование скандиевых боратов системы  $R_2O_3$ -Sc<sub>2</sub>O<sub>3</sub>-BO<sub>3</sub> недостаточно изучено.

В [6] методом твердофазного синтеза получена серия скандиевых боратов  $LnSc(BO_3)_2$  для Ln = Y, Но, Ег, Тт, Yb, Lu. В результате рентгенодифрационных исследований поликристаллических образцов показано, что структура соединений соответствует структурному типу кальцита (пр. гр.  $R\overline{3}c$ ), в которой атомы скандия и редкоземельного катиона окружены шестью атомами кислорода, формирующими октаэдры  $LnO_6$  и ScO<sub>6</sub>. Структуру  $LnSc(BO_3)_2$  можно описать как трехмерный каркас, состоящий из связанных вершинами октаэдров LnO<sub>6</sub> и ScO<sub>6</sub>. Каждый атом кислорода участвует в образовании планарных ВО3-треугольников, которые отделяют друг от друга Ln- и Sc-полиэдры в плоскости *ab*. Было указано, что катионы редкоземельных элементов и скандия занимают одну и ту же кристаллографическую позицию. Однако достоверно определить соотношение в ней металлов не удалось. Также в работе были изучены зависимости обратной магнитной восприимчивости соединений LnSc(BO<sub>3</sub>)<sub>2</sub> в диапазоне 100-300 К. Показано, что соединения являются парамагнетиками. В связи с этим синтез и комплексное исследование монокристаллов поликомпонентных систем " $(R_2O_3 - Sc_2O_3 - BO_3)$ растворитель" представляет интерес. Поиск и исследование структурных особенностей и физических характеристик новых соединений этой системы необходимы для совершенствования методики направленного синтеза материалов с заданными физическими свойствами.

# ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы  $Sc_{2-x}Tm_x(BO_3)_2$  получены методом спонтанной кристаллизации из раствора-расплава в интервале температур 990—850°С. Кристаллообразующими компонентами служили оксиды тулия, скандия и бора в соотношении  $Tm_2O_3: Sc_2O_3: B_2O_3 = 1:3:4$ . В качестве растворителя брали вольфрамат лития Li<sub>2</sub>WO<sub>4</sub>, содержание которого в исходной шихте составляло

| Химическая формула                                                   | $Sc_{1.95}Tm_{0.25}B_{1.80}O_6$   |
|----------------------------------------------------------------------|-----------------------------------|
| Пр. гр., Z                                                           | <i>R</i> 3, 3                     |
| <i>a</i> , <i>c</i> , Å                                              | 4.782(1), 15.472(2)               |
| V, Å                                                                 | 1353.3(2)                         |
| <i>D</i> , г/см <sup>3</sup>                                         | 4.020(1)                          |
| Излучение; λ, Å                                                      | $MoK_{\alpha}; 0.71069$           |
| μ, мм <sup>-1</sup>                                                  | 8.67(1)                           |
| <i>Т</i> , К                                                         | 295                               |
| Размер образца, мм                                                   | $0.28 \times 0.24 \times 0.21$    |
| Дифрактометр                                                         | XCalibur Eos S2                   |
| Тип сканирования                                                     | ω                                 |
| Учет поглощения; <i>Т</i> <sub>мин</sub> , <i>Т</i> <sub>макс</sub>  | 0.84222/1.0000                    |
| θ <sub>макс</sub> , град                                             | 45.29                             |
| Пределы $h, k, l$                                                    | $-9 \le h \le 9, -9 \le k \le 9,$ |
|                                                                      | $-30 \le l \le 30$                |
| Число отражений: измерен-                                            | 7432/528/447                      |
| ных/независимых/ $I > 3\sigma(I)$                                    |                                   |
| Метод уточнения                                                      | МНК по <i>F</i> <sup>2</sup>      |
| Число уточняемых                                                     | 29                                |
| параметров                                                           |                                   |
| Учет экстинкции, <i>k</i>                                            | 0.12 (тип 1 Лоренц,               |
|                                                                      | изотропная [10])                  |
| $R/R_w, \%$                                                          | 1.78/6.20                         |
| S                                                                    | 1.00                              |
| $\Delta\rho_{\text{мин}}/\Delta\rho_{\text{макс}}, \Im/\text{\AA}^3$ | -0.56/0.50                        |
| Программы                                                            | CrysAlis [7], Jana2006 [9]        |

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры TmSc(BO<sub>3</sub>)<sub>2</sub>

50 мас. %. При синтезе использовали оксиды  $Tm_2O_3$  и  $Sc_2O_3$  чистотой 99.996%, все остальные реактивы соответствовали стандарту XЧ.

Химический состав монокристалла изучали в Лаборатории локальных методов исследования вещества Геологического факультета при помощи энергодисперсионного спектрометра X-Max<sup>n</sup>-50 (Oxford Instruments Ltd., GB), установленного на базе растрового электронного микроскопа JSM-IT500 (Jeol Ltd., Japan) с вольфрамовым термоэмиссионным катодом (приобретен в рамках "Программы развития МГУ"). Полированный срез кристалла фиксировали в таблетке из эпоксидной смолы и покрывали пленкой углерода толщиной ~25 нм. Анализ состава проведен при ускоряющем напряжении 20 кВ и силе тока электронного зонда 0.7 нА (прямое измерение с применением цилиндра Фарадея). Время накопления спектра (live time) составляло 100 с, "мертвое" время измерительной системы (dead time) – около 25%. В качестве стандартов использовали:

LaB<sub>6</sub> (B –  $K_{\alpha}$ ), Al<sub>2</sub>O<sub>3</sub> (O –  $K_{\alpha}$ ), ScPO<sub>4</sub> (Sc –  $K_{\alpha}$ ), TmPO<sub>4</sub> (Tm –  $L_{\alpha}$ ). Измерение стандартов проводили в тех же условиях, что и анализ исследуемого вещества. В качестве стандарта сравнения использовали металлический Со. Результаты обрабатывали с применением коррекционной поправки по модели XPP-коррекции при помощи программы INCZ, версия 21b (Oxford Instruments Ltd., GB).

Рентгеноструктурные исследования монокристалла проведены на дифрактометре Xcalibur Eos S2 (Mo $K_{\alpha}$ ,  $\lambda = 0.71073$  Å) при комнатной температуре. Для эксперимента были отобраны несколько изометричных монокристаллов без видимых включений и дефектов, линейные размеры которых не превышали 0.3 мм. Образцы подвергались первичному рентгеновскому анализу, в результате которого был выбран кристалл с наилучшими профилями дифракционных пиков и сходимостью интенсивностей эквивалентных по симметрии дифракционных отражений. По результатам предварительных экспериментов составлено задание для полного дифракционного эксперимента в диапазоне в 3.95°-45.29°. Обработку экспериментальных данных, поиск и интегрирование пиков, введение поправок на фактор Лоренца, поляризацию и поглошение (по форме образца) проводили с помощью пакета программ CrysAlisPro [7]. Для исследованного образца определена тригональная элементарная ячейка с параметрами a = 4.7817(1), b = 4.7817(1), c == 15.4747(6) Å, γ = 120°, в рамках которой проиндицировано более 87% всех зарегистрированных отражений, что свидетельствует о достаточно высоком качестве монокристалла. В ходе анализа двумерных сечений обратного пространства сверхструктурные рефлексы не выявлены. Модель кристаллической структуры определена методом charge flipping (переброски заряда) [8] и уточнена по программе Jana2006 [9]. Данные эксперимента, кристаллографические характеристики и результаты уточнения структуры представлены в табл. 1. Информация об исследованной структуре депонирована в Банк данных неорганических структур: ICSD/ CCDC № 2128030.

ИК-спектр образца  $Sc_{2-x}Tm_x(BO_3)_2$ , приготовленного методом тонкодисперсных пленок на подложке КВг, получен на ИК-фурье-спектрометре ФСП-1201 в диапазоне частот 4000—400 см<sup>-1</sup> со спектральным разрешением ~2 см<sup>-1</sup>. Область 1450—4000 см<sup>-1</sup> не содержит полос поглощения, что свидетельствует об отсутствии молекул воды или ионов гидроксила в структуре исследуемого соединения.



**Рис. 1.** Карты разностной электронной плотности, построенные в окрестности позиции атома бора: a - ha начальном этапе уточнения, шаг изолинии  $0.5 \text{ s/Å}^3$ ; 6 - ha заключительном этапе уточнения, шаг изолинии  $0.3 \text{ s/Å}^3$ .

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Из раствора-расплава получены прозрачные пластинчатые монокристаллы тулий-скандиевого бората размером до 2 мм. При анализе их состава была рассчитана усредненная химическая формула  $Sc_{1.78(2)}Tm_{0.34(2)}B_{1.82(4)}O_6$  (расчет на шесть атомов O).

Базовая модель кристаллической структуры, включающая в себя две позиции атомов скандия, позицию атома бора и позицию атома кислорода, найдена с помощью утилиты Superflip [8] и соответствует структурному типу доломита [11]. Уточнение координат атомов и их тепловых параметров в анизотропном приближении привело к значениям факторов расходимости R = 8.96%,  $R_w = 22.99\%$ , S = 3.63 и величинам остаточной электронной плотности  $\Delta \rho_{\text{мин}} = -2.56$  и  $\Delta \rho_{\text{макс}} = 11.89$  э/Å<sup>3</sup>. Наибольшие пики остаточной электронной плотности обнаружены в позициях Sc1 и Sc2. Уточнение заселенности этих позиций привело к значениям 1.43 и 1.42 для Sc1 и Sc2 соответственно, что свидетельствует о присутствии более тяжелого катиона в обеих позициях атомов скандия. Исходя из близости ионных радиусов  $r(Sc^{3+}) = 0.745$  и r(Tm) = 0.88 Å было сделано предложение, что атомы тулия располагаются в позициях скандия. Их учет привел к снижению значений факторов расходимости и величин остаточной электронной плотности вблизи смешанных позиций Sc1/Tm1 и Sc2/Tm2. Полученная на данном этапе уточнения модель кристаллической структуры согласуется с моделью [6] для соединения TmCr(BO<sub>3</sub>)<sub>2</sub>. В ходе дальнейшего анализа распределения электронной плотности были выявлены два наиболее значимых пика 7.64 и 7.35 э/Å<sup>3</sup>, соответствующих частным положениям (рис. 1а). Эти же пики были обнаружены на картах электронной плотности, построенных по



**Рис. 2.** Карты электронной плотности, построенные по экспериментальным структурным факторам вблизи позиции атома бора, шаг изолинии  $3 \Rightarrow / A^3$ .

экспериментальным структурным факторам, что дополнительно свидетельствует об отсутствии навеленных ошибок и наличии материи в этой позиции (рис. 2). Кроме того, в позиции атома бора В1, находящейся между максимумами, выявлен минимум электронной плотности –1.93 э/Å<sup>3</sup> (рис. 1а). Каждый из обнаруженных максимумов окружен шестью атомами кислорода на расстояниях ~1.90 Å (три расстояния) и ~2.14 Å (три расстояния). Попытка локализовать в этой позиции атомы тулия не увенчалась успехом. В то же время подобное кислородное окружение часто встречается у атомов скандия [12-14], что позволяет предположить наличие дополнительных позиций скандия в структуре. Учет двух скандиевых позиций Sc3 и Sc4 в анизотропном приближении параметров атомных смещений привел к существенному снижению факторов расходимости и уменьшению пиков остаточной электронной плотности (рис. 1б). Факторы заселенности вновь обнаруженных катионных позиций, вычисленные методом наи-

**Таблица 2.** Координаты атомов, значения заселенности позиций (q) и эквивалентные тепловые параметры ( $U_{3KB}$ ) атомов в структуре Sc<sub>1.95</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub>

| Атом       | x/a       | y/b       | z/c       | q        | $U_{_{ m ЭKB}},{ m \AA}^2$ |
|------------|-----------|-----------|-----------|----------|----------------------------|
| Sc1        | 0.3333    | 0.6667    | 0.1667    | 0.868(4) | 0.008(1)                   |
| Tm1        | 0.3333    | 0.6667    | 0.1667    | 0.132(4) | 0.008(1)                   |
| Sm2        | 0.6667    | 0.3333    | 0.3333    | 0.869(4) | 0.008(1)                   |
| Tm2        | 0.6667    | 0.3333    | 0.3333    | 0.131(4) | 0.008(1)                   |
| Sc3        | 1         | 1         | 0.3333(4) | 0.05(1)  | 0.007(1)                   |
| Sc4        | 1         | 1         | 0.3333(4) | 0.05(1)  | 0.007(1)                   |
| <b>B</b> 1 | 1         | 1         | 0.2499(1) | 0.90(1)  | 0.008(1)                   |
| 01         | 0.7106(1) | 0.7106(1) | 0.2498(1) | 1        | 0.011(1)                   |
|            |           |           |           |          |                            |

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

меньших квадратов (МНК), близки и составили около 5%. Введение в модель кристаллической структуры дополнительных позиций атомов скандия привело к нарушению электронейтральности химической формулы соединения, поэтому следующим шагом стало одновременное уточнение параметров заселенности всех атомных позиций. Суммарная заселенность двух смешанных позиций Sc1/Tm1 и Sc2/Tm2 равна единице, а их соотношение практически не изменилось, как и заселенность позиции атома кислорода O1 (табл. 2). Был выявлен дефицит атомов бора – заселенность их позиций составила 90%. Таким образом, суммарная заселенность трех катионных позиций B1, Sc3 и Sc4, рассчитанная МНК без ввода дополнительных условий и ограничений, равна единице (табл. 2). Выявленный дефицит атомов В<sup>3+</sup> компенсирует присутствие дополнительных катионов Sc<sup>3+</sup> и делает химическую формулу изученного кристалла электронейтральной. В соответствии с параметрами заселенности атомных позиций рассчитана итоговая химическая формула исследованного монокристалла Sc<sub>1.95(2)</sub>Tm<sub>0.25(1)</sub> B<sub>1.80(2)</sub>O<sub>6</sub>. Дефицит атомов бора и избыток атомов скандия в структуре хорошо согласуются с данными, полученными в результате химического анализа образцов. Итоговые параметры уточнения представлены в табл. 1, координаты атомов, их тепловые параметры и факторы заселенности позиций в табл. 2.

В изученной структуре атомы скандия и тулия окружены шестью атомами кислорода, а атомы бора находятся в кислородном треугольнике (табл. 3). Модель кристаллической структуры удобно представить в виде налагающихся решеток основной матрицы  $Tm_xSc_{2-x}(BO_3)_2$ , соответствующей структурному типу доломита, и решеток, в которых отсутствуют атомы бора, а пустоты

между основными позициями Sc1/Tm1 И Sc2/Tm2 заняты полиэдрами ScO<sub>6</sub> (рис. 3). Расстояние между позицией атома бора и позициями атомов скандия Sc3 и Sc4 составляет всего ~1.6 Å. и в соответствии со значениями заселенности этих позиций атомы бора и сканлия распределены в структуре статистически (рис. 4). В решетках основной матрицы скандиевые полиэдры соединяются вершинами в соответствии с расположением полиэдров в структуре доломита. Интересно, что в решетках с избытком скандия полиэдры соединяются друг с другом гранями. Такое расположение катионных полиэдров встречается редко и для атомов скандия обнаружено впервые. В соответствии с третьим правилом Полинга соединение полиэдров по граням снижает устойчивость структуры, однако в изученном кристалле количество таких решеток невелико.

В ИК-спектре образца Sc<sub>1.95</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub> представлены полосы внутренних колебаний треугольников BO<sub>3</sub>. Их анализ для структур ScBO<sub>3</sub> (пр. гр.  $R\overline{3}c$ , фактор-группа  $D_{3d}$ , симметрия позиции атома бора  $D_3$ ) и Sc<sub>1.95</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub> (пр. гр.  $R\overline{3}$ , фактор-группа C<sub>3i</sub>, симметрия позиции атома бора  $C_3$ ) приведен в табл. 4. Таким образом, в ИКспектре Sc<sub>1.95</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub> должны наблюдаться четыре полосы колебаний:  $2A_u(v_1, v_2) + 2E_u(v_3, v_4)$ , а в спектре ScBO<sub>3</sub> в области валентных симметричных колебаний V<sub>1</sub> фактор-групповой анализ не предсказывает активных колебаний. В экспериментальном ИК-спектре присутствуют одиночные полосы валентных симметричных V<sub>1</sub> (935 см<sup>-1</sup>) и деформационных асимметричных  $v_4$  $(637 \text{ см}^{-1})$  колебаний и заметно расшепление полос валентных асимметричных  $v_3$  (1262, 1202 см<sup>-1</sup>) и деформационных симметричных  $v_2$  (775, 746 см<sup>-1</sup>) колебаний (рис. 5). Расщепление полос колебаний v2 также наблюдалось ранее в спектрах ортоборатов со структурным типом кальцита (пр. гр. R3c), в том числе в спектре ScBO<sub>3</sub> [15], а расщепление одновременно полос колебаний  $v_2$  и  $v_3$  – в ИКспектре минерала норденшельдина CaSn(BO<sub>3</sub>)<sub>2</sub>, изоструктурного доломиту (пр. гр.  $R\overline{3}$ ) [16]. Это явление было объяснено влиянием разных изотопов бора, содержащихся в естественной смеси (~19.8% В<sup>10</sup> и ~80.2% В<sup>11</sup>), и доказано экспериментально с помощью варьирования изотопного состава бора в кристаллах синтезированных ортоборатов [15]. В области валентных симметричных колебаний наблюдается слабая полоса 935 см<sup>-1</sup>, появление которой предсказано фактор-групповым анализом при понижении симметрии структуры от  $R\overline{3}c$  до  $R\overline{3}$ . Также характерной особенностью ИК-спектра Sc<sub>195</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub> является сдвиг наиболее интенсивной полосы колебаний

**Таблица 3.** Межатомные расстояния в структуре  $Sc_{1.95}Tm_{0.25}B_{1.80}O_6$ 

| Атомы       | Расстояние, Å       |
|-------------|---------------------|
| Sc1/Tm11–O1 | 2.136(1) × 6        |
| Sc2/Tm2-O1  | $2.143(1) \times 6$ |
| B1-O1       | $1.384(1) \times 3$ |
| B1–Sc3      | 1.292(6)            |
| B1–Sc4      | 1.287(6)            |
| Sc3-O1      | $1.894(4) \times 3$ |
| Sc3-O1      | $2.143(4) \times 3$ |
| Среднее     | 2.0185              |
| Sc4-O1      | $1.889(4) \times 3$ |
| Sc4–O1      | $2.138(4) \times 3$ |
| Среднее     | 2.0135              |

**Таблица 4.** Анализ внутренних колебаний треугольных групп  $BO_3$  в структуре  $Sc_{1.95}Tm_{0.25}B_{1.80}O_6$ 

| Тип<br>колебаний | Группа идеального<br>треугольника ВО <sub>3</sub><br><i>D</i> <sub>3h</sub> | Симметрия<br>треугольной<br>группы ВО <sub>3</sub><br>С <sub>3</sub> | Фактор<br>группы<br><i>C</i> <sub>3i</sub> |
|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|
| $v_1$            | $A'_{l}$                                                                    | A                                                                    | $A_g + A_u$                                |
| $v_2$            | $A_{l}^{"}$                                                                 | Α                                                                    | $A_g + A_u$                                |
| $v_3$            | E'                                                                          | E                                                                    | $E_g + E_u$                                |
| $\nu_4$          | E'                                                                          | E                                                                    | $E_g + E_u$                                |

 $v_3$  в область меньших волновых чисел по сравнению со спектром ScBO<sub>3</sub>. Изменение волнового числа валентных колебаний ионов в треугольниках BO<sub>3</sub> определяется силовыми постоянными связей B–O, которые пропорциональны валентным усилиям связи и, следовательно, обратно пропорциональны длине валентной связи B–O [17–20]. Таким образом, уменьшение частоты валентных колебаний отражает увеличение расстояний B–O в борном треугольнике, что соответствует экспериментальным данным: расстояние B–O в структуре ScBO<sub>3</sub> – 1.3752(5) Å [19], в синтезированном Sc<sub>1.95</sub>Tm<sub>0.25</sub> B<sub>1.80</sub>O<sub>6</sub> – 1.384(1) Å.

В [6] методом порошковой рентгеновской дифракции была изучена серия хромовых и скандиевых боратов с различными редкоземельными металлами. В работе сообщалось, что прообразом



**Рис. 3.** Проекция модели кристаллической структуры на плоскость: а – *ac*, б – *ab*.

хромовых боратов  $LnCr(BO_3)_2$  (Ln = Y, Ho, Er, Tm, Yb, Lu) является доломит, а скандиевых  $LnSc(BO_3)_2$  (Ln = Y, Ho, Er, Tm, Yb, Lu) – кальцит. Полученная в настоящей работе модель кристаллической структуры Sc<sub>1.95</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub> отличается от модели структуры [6]. В первую очередь различия связаны с размерами элементарных ячеек изученных кристаллов и определением структурного прообраза. Кроме того, в настоящей работе локализованы дополнительные позиции атомов скандия и

выявлен дефицит атомов бора. В [6] была определена пр. гр.  $R\overline{3}c$ , однако полученные в настоящей работе монокристаллы соответствуют пр. гр.  $R\overline{3}$ . Существенные различия в описанных моделях кристаллических структур позволяют предположить наличие полиморфизма в этих кристаллах, однако этот вопрос требует дальнейшего изучения.

Эксперименты по синтезу и анализ структурных особенностей выполнены при финансовой поддержке Российского научного фонда (грант



Рис. 4. Расположение кислородных полиэдров Sc1/Tm1, Sc2/Tm2, Sc3, Sc4 и В.



Рис. 5. ИК-спектр Sc<sub>1.95</sub>Tm<sub>0.25</sub>B<sub>1.80</sub>O<sub>6</sub>.

№ 19-12-00235), как и спектроскопические исследования (грант № 20-77-10065). Рентгеноструктурные исследования выполнены с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Министерства науки и высшего образования РФ в рамках госзадания ФНИЦ "Кристаллография и фотоника" РАН.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Leonyuk N.* // Prog. Cryst. Growth Charact. Mater. 1995. V. 31. P. 279.
- Kuz'Micheva G.M., Kaurova I., Rybakov V.B., Podbel'Skiy V.V. // Crystals. 2019. V. 9. P. 100.

3. *Leonyuk N.I., Maltsev V.V., Volkova E.A. et al.* Ytterbium and Erbium Co-doped Rare-Earth Aluminum Borate Crystals as New Materials for Eye-Safe Lasers: Flux Growth and Characterization // Handbook of Ecomaterials. / Eds. Martínez L.M.T. et al. Springer Int. Publ., 2018.

https://doi.org/10.1007/978-3-319-48281-1\_118-1

- 4. Demesh M., Gorbachenya K., Kisel V. et al. // OSA Continuum. 2021 V. 4. P. 822.
- Kuzmin N.N., Maltsev V.V., Volkova E.A. et al. // Inorg. Mater. 2020. V. 56. P. 828.
- Doin Yo., Satou T., Hinatsu Yu. // J. Solid State Chem. 2013. V. 206. P. 151.
- Rigaku Oxford Diffraction, CrysAlis Pro Software System, Version 41\_64.119a Rigaku Corporation, Oxford, UK, 2018.

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

- 8. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604.
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345.
- 10. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- Vicat J., Aléonard S. // Mater. Res. Bull. 1968. V. 3. P. 611. https://doi.org/10.1016/0025-5408(68)90093-7
- 12. Thompson P.D., Huang J.-F., Smith R.W., Keszler D.A. // J. Solid State Chem. 1991. V. 95. P. 126.
- 13. Dismukes J.P., White J.G. // Inorg. Chem. 1964. V. 3. P. 1220.
- 14. Горюнов А.В., Кузьмичева Г.М., Мухин Б.В. и др. // Журн. неорган. химии. 1996. Т. 41. № 10. С. 1605.
- Steele W.C., Decius J.C. // J. Chem. Phys. 1956. V. 25. P. 1184.

- Li D., Peng M., Bancroft G.M. // Can. Mineral. 1994. V. 32. P. 81.
- Kraka E., Larsson J.A., Creme D. Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes // Computational Spectroscopy: Methods, Experiments and Applications / Ed. Grunenberg J. Willey–VCH Verlag, 2010. Ch. 4. P. 105. https://doi.org/10.1002/9783527633272.ch4
- Hardcastle F., Wachs I. // Solid State Ionics. 1991. V. 45. P. 201. https://doi.org/10.1016/0167-2738(91)90153-3
- Zhang Y., Hanson D.M. // J. Chem. Phys. 1987. V. 86. P. 666.

https://doi.org/10.1063/1.452267

20. Keszler D.A., Sun H. // Acta Cryst. C. 1988. V. 44. P. 1505. https://doi.org/10.1107/s0108270188005086