_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 548.736

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО ПРЕДСТАВИТЕЛЯ СЕМЕЙСТВА ВОДНЫХ ДИФОСФАТОВ – $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$

© 2022 г. А. И. Евдокимов^{1,2,*}, А. М. Антипин², О. А. Гурбанова¹, А. С. Волков¹, О. В. Димитрова¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия

²Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия *E-mail: andrewevd17@gmail.com

Поступила в редакцию 26.11.2021 г. После доработки 08.02.2022 г. Принята к публикации 08.02.2022 г.

Впервые методом гидротермального синтеза при T = 553 К и P = 7 МПа получены монокристаллы нового соединения (NH₄)₂[Mg₃(P₂O₇)₂(H₂O)₂], относящегося к семейству водных дифосфатов с общей формулой A_2M_3 [P₂O₇]₂(H₂O)₂, где A = K, NH₄, Rb, Na, M = Mn, Fe, Co, Ni. Новое соединение имеет параметры элементарной ячейки a = 9.3047(2), b = 8.0843(2), c = 9.3655(3) Å, $\beta = 100.225(1)^{\circ}$. Модель кристаллической структуры определена в рамках пр. гр. $P2_1/c$ с точностью до R = 0.0235. Впервые для соединений этого структурного типа получены спектры комбинационного рассеяния, подтверждены вхождение молекулы воды в структуру (NH₄)₂[Mg₃(P₂O₇)₂(H₂O)₂] и образование сложных фосфатных групп P₂O₇.

DOI: 10.31857/S0023476122040075

ВВЕДЕНИЕ

Долгое время считали, что в природе могут образовываться только ортофосфаты, однако эксперименты по синтезу полифосфатов в условиях, соответствующих природным гидротермам [1], а также открытия гипергенных минералов – канафита $Na_2CaP_2O_7 \cdot 4H_2O$ [2], вулдриджита $Na_2CaCu_2(P_2O_7)_2 \cdot 10H_2O$ [3], канонеровита $MnNa_3P_3O_{10} \cdot 12H_2O$ [4] и хилброунита $MgNa_3P_3O_{10} \cdot 12H_2O$ [5] – продемонстрировали возможность образования сложных фосфатов.

Впервые структурный тип, к которому относится новое соединение $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2],$ был описан в 1990 г. [1]. Он включает в себя дифосфаты с общей формулой $A_2M_3[P_2O_7]_2$ (H₂O)₂, где A = K, NH₄, Rb, Na, M = Mn, Fe, Co, Ni. Катионы М имеют октаэдрическое окружение и вместе с группировками Р2О7 и молекулами воды формируют слои. Межслоевое пространство занимает щелочной катион А. Известно, что соединения этого структурного типа могут обладать функциональными свойствами. Так, в работе [6], посвященной исследованию аммоний-марганцевого члена данного семейства, показано, что при температуре выше 30 К магнитная восприимчивость соединения отвечает уравнению Кюри-Вейса с $\mu_{pop} = 5.74(1)\mu_B$ и $\theta = -21.3$ К, что согласуется с наличием высокоспиновых ионов Mn²⁺ и антиферромагнитных взаимодействий.

Таким образом, синтез, исследование строения и физических свойств новых дифосфатов представляют значительный интерес и могут помочь в изучении минералообразования фосфатов в природных гидротермальных обстановках. В настоящей работе представлены результаты синтеза и комплексных исследований нового магниевого представителя данного семейства кристаллов методами рентгеноспектрального, рентгеноструктурного анализов и спектроскопии комбинационного рассеяния света (**KPC**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Новый гидратированный дифосфат магнияаммония $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$ получен в гидротермальных условиях в системе MgCl₂: NH₄ H₂PO₄ при массовом соотношении компонентов 1:1, что соответствует 1 г (10.503 ммоль) MgCl₂ и 1 г (8.69 ммоль) NH₄H₂PO₄. Эксперимент проведен в течение 14 дней в стальных автоклавах объемом 6 мл, футерованных фторопластом, при T = 553 К и $P = 7 \text{ M}\Pi a$, степень заполнения автоклава водой составляла 80%. После выключения печи кристаллы были промыты теплой дистиллированной водой, просушены и отобраны для дальнейших исследований с использованием бинокулярного микроскопа. Монокристаллы новой фазы представляют собой моноклинные бесцветные прозрачные призмы длиной до 0.2 мм.

Химическая формула	$(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$
Сингония, пр. гр., Z	Моноклинная, <i>Р</i> 2 ₁ / <i>с</i> , 2
<i>a</i> , <i>b</i> , <i>c</i> , Å	9.3047(2), 8.0843(2), 9.3655(3)
β, град	100.225(1)
$V, Å^3$	693.30(1)
<i>D</i> , г/см ³	2.3611
μ, мм ⁻¹	0.779
Излучение λ, Å	$MoK_{\alpha}, 0.71073$
<i>Т</i> , К	295
Размер образца, мм	$0.1 \times 0.06 \times 0.025$
Дифрактометр	Xcalibur Eos S2
Тип сканирования	ω
$\theta_{_{MUH}}$ — $\theta_{_{MAKC}}$, град	3.35-53.6
Пределы h, k, l	$-21 \le h \le 21, -18 \le k \le 18, \\ -20 \le l \le 20$
Число отражений: измеренных/независи- мых, <i>R</i> _{int} / <i>I</i> > 3σ(<i>I</i>)	58981/2172, 0.069/1872
Метод уточнения	МНК по <i>F</i> ²
Число уточняемых параметров	120
Экстинкция, <i>k</i>	0.17 (тип II, изотропная [10])
R_1/wR_2	0.0235/0.0537
S	1.05
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.28/0.26
Программы	CrysAlisPro [7], Jana2006 [9], VESTA [11]

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$

572

Качественный химический анализ проведен с помощью электронного микроскопа Jeol JSM-6480LV, оснащенного энергодисперсионным рентгеновским спектрометром INCA Energy-350. Показано, что в состав фазы входят атомы N, Mg, P и O.

Рентгеноструктурные исследования монокристалла проведены на дифрактометре Xcalibur Eos S2 (Мо K_{α} , $\lambda = 0.71073$ Å) при комнатной температуре. Для проведения рентгенодифракционного эксперимента были отобраны монокристаллы, линейные размеры которых не превышали 0.1 мм. Об-

разцы подвергали первичному рентгеноструктурному исследованию, в результате которого был выбран кристалл с наилучшими профилями дифракционных пиков и сходимостью интенсивностей эквивалентных по симметрии дифракционных отражений. По результатам предварительных экспериментов составлено задание для проведения полного дифракционного эксперимента. Обработка экспериментальных данных, поиск и интегрирование пиков, введение поправок на фактор Лоренца, поляризацию и поглощение (по форме образца) проведены с помощью пакета программ CrysAlisPro [7]. Модель кристаллической структуры определена и уточнена с применением метода charge flipping (переброски заряда) [8] с помощью программного комплекса Jana2006 [9]. Данные эксперимента, кристаллографические характеристики и результаты уточнения структуры представлены в табл. 1. Информация об исследованной структуре депонирована в Банк данных неорганических структур: ICSD/CCDC № 2150548.

Спектры КРС получены на спектрометре LabRam HR800 Evolution, оснащенном конфокальным микроскопом Olympus BX-FM. Съемку образца проводили при комнатной температуре с использованием Ar-лазера ($\lambda L = 488$ нм) и дифракционной решетки с разрешением 1800 штр/мм при пятидесятикратном увеличении.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгеноструктурный анализ. Структура соединения определена в рамках пр. гр. $P2_1/c$. Наиболее тяжелые атомы структуры – Mg и P – локализованы с помощью утилиты Superflip [8]. Кислородное окружение атомов магния и фосфора определено исходя из положений максимумов электронной плотности на картах разностных синтезов Фурье, расположенных на расстояниях 2.00-2.20 и 1.50-1.64 Å соответственно. При дальнейшем анализе карт разностных синтезов Фурье в полости, образованной восемью атомами кислорода, на расстоянии 3.54 Å от позиции P1 выявлен максимум электронной плотности. Положение данного пика соответствует позиции щелочного металла в структуре $K_2Co_3[P_2O_7]_2(H_2O_7)_2$ [1] или позиции азота в катионе NH₄⁺ в структуре (NH₄)₂Mn₃[P₂O₇]₂(H₂O)₂ [6]. Исходя из этого и данных химического анализа в настоящей работе сделано предположение, что обнаруженный максимум соответствует позиции азота в ионе NH₄⁺. Атомы водорода локализованы геометрически как вершины тетраэдра с атомом N1 в центре. Учет этих позиций привел к существенному снижению факторов расходимости и величин остаточной электронной плотности. Согласно [1, 6] в кристаллах данного структурного типа атом О2,

Атом	Позиция Уайкова	x/a	y/b	<i>z/c</i>	$U_{_{ m ЭKB}}$, Å ²
P1	4 <i>e</i>	0.208(1)	0.436(1)	0.261(1)	0.008(1)
P2	4 <i>e</i>	0.403(1)	0.699(1)	0.209(2)	0.007(1)
Mg2	4 <i>e</i>	0.372(1)	0.359(1)	0.001(1)	0.009(1)
Mg1	2b	0.5	0.5	0.5	0.009(1)
O 1	4 <i>e</i>	0.056(1)	0.445(1)	0.294(1)	0.015(1)
O2	4 <i>e</i>	0.767(1)	0.518(1)	0.164(1)	0.018(1)
O3	4 <i>e</i>	0.213(1)	0.347(1)	0.119(1)	0.012(1)
O4	4 <i>e</i>	0.322(1)	0.376(1)	0.388(1)	0.012(1)
O5	4 <i>e</i>	0.247(1)	0.629(1)	0.233(1)	0.011(1)
O6	4 <i>e</i>	0.461(1)	0.577(1)	0.110(1)	0.010(1)
O 7	4 <i>e</i>	0.493(1)	0.702(1)	0.363(1)	0.010(1)
O 8	4 <i>e</i>	0.371(1)	0.866(1)	0.139(1)	0.011(1)
N1	4 <i>e</i>	0.942(1)	0.219(1)	0.019(1)	0.023(1)
H1n1	4 <i>e</i>	0.931(1)	0.141(1)	0.080(1)	0.033(1)
H2n1	4 <i>e</i>	1.021	0.275	0.052	0.027
H3n1	4 <i>e</i>	0.950	0.176	-0.065	0.027
H4n1	4 <i>e</i>	0.867	0.284	0.008	0.027
H1o2	4 <i>e</i>	0.718	0.467	0.232	0.045
H2o2	4 <i>e</i>	0.860	0.540	0.216	0.036

Таблица 2. Координаты атомов, значения заселенности позиций (q) и параметры атомных смещений ($U_{_{3KB}}$) атомов в структуре (NH₄)₂[Mg₃(P₂O₇)₂(H₂O)₂]

Примечание. Параметры заселенности всех позиций равны единице.

участвующий в окружении Mg2, образует молекулу воды. В настоящей работе положения атомов водорода, участвующих в образовании молекулы воды, рассчитаны геометрически. Введение молекулы воды в модель структуры сделало итоговую формулу соединения электронейтральной – $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$. На заключительном этапе уточнения структурной модели введена поправка на вторичную экстинкцию согласно формализму Беккера–Коппенса [10]. Координаты базисных атомов, эквивалентные параметры атомных смещений структуры даны в табл. 2. Значения межатомных расстояний приведены в табл. 3.

Новое соединение $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$ является членом семейства дифосфатов с общей формулой $A_2M_3[P_2O_7]_2(H_2O)_2$, где A = K, NH_4 , Rb, Na, M = Mn, Fe, Co, Ni, Mg. B [12] представлена зависимость изменения параметров a и b от типа катиона в позициях A и M. Параметр a элементарной ячейки зависит от сорта одновалентного катиона, занимающего межслоевое пространство. Для соединений с аммонием характерен больший параметр a, для соединений с калием — меньший. Кроме того, прослеживается зависимость параметра b элементарной ячейки от величины ионного радиуса катиона M. С увеличением ионного

Таблица 3. Межатомные расстояния в структуре $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$

Связь	Длина, Å	Связь	Длина, Å	
Mg1O ₆ -октаэдр		Mg2O ₆ -октаэдр		
Mg1–O4	$2.055(1)\times 2$	Mg2–O2	2.076(1)	
Mg1–O7	$2.072(1)\times 2$	Mg2–O3	2.000(1)	
Mg1-O8	$2.199(1) \times 2$	Mg2–O4	2.186(1)	
$\langle Mg1-O \rangle$	2.109 × 2	Mg2-O6	2.126(1)	
Р1О ₄ -тетраэдр		Mg2-O6	2.079(1)	
P1-01	1.502(1)	Mg2–O7	2.065(1)	
P1-O3	1.518(1)	$\langle Mg2-O \rangle$	2.089	
P1-O4	1.529(1)	$H_2O(\angle H - O - H = 104.02)$		
P1-05	1.630(1)	O2-H1o2	0.945(1)	
$\langle P1-O \rangle$	1.545	O2-H2o2	0.934(1)	
Р2О ₄ -тетраэдр		NH ₄ -тетраэдр (∠N−H = 109.47°)		
P2-O5	1.636(1)	N1-H1n1	0.813	
P2-O5	1.523(1)	N1-H2n1	0.87	
P2-O5	1.528(1)	N1-H3n1	0.87	
P2-O5	1.511(1)	N1-H4n1	0.87	
$\langle P2-O\rangle$	1.545	$\langle N1-H \rangle$	0.856	

ЕВДОКИМОВ и др.

· 1 1 1	1 1	2 51	2 /12 2 /2	
Соединение	<i>a</i> , <i>b</i> , <i>c</i> , Å; β, град	$\langle M$ –O \rangle , Å	r_M/r_A , Å	Ссылка
$(NH_4)_2[Ni_3(P_2O_7)_2(H_2O)_2]$	9.408(7), 7.985(9), 9.235(3); 100.26(1)	2.064	0.69/1.55	[13]
$(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$	9.304(7), 8.084(3), 9.365(5); 100.22(5)	2.099	0.72/1.55	Настоящая работа
$K_2[Co_3(P_2O_7)_2(H_2O)_2]$	9.122(4), 8.110(1), 9.229(2); 99.31(4)	2.110	0.74/1.51	[1]
$K_2Fe_3(P_2O_7)_2(H_2O)_2$	9.152(2), 8.174(2), 9.315(2); 98.86(3)	2.140	0.78/1.51	[14]
$(NH_4)_2Fe_3(P_2O_7)_2(H_2O)_2$	9.413(1), 8.194(1), 9.399(1); 99.65(1)	2.147	0.78/1.55	[15]
$(NH_4)_2[Mn_3(P_2O_7)_2(H_2O)_2]$	9.477(1), 8.356(6), 9.461(1); 99.91(9)	2.194	0.83/1.55	[6]
$Rb_2[Mn_3(P_2O_7)_2(H_2O)_2]$	9.374(1), 8.367(1), 9.437(1); 99.12(1)	2.193	0.83/1.61	[16]

Таблица 4. Кристаллографические характеристики соединений A_2M_3 [P₂O₇]₂(H₂O)₂

Примечание. Оригинальные данные [1] преобразованы в соответствии со стандартной установкой пр. гр. $P2_1/c$, Z = 2.

Таблица 5. Частота сдвига и интенсивность спиральных линий (NH₄)₂[Mg₃(P₂O₇)₂(H₂O)₂] по результатам спектроскопии комбинационного рассеяния света

Сдвиг КРС, см ⁻¹	Интенсивность	Отнесение
55	Очень слабый	τ-колебания, внешние
85	Очень слабый	колебания
105	Средний	
122	Слабый	
234	Слабый	
310	Очень слабый	
330	Слабый	δΡΟΡ
344	Слабый	
380	Очень слабый	ρ ΡΟΡ
393	Очень слабый	
723	Очень сильный	
734	Сильный	v _{as} POP
758	Очень сильный	v _s POP
772	Сильный	
786	Очень сильный	
802	Очень сильный	
821	Слабый	
2637	Слабый	$v NH_4$
3722	Слабый	ν H ₂ O

Примечание. $\tau-$ крутильные колебания, $\delta-$ деформационные колебания, $\rho-$ маятниковые колебания.

радиуса в ряду Ni²⁺-Mg²⁺-Co²⁺-Fe²⁺-Mn²⁺ увеличивается параметр *b* в структурах от 7.98 Å в дифосфатах никеля до 8.36 Å в дифосфатах марган-

ца. Таким образом, новый магниевый дифосфат, изученный в настоящей работе, хорошо укладывается в эту закономерность (табл. 4).

Рис. 1. Проекция кристаллической структуры $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$ на плоскость *ac*.

Рис. 2. Октаэдры MgO₆ двух типов в структуре (NH₄)₂[Mg₃(P₂O₇)₂(H₂O)₂].

Модель кристаллической структуры дифосфата магния состоит из слоев $[Mg_3(P_2O_7)_2(H_2O)_2]^{2-}$, параллельных плоскости *bc*, и катионов NH_4^+ , занимающих полости межслоевого пространства. Отметим, что в [1] выбрана нестандартная установка *P*2₁/*a*, что приводит к несоответствию ориентации слоев относительно осей *a*, *b*, *c* в настоящей работе и в [1]. Слои сложены направленными вдоль оси *b* зигзагообразными цепочками, состоящими из MgO₆-октаэдров двух типов. Атом Mg1 расположен в центре инверсии, а Mg2 – в общей позиции. Кислородные октаэдры Mg2O₆

Рис. 3. Слой $[Mg_3(P_2O_7)_2(H_2O)_2]^{2-}$ с диортогруппами P_2O_7 и зигзагообразными цепочками из MgO_6 в проекции *bc*.

более искаженные (рис. 2, табл. 3). Октаэдры двух типов соединяются друг с другом по ребрам (рис. 2), а сами цепочки соединяются по вершинам с диортогруппами P_2O_7 , в которой фосфор занимает две разные общие позиции (рис. 3). Атомы водорода, входящие в катион NH_4^+ , образуют водородные связи с атомами кислорода — вершинами фосфорных тетраэдров, а также с атомами кислорода, соединяющими полиэдры MgO6 и PO4 (рис. 1). Атомы водорода молекулы воды связаны со "свободными" вершинами PO₄-тетраэдров и с общими вершинами MgO₆-октаэдров и PO₄-тетраэдров. Таким образом осуществляется связывание слоев.

Спектроскопия комбинационного рассеяния свеma. Для нового соединения $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$ в пределах волновых чисел от 0 до 4000 см⁻¹ получен спектр КРС (рис. 4). Обработка экспериментального спектра проведена по программе Spectragryph [17]. В литературе не обнаружено спектров КРС, относящихся к данному структурному типу. В связи с этим интерпретация пиков возможна только на основе данных рентгенодифракционных экспериментов и спектров КРС других дифосфатов. Наиболее интенсивные пики находятся в диапазоне частоты сдвига КРС 720-820 см⁻¹ (табл. 5). Линии 734 и 758 см⁻¹ относятся соответственно к асимметричным (v_{as}) и симметричным (v,) растяжениям мостиковых связей Р-О-Р [18, 19]. Пики, лежащие в интервале до 350 см⁻¹, скорее всего связаны с внешними, торсионными и деформационными колебаниями [19], а пик при 3722 см⁻¹ связан с колебаниями связи О-Н в молекулах воды [20, 21].

Рис. 4. Спектр КРС $(NH_4)_2[Mg_3(P_2O_7)_2(H_2O)_2]$. На вставке – увеличенная область, выделенная прямоугольником.

Таким образом, в работе впервые синтезировано новое магниевое соединение из группы $A_2M_3[P_2O_7]_2(H_2O)_2$, изучены его химический состав и структуры. Показано, что модель кристаллической структуры состоит из слоев, сложенных октаэдрами MgO₆ и группировками P₂O₇ и разделенных крупными катионами NH⁴₄. Впервые методом спектроскопии КРС получены данные о соединении структурного семейства, к которому относится новая фаза (NH₄)₂[Mg₃(P₂O₇)₂(H₂O)₂], подтверждающие вхождение молекулы воды в структуру, а также наличие группировки P₂O₇. В дальнейшем представляет интерес продолжить изучение фазообразования полимеризованных фосфатов в различных системах.

Рентгеноструктурные исследования выполнены с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Министерства науки и высшего образования РФ в рамках госзадания ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Lightfoot P., Cheetham A.K., Sleight A.W. // J. Solid State Chem. 1990. V. 85 (2). P. 275.
- Rouse R.C., Peacor D.R., Freed R.L. // Am. Mineral. 1988. V. 73. P. 168.
- Cooper M.A., Hawthorne F.C. // Can. Mineral. 1999. V. 37. P. 73.
- Popova V.I., Popov V.A., Sokolova E.V. et al. // N. Jb. Miner. Mh. 2002. V. 3. P. 117.
- Elliott P., Brugger J., Caradoc-Davies T., Pring A. // Mineral. Mag. 2013. V. 77. № 3. P. 385.

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

- 6. Chippindale A.M., Gaslain F.O.M., Bond A.D., Powell A.V. // J. Mat. Chem. 2003. V. 13. № 8. P. 1950.
- Agilent Technologies. CrysAlisPro Software System, Version 41_64.119a. Agilent Technologies Limited. Oxford. England.
- 8. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604.
- Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. B. 229. № 5. S. 345.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- 11. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272.
- Кирюхина Г.В. Кристаллические структуры ряда синтетических аналогов минералов с амфотерными металлами: Дис. ... канд. геол.-мин. наук. М.: МГУ, 2016.
- Wei Y., Gies H., Tian Zh. et al. // Inorg. Chem. Commun. 2010. V. 13. P. 1357.
- Yang J., Zhang X., Liu B. et al. // Acta Cryst. E. 2012. V. 68. P. 47.
- Liu B., Zhang X., Wen L., Huang Y.-X. // Acta Cryst. E. 2012. V. 68. P. 5.
- Кирюхина Г.В., Якубович О.В., Димитрова О.В., Волков А.С. // Кристаллография. 2016. Т. 61. № 5. С. 774.
- Menges F. Spectragryph Optical Spectroscopy Software. Version 1.2.15. 2020.
- http://www.effemm2.de/spectragryph
 18. Parajón-Costa B.S., Mercader R.C., Baran E.J. // J. Phys. Chem. Solids. 2013. V. 74. № 2. P. 354.
- 19. Harcharras M., Ennaciri A., Capitelli F., Mattei G. // Vibr. Spectr. 2003. V. 33. № 1. P. 189.
- 20. Raman Data and Analysis. Raman Spectroscopy for Analysis and Monitoring. Horiba Limited. Japan.
- 21. Stefov V., Soptrajanov B., Kuzmanovski I. et al. // J. Mol. Struct. 2005. V. 752. P. 60.