———— ОБЗОРЫ ———

УДК 548.736.6

КРИСТАЛЛОХИМИЯ МИНЕРАЛОВ ГРУППЫ ЛАБУНЦОВИТА

© 2022 г. Р. К. Расцветаева^{1,*}, Н. В. Чуканов²

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ²Институт проблем химической физики РАН, Черноголовка, Россия

> **E-mail: rast@crys.ras.ru* Поступила в редакцию 12.11.2021 г. После доработки 24.12.2021 г. Принята к публикации 27.12.2021 г.

Минералы группы лабунцовита привлекают внимание исследователей не только разнообразием химического состава и вариациями структурных типов, но и физическими свойствами, которые могут иметь практический интерес. В обзоре описаны химический состав и структуры природных титанои ниобосиликатов группы лабунцовита. Обсуждается связь кристаллохимических особенностей этих минералов с их свойствами, а также закономерностями изоморфизма и генезиса. Изучение минералов группы лабунцовита и их синтетических аналогов является предпосылкой для получения микропористых материалов с различными свойствами.

DOI: 10.31857/S0023476122040142

ОГЛАВЛЕНИЕ

Введение

1. Общая характеристика минералов группы лабунцовита

1.1. Топология, плотность и устойчивость смешанного каркаса

1.2. Симметрия, параметры ячейки и конфигурация каркаса

1.3. Химический состав и силовые характеристики катионов

1.4. Цеолитные полости

1.5. Систематика и номенклатура

2. Структуры минералов

3. Кристаллохимические особенности минералов группы лабунцовита

ВВЕДЕНИЕ

Минералы группы лабунцовита (МГЛ) вызывают интерес как прототипы микропористых материалов с широкими вариациями химического состава и разнообразием структурных типов. Эти минералы известны в 14 щелочных комплексах, из которых семь находятся на территории России (включая Хибинский и Ловозерский агпаитовые комплексы, где описана большая часть МГЛ), а также в Гренландии, Норвегии, США, Канаде и ЮАР. Зачастую МГЛ являются главными концентраторами Nb, Ti, Ba и Zn в гидротермально измененных щелочных горных породах [1].

Лабунцовит и родственные ему минералы обладают микропористыми структурами на основе каркасов гетерополиэдрического строения и подобно цеолитам могут использоваться в качестве сорбентов, материалов с ионообменными свойствами, носителей для катализаторов, а также в связи с их возможным использованием в качестве адсорбентов радионуклидов (таких как ⁹⁰Sr) из водных растворов [2, 3]. В зависимости от условий кристаллизации МГЛ могут характеризоваться как разупорядочением внекаркасных катионов. так и высокой степенью их упорядочения, что является важной предпосылкой для высокой селективности в ионообменных процессах. Например, минералы со структурным типом гутковаита благодаря наличию большого числа позиций и большого числа внекаркасных катионов, которые занимают собственные позиции, являются "сверхэффективными сепараторами" щелочных и щелочноземельных катионов.

На протяжении последних десятилетий предпринимаются попытки синтеза мезо- и микропористых материалов с различными свойствами как на основе данного топологического типа [2— 7], так и ряда других микропористых титано- и ниобосиликатов [8]. В патенте [9] ненадкевичит представлен как материал, который может быть использован в качестве сорбента катионов радиоактивных изотопов ряда металлов (Cs, Sr, Co).

Первый синтез аналога МГЛ был осуществлен в 1996 г. в гидротермальных условиях [2, 3] и дал серию образцов со структурой ненадкевичита и отношением Ті: Nb от 0.8 до 12.3, а также безниобиевую фазу, отвечающую коробицыниту с составом конечного титанового члена этого ряда. По порошковым дифрактограммам и физическим свойствам, а также по химическому составу (внекаркасный катион – натрий) полученные материалы аналогичны природным минералам подгруппы ненадкевичита (пр. гр. *Pbam*, a = 7.41, b == 14.20, c = 7.15 Å). Впоследствии аналоги МГЛ были синтезированы в ряде других работ [2–7]. Синтетическое соединение $K_2(NbO)_2Si_4O_{12}$ [4, 10], имеющее с МГЛ ряд общих кристаллохимических особенностей. привлекает внимание своими свойствами. Это соединение инертно, термически стабильно и не растворяется в неорганических кислотах, кроме HF. Этот материал плавится при температуре 1180°C, не претерпевая при нагреве полиморфных превращений. Он проявляет нелинейно-оптические свойства и характеризуется более эффективной, чем у кварца, генерацией второй гармоники. Кроме того, это соединение является ферроэлектрическим материалом с низкими диэлектрическими параметрами.

С одной стороны, по разнообразию и совершенству кристаллов МГЛ значительно превосходят синтетические аналоги, поэтому структура и свойства именно природных МГЛ вызывает сегодня основной практический интерес. С другой стороны, химический состав и особенности структуры этих минералов являются важными типоморфными признаками, отражающими условия минералообразования в щелочных пегматитах и гидротермалитах.

До 1998 г. на основании данных о химическом составе, оптических и рентгенографических характеристиках было принято различать два лабунцовитоподобных минеральных вида: собственно лабунцовит (моноклинный, с преимущественным содержанием Ті по сравнению с Nb и высоким содержанием двухвалентных катионов Mg^{2+} , Mn^{2+} , Fe^{2+}) и ненадкевичит – минерал с преимущественным содержанием Nb по сравнению с Ті и низким содержанием двухвалентных катионов, представленный двумя разновидностями (моноклинной и ромбической). Такое положение долгое время сохранялось, несмотря на ряд публикаций [11–15]. Множество новых находок, сделанных в последующие годы, и массовое применение электронно-зондового метода определения катионного состава привели к пониманию того, что кристаллохимия и минералогия "лабунцовитов" и "ненадкевичитов" значительно сложнее, чем это представлялось ранее. Возникла необходимость в проведении новых структурных исследований, в результате которых был открыт ряд новых минеральных видов, родственных лабунцовиту и различающихся симметрией, химическим составом и характером упорядочения

внекаркасных катионов. В 1998 г. был открыт и официально утвержден третий минерал с лабунцовитоподобной структурой — вуориярвит [16]. Затем были открыты леммлейнит — высококалиевый аналог лабунцовита, не содержащий двухвалентных катионов [17], и коробицынит — титановый аналог ненадкевичита [18]. После этого утверждение новых МГЛ было приостановлено из-за отсутствия четких критериев выделения минеральных видов в пределах этой группы.

На основе новых данных была разработана номенклатура этих минералов, основанная на их кристаллохимической систематике [19], после чего Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации (КНМНК ММА) был утвержден ряд новых МГЛ, данные о которых обобщены в монографии [20]. Однако за время, прошедшее с момента выхода монографии, накопился значительный объем новых данных о кристаллохимии и свойствах МГЛ и был открыт ряд новых минералов этой группы, что послужило причиной написания настоящего обзора.

Минералы группы лабунцовита характеризуются чрезвычайно широкими вариациями конфигурации каркаса, симметрии, катионного упорядочения и химического состава. К настоящему времени известны 30 минералов этой группы, прошедших апробацию в Комиссии по новым минералам, номенклатуре и классификации Международной минералогической ассоциации (КНМНК), а также ряд потенциально новых минеральных видов и большое число кристаллохимических разновидностей.

В предлагаемом обзоре собраны данные о кристаллических структурах, кристаллохимических особенностях и некоторых свойствах МГЛ.

1. ОБЩАЯ ХАРАКТЕРИСТИКА МИНЕРАЛОВ ГРУППЫ ЛАБУНЦОВИТА

1.1. Топология, плотность и устойчивость смешанного каркаса

Лабунцовитоподобные минералы обладают уникальной структурой, в основе которой лежит каркас смешанного типа, включающий в себя бесконечные цепочки связанных вершинами $MØ_6$ -октаэдров (Ø = O, OH), преимущественно занятых атомами титана или ниобия (иногда с примесью Fe³⁺), и четырехчленные кольца кремнекислородных тетраэдров (рис. 1). Связь между тетраэдрами SiO₄ и $MØ_6$ -октаэдрами осуществляется через общие O-вершины, а между $MØ_6$ -октаэдрами – через общие (O,OH)-вершины. Каркас этого топологического типа известен только у МГЛ. В структуре риппита K₂(NbO)₂Si₄O₁₂ [21] и его синтетического аналога [4, 10] цепочки связанных вершинами октаэдров NbO₆ также соеди-

Рис. 1. Объединение цепочек Ті-центрированных октаэдров четырехчленными кольцами кремнекислородных тетраэдров.

няются через кольца Si_4O_{12} , однако октаэдрические цепочки развернуты друг относительно друга так, что кольца, объединяя восемь общих атомов кислорода с соседними октаэдрами, параллельны октаэдрическим цепочкам, а их плоскости располагаются перпендикулярно друг другу.

В структурах некоторых моноклинных представителей группы лабунцовита присутствуют дополнительные DO_6 -октаэдры ($O = O, H_2O$), "сшивающие" цепочки октаэдров MO_6 и связанные с ними через общие ребра O–O, в результате образуется гетерополиэдрический квазикаркас – наиболее устойчивая часть структуры, не участвующая в ионообменных реакциях (рис. 2).

В большинстве моноклинных МГЛ DO_6 -октаэдр заселен двухвалентными катионами Mn^{2+} , Fe²⁺, Mg^{2+} и Zn^{2+} , входящими в структуру в виде комплекса $[R(H_2O)_2]^{2+}$, в котором молекулы воды занимают соседнюю внекаркасную позицию *C*. Однако это возможно лишь в том случае, когда позиция *C* не занята катионом. Одновременное вхождение K(Ba) в *C* и, соответственно, R^{2+} в *D* привело бы к слишком короткому расстоянию K(Ba)– R^{2+} , равному около 2.1 Å, что нереально из-за кулоновского отталкивания. Таким образом, в структуре лабунцовита сталкиваемся с интересным случаем альтернативного изоморфизма:

$$2(K,Ba) + \Box \leftrightarrow 2H_2O + (Mn,Fe,Mg,Zn).$$

Непрерывный изоморфизм по этой схеме в лабунцовитах реализуется во всем диапазоне заполнения катионами позиций *С* и *D*. Эта особен-

Рис. 2. Трансформация цепочек MO_6 -октаэдров (M = = Nb) при переходе от ромбической структуры к моноклинной в результате объединения соседних цепочек дополнительным октаэдром.

ность, а также возможность широких взаимных замещений катионов в позициях C и D предопределяют значительную вариативность состава лабунцовитов и изоструктурных с ними МГЛ. Аналоги лабунцовитов с преимущественно вакантной D-позицией образуют подгруппу леммлейнита. В их структурах внекаркасные катионы также упорядочены. В случае вхождения в позицию D более крупных катионов (Са или Sr) ее координационное число может увеличиваться до 7 или 8. В позиции D двух МГЛ (вуориярвите-К и гьердингените-Na) доминируст натрий.

В неупорядоченных МГЛ (членах подгрупп вуориярвита, цепинита и парацепинита) катионы Mn^{2+} , Fe²⁺, Mg²⁺ и Zn²⁺ отсутствуют или присутствуют в незначительных количествах, тогда как катионы щелочных и щелочноземельных элементов и молекулы воды занимают множественные не полностью заселенные внекаркасные позиции.

По аналогии с цеолитами плотность каркаса может быть рассчитана как количество позиций Si + (Ti,Nb) на 1000 Å³. Эта величина составляет для лабунцовитов около 17, а с учетом "сшивающих" октаэдрических позиций — около 18—19. Эти значения сопоставимы с плотностями алюмосиликатных каркасов в цеолитах, которые составляют от 12 до 22 атомов на 1000 Å³ и позволяют рассматривать МГЛ как минералы с микропористыми структурами.

Главное структурное отличие микропористых титано- и ниобосиликатов (в том числе МГЛ) от

Рис. 3. Структура лабунцовита-Fe при нормальном давлении (а) и 22.5 ГПа (б).

цеолитов заключается в том, что в формировании их гетерополиэдрических каркасов наряду с кремнием участвует не алюминий, а октаэдрически координированные атомы переходных элементов, в первую очередь Ті и Nb.

Чтобы установить пределы устойчивости каркаса и механизм его деформации при высоких давлениях, было проведено исследование лабунцовита-Fe с параметрами ячейки a = 14.2584(4), b = 13.7541(6), c = 7.7770(2) Å, $\beta = 116.893(3)^{\circ}, V =$ = 1360.22(9) Å³ в камере с алмазными наковальнями с применением методов рентгенографии монокристаллов и спектроскопии комбинационного рассеяния света [22]. Было установлено, что гетерополиэдрический цеолитоподобный каркас лабунцовита-Fe (рис. 3) в этих условиях стабилен во всем диапазоне давлений (вплоть до 22.5 ГПа): топология каркаса сохранялась, фазовые переходы не наблюдались, а плотность увеличилась от 3.0578 до 3.6315 г/см³. Установлено также, что с увеличением давления параметры ячейки изменяются вдоль оси с больше, чем в двух других направлениях, и при 22.5 ГПа они принимают значения a = 13.3417, b = 13.0162, c = 7.0497 Å, $\beta =$ = 115.6806°, V = 1103.313 Å³. Колонки из Ті-центрированных октаэдров сохраняют устойчивость несмотря на то, что угол M2-M1-M2 с увеличением давления уменьшается от 170.0° до 165.1° и искривление колонок увеличивается. С ростом давления наблюдается также существенное увеличение угла *M*1–O_{*h*}–*M*2. При этом кремнекислородные кольца сильно искажаются. Четырехугольник, образованный атомами кремния кольца Si₄O₁₂, становится не плоским. Три неэквивалентных угла Si-O-Si уменьшаются в разной степени: от 128.5° до 117.3°, от 142.1° до 128.1° и от 132.6° до 120.6°. Однако при деформации каркаса положение внекаркасных катионов остается относительно стабильным.

Термическая стабильность каркаса лабунцовитового типа в температурном интервале 25-375°С изучена на примере леммлейнита-Ва – аналога лабунцовита с преимущественно вакантной позицией *D* и преобладанием бария над калием в позиции С [23]. При нагревании этого минерала до температуры 275°С наблюдалось термическое расширение кристалла, при котором объем элементарной ячейки линейно возрастал с ростом температуры по закону $V = 1349.87 + 42 \times 10^{-3} T [Å^3]$. Термическое расширение сопровождалось увеличением угла В элементарной ячейки и происходило в основном в плоскости моноклинности, тогда как в направлении [010] (вдоль оси *b* располагаются цеолитные каналы) наблюдалось лишь незначительное расширение. При дальнейшем нагревании (в диапазоне температур 275-375°С) вследствие дегидратации наблюдалось сжатие каркаса (в основном за счет параметра b).

Подобное поведение при нагревании наблюдали и в случае лабунцовита-Mg [23]. В обоих случаях каркас проявлял высокую степень эластичности и сохранял свою целостность при нагревании, в том числе на стадии дегидратации.

1.2. Симметрия, параметры ячейки и конфигурация каркаса

По симметрии среди минералов группы лабунцовита выделяются ромбические и моноклинные члены. Ромбические члены представлены ненадкевичитом и его Ті-аналогом — коробицынитом. Структура ромбических минералов характеризуется отсутствием "сшивающих" $DØ_6$ -октаэдров и наличием двух однотипных внекаркасных позиций *A*, заселенных преимущественно натрием (иногда с примесью кальция). Общая формула этих минералов A_6 (Nb,Ti)₄(O,OH)₄[Si₄O₁₂]₂ · nH₂O, (Z = 1), где $n \approx 8$. Атомы Na образуют восьми- и девятивершинники с наименьшим расстоянием Na–O, равным 2.2 Å, что является препятствием для вхождения таких крупных катионов, как К или Ва, в структуры ромбических членов группы лабунцовита.

Моноклинные МГЛ по размеру элементарной ячейки подразделяются на минералы с параметром $c \sim 7 \text{ Å}$ (подгруппы лабунцовита, леммлейнита, кузьменкоита, вуориярвита и гутковаита), пр. гр. С2/т или Ст. и минералы с параметром с ~ ~ 15 Å (подгруппы паралабунцовита, парацепинита и органоваита), пр. гр. С2/т или I2/т. Появление дополнительных "сшивающих" октаэдров и/или крупных внекаркасных катионов (например, калия или бария) приводит к удвоению параметра вдоль оси цепочки и к моноклинному искажению структуры. Соотношение элементарных ячеек (основные типы структур) в МГЛ может быть записано следующим образом: $a_{opr} = a_{ла\delta} = 2a_{нен}$, $b_{opr} = b_{ла\delta} = 2c_{нен}$, $c_{opr} = 2c_{ла\delta} = a_{нен} + b_{нен}$ (индексы орг, лаб, нен обозначают органоваит, лабунцовит и ненадкевичит соответственно). В минералах подгрупп паралабунцовита и парацепинита (пр. гр. I2/m) удвоение параметра с может быть связано с упорядочением катионов и вакансий в позиции D и, соответственно, упорядочением молекул воды и катионов в позиции С [24, 25].

Иной механизм удвоения параметра *с* выявлен в членах подгруппы органоваита (пр. гр. C2/m) [26, 27]. В этих минералах вдоль оси *с* чередуются два неэквивалентных слоя, образованных катионами в октаэдрической координации. В органоваите-Мп и органоваите-Zn это приводит к расщеплению К-доминантной позиции на две подпозиции, в одной из которых калий частично замещен на комплекс $[Zn(H_2O)_2]^{2+}$ с коротким расстоянием H_2O —Zn, равным 1.7 Å.

Каркас состава $[M_8(O,OH)_8(Si_4O_{12})_4]$ характеризуется отрицательным зарядом, величина которого зависит от соотношений Ti/Nb и O/OH в MO_6 -октаэдрах. Цепочки из связанных вершинами октаэдров вытянуты вдоль оси x и имеют зигзагообразную форму в плоскости (010). Для всех МГЛ угол Ti-O-Ti находится в пределах 134° -138°. В кольце $[Si_4O_{12}]$ все четыре атома Si лежат практически в одной плоскости, параллельной (100). Углы Si-O-Si в кремнекислородных кольцах моноклинных МГЛ составляют от 135° до 148°. В ромбических МГЛ (членах подгруппы не-

надкевичита) в кремнекислородном кольце две пары неэквивалентных углов Si–O–Si равны ~150° и ~172°. Это позволяет различать моноклинные и ромбические МГЛ по ИК-спектрам, так как частота валентных колебаний мостика Si–O–Si коррелирует с величиной угла Si–O–Si [28].

1.3. Химический состав и силовые характеристики катионов

Шелочные и щелочноземельные водные титано- и ниобосиликаты группы лабунцовита характеризуются чрезвычайно широким разнообразием химического состава: Na₂O 0.2–13.9, K₂O 0-14.9, CaO 0-7.3, SrO 0-8.2, BaO 0-16.9, MgO 0-2.3, MnO 0-7.4, FeO 0-5.0, ZnO 0-7.1, TiO₂ 0.8-27.1, Nb₂O₅ 0.1-38.9, Al₂O₃, 0-0.72, SiO₂ 37.4-45.8 мас. %. Обшая кристаллохимическая формула упорядоченных по катионам моноклинных МГЛ (членов подгрупп лабунцовита, паралабунцовита, кузьменкоита, паракузьменкоита и леммлейнита) имеет вид: $A_4B_4C_{4-2x}[D_x(H_2O)_{2x}][M_8(O, OH)_8][Si_4O_{12}]_4 \cdot nH_2O$, где $n \approx 8$; x = 0-2; A = Na, (Ca), \Box ; B = K, Na, (H₃O), \Box ; C = K, Ba, (H₃O), \Box ; $D = Mn^{2+}$, Fe²⁺, Mg²⁺, Zn²⁺, Ca, Sr, \Box ; M = Ti, Nb, (Fe³⁺) (здесь 🗆 – вакансия, в скобках указаны второстепенные компоненты). Упрощенная формула: $A_2B_2C_2DM_4[Si_4O_{12}]_2(O,OH)_4 \cdot (4-7)H_2O$ [19, 29]. Таким образом, широкие вариации химического состава упорядоченных по катионам моноклинных МГЛ связаны как с изоморфизмом Ti и Nb в *М*Ø₆-октаэдрах, так и с составом внекаркасных позиций A, B, C и D. В неупорядоченных МГЛ (подгруппа вуориярвита) многочисленные, как правило, частично вакантные и смешанные внекаркасные позиции заселены различными крупными катионами (Na, K, Ca, Sr, Ba), относительное содержание которых в этих минералах варьируется в широких пределах, а также молекулами воды. Минералы подгруппы гутковаита занимают промежуточное положение между упорядоченными по катионам и неупорядоченными моноклинными МГЛ и являются аналогами МГЛ, в которых позиция А разделена на две неэквивалентные и по-разному заселенные позиции.

Атомы, центрирующие координационные полиэдры в структурах МГЛ, можно разделить на четыре категории в соответствии с их силовыми характеристиками и, соответственно, частотами валентных колебаний v, проявляющимися в ИКспектрах. Наиболее высокие силовые параметры имеют атомы кремния, заселяющие тетраэдры четырехчленных колец (координационное число n = 4, v = 900-100 см⁻¹). Соответствующие позиции стабильны и не проявляют склонности к изоморфизму, расщеплению и вакансионности. В *М*-позициях (n = 6, v = 600-720 см⁻¹) наблюдаются изоморфные замещения с участием Nb⁵⁺,

Рис. 4. ИК-спектры лабунцовита-Fe (1), вуориярвита-К (2) и ненадкевичита (3).

Ті⁴⁺ и частично Fe³⁺, но они также не расщепляются и полностью заселены. *D*-позиции (n = 6, v = 400-500 см⁻¹), обычно заселенные двухвалентными катионами Mg²⁺, Mn²⁺, Fe²⁺, Zn²⁺, реже Ca²⁺, демонстрируют широкий изоморфизм и могут быть частично или полностью вакантными, но не склонны к расщеплению. Наконец, катионы щелочных и щелочноземельных элементов, заселяющие позиции *A*, *B* и *C* (n > 6, v < 400 см⁻¹), характеризуются высокой подвижностью, проявляющейся в способности к ионному обмену, изоморфизму, переменной заселенности и расщеплению этих позиций. Типичные ИК-спектры МГЛ приведены на рис. 4.

В высокочастотной ИК-области в спектрах МГЛ присутствуют полосы деформационных (1540–1660 см⁻¹) и валентных (3100–3600 см⁻¹) колебаний молекул воды, причем область 3400–3600 см⁻¹ характерна для молекул H₂O в позиции *C*, которые образуют относительно слабые водородные связи, а в области 3100–3400 см⁻¹ проявляются полосы молекул H₂O в каналах, образующих прочные водородные связи вода–вода, а также O–H-валентные колебания групп TiOH.

Положение полосы валентных колебаний (Ti,Nb)–O (диапазон 660–700 см⁻¹) зависит от заселенности позиции *D*. В общем случае $D = (Fe,Mg,Mn,Zn)_xCa_yNa_z\Box_{1-x-y-z}$, волновое число этой полосы может быть вычислено по формуле $v [cm^{-1}] = 667 + 27.02x + 18.32y + 8.60z$, где коэффициенты перед *x*, *y* и *z* отражают силовые характеристики соответствующих катионов [30].

1.4. Цеолитные полости

Различия в конфигурации каркасов ромбических и моноклинных МГЛ влияют на характер заполнения цеолитоподобных полостей. В структуре ромбических членов содержатся полости относительно малого размера, в которых натрий преобладает над другими катионами. Возможность вхождения более крупных, чем Na⁺, катионов (K⁺, Ba²⁺ и других) ограничена из-за стерических затруднений.

В упорядоченных по катионам моноклинных МГЛ присутствуют крупные полости разной формы и размеров. Они заполняются наряду с натрием ионами К и Ва, которые распределяются по трем позициям *A*, *B*, *C* (рис. 5): в позиции *A* находится Na, в позиции *B* – K, в позиции *C* – Ва и К. В результате близкие по своим свойствам щелочные и щелочноземельные катионы разделены по разным структурным позициям. В неупорядоченных моноклинных МГЛ относительное содержание ионов Na⁺, K⁺, Ca²⁺, Sr²⁺ и Ba²⁺, а также их распределение по внекаркасным позициям варьируются в широких пределах.

Как отмечалось выше, цеолитные свойства МГЛ обусловлены различиями силовых характе-

ристик составляющих их катионов. Катионы *T*, *M* и, как правило, *D*, обладая высокими силовыми характеристиками, играют ключевую роль в структурах большинства этих соединений, образуя трехмерные каркасы или квазикаркасы, в то время как *A*-катионы с низкими силовыми характеристиками вместе с молекулами воды заполняют полости каркаса и при отсутствии стерических препятствий могут вовлекаться в процессы ионного обмена.

В [1, 31] изучен катионный обмен при нормальных условиях для монокристальных зерен семи МГЛ (коробицынита, лабунцовита-Мп, леммлейнита-К, кузьменкоита-Мп, органоваита-Mn, вуориярвита-К и цепинита-Na) в водных растворах различных солей (NaCl, Na₂CO₃, K_2CO_3 , CaCl₂, SrCl₂, BaCl₂, CsCl). Ромбические фазы, а также минералы подгрупп лабунцовита и леммлейнита с максимальным упорядочением внекаркасных катионов и высокой заселенностью их позиций не проявляют катионообменных свойств в мягких условиях. Катионообменные свойства представителей подгрупп кузьменкоита, органоваита и вуориярвита. для которых характерны относительно невысокая заселенность катионных позиций в цеолитных полостях и низкий порядок размещения катионов в них, проявляются в заметной степени. Минералы подгрупп вуориярвита обладают наиболее сильными катионообменными свойствами в силу сочетания сразу нескольких факторов: низкой насыщенности внекаркасными (цеолитными) катионами, максимально неупорядоченного размещения этих катионов, почти полного отсутствия *D*-катионов, "перерезающих" часть цеолитных каналов, слабых водородных связей между молекулами воды в каналах и высокой концентрации протяженных структурных нарушений, связанных с микродвойникованием. В каждом зерне процесс идет по всему объему, причем интенсивность насыщения зависит от локальных неоднородностей кристалла, а не от удаленности того или иного участка от границы с раствором. Иначе говоря, лимитирующей стадией процесса является преодоление ионом энергетического барьера на межфазной границе кристалл-раствор, а не диффузия в объеме кристалла. Это позволяет предположить, что процесс ионного обмена можно ускорить путем соответствующей модификации поверхности твердых частиц [8].

Цеолитные свойства МГЛ, как и многих других микропористых титано- и ниобосиликатов, проявляются также в их способности катализировать химические реакции с участием органических соединений. Так, в [32] было показано, что природный кузьменкоит-Мп катализирует полимеризацию алифатического углеводорода и его трансформацию в ароматические углеводороды.

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

Рис. 5. Каркас в структуре минералов группы лабунцовита. Буквами обозначены ключевые позиции катионов.

1.5. Систематика и номенклатура

Группа лабунцовита и номенклатура входящих в нее минералов были утверждены решением КНМНК ММА 5 июня 2000 г. [19]. Согласно принятому определению к МГЛ относятся природные кристаллические вещества, основу структуры которых составляют цепочки связанных вершинами октаэдров (Ti,Nb)(O,OH)₆, соединенные кольцами [Si₄O₁₂] в каркас, содержащий открытые полости или каналы с молекулами воды и внекаркасными катионами, которые могут быть вовлечены в ионообменные процессы [33]. В моноклинных МГЛ цепочки октаэдров (Ti,Nb)(OH,O)₆ могут дополнительно соединяться октаэдрами $DØ_6$, где D – двухвалентный катион (обычно Mg, Fe²⁺, Mn²⁺ или Zn). Для МГЛ характерно наличие вакансий во внекаркасных позициях А, В и С и в *D*-позициях.

Ромбические представители группы характеризуются единым структурным типом, а вариации химического состава этих минералов сводятся в основном к изоморфным замещениям Ti ↔ Nb и, соответственно, OH ↔ O. В соответствии с этим к подгруппе ненадкевичита относятся два утвержденных КНМНК ММА минеральных вида: титан-доминантный коробицынит и ниобий-доминантный ненадкевичит. Однако было показано [34], что в ромбических МГЛ возможно упорядочение натрия и кальция с доминированием кальция в одной из внекаркасных позиций, что приводит к возникновению потенциально нового

	1 2							
Минерал			Позиции	7	п	Родоначальник		
	A	В	С	D	М		Пр. гр.	подгруппы МГЛ
			Доминир	ующий ка	тион			
Коробицынит	Na (для <i>A</i> + <i>B</i> + <i>C</i>)			—	Ti	1	Pbam	Ненадкевичит
Ненадкевичит	Na (для <i>A</i> + <i>B</i> + <i>C</i>)			—	Nb	1	Pbam	
Коробицынит-Са	Ca/Na/Na			—	Ti	1	<i>P</i> 2 ₁ 2 ₁ 2	
Цепинит-Na	Na (для <i>A</i> + <i>B</i> + <i>C</i>)				Ti	2	Ст	Вуориярвит
Цепинит-К	К (для <i>A</i> + <i>B</i> + <i>C</i>)				Ti	2	Ст	
Цепинит-Са	Ca (для <i>A</i> + <i>B</i> + <i>C</i>)				Ti	2	Ст	
Цепинит-Sr	Sr (для <i>A</i> + <i>B</i> + <i>C</i>)				Ti	2	Ст	
Вуориярвит-К	К (для <i>A</i> + <i>B</i> + <i>C</i>)				Nb	2	Ст	
Парацепинит-Na	Na (для <i>A</i> + <i>B</i> + <i>C</i>)				Ti	4	C2/m	Парацепинит
Парацепинит-Ва	Ва (для <i>A</i> + <i>B</i> + <i>C</i>)				Ti	4	C2/m	
Леммлейнит-К	Na	K	K		Ti	2	C2/m	Леммлейнит
Леммлейнит-Ва	Na	Κ	Ba		Ti	2	C2/m	
Лабунцовит-Mg	Na	Κ		Mg	Ti	2	C2/m	Лабунцовит
Лабунцовит-Mn	Na	Κ		Mn	Ti	2	C2/m	
Лабунцовит-Fe	Na	Κ		Fe	Ti	2	C2/m	
Лабунцовит-🗆	Na	Κ			Ti	2	C2/m	
Паралабунцовит-Mg	Na	Κ		Mg	Ti	4	I2/m	Паралабунцовит
Паралабунцовит-Fe	Na	Κ		Fe	Ti	4	I2/m	
Паралабунцовит-🗆	Na	Κ			Ti	4	I2/m	
Кузьменкоит-Mn		Κ		Mn	Ti	2	Ст	Кузьменкоит
Кузьменкоит -Zn		Κ		Zn	Ti	2	Ст	
Лепхенельмит-Mn		Ba		Mn	Ti	2	Ст	
Лепхенельмит-Zn		Ba		Zn	Ti	2	Ст	
Буроваит-Са	Na	К		Ca	Ti	2	C2/m	
Карупмеллерит-Са		Na		Ca	Nb	2	C2/m	
Гьердингенит-Na		Κ		Na	Nb	2	C2/m	
Гьердингенит-Са		Κ		Ca	Nb	2	C2/m	
Гьердингенит-Мп		Κ		Mn	Nb	2	C2/m	
Гьердингенит-Fe		Κ		Fe	Nb	2	C2/m	
Органоваит-Мп		К		Mn	Nb	4	C2/m	Органоваит
Органоваит-Zn		К		Zn	Nb	4	C2/m	*
Паракузьменкоит-Fe		К		Fe	Ti	4	C2/m	
Гутковаит-Мп	Ca + □	К		Mn	Ti	2	Ċm	Гутковаит
Алсахаровит-Zn	Na + Sr	К		Zn	Ti	2	Ст	
Нескевараит-Fe	Na + K	К		Fe	Ti	2	Ст	

Таблица 1. Характеристики структурно изученных минералов группы лабунцовита с общей формулой $A_2B_2C_2DM_4(Si_4O_{12})_2(O,OH)_4 \cdot nH_2O$

Примечание. Состав позиций указан в соответствии с преобладающими катионами или вакансиями; в скобки взяты катионы в преимущественно вакантных позициях. Курсивом обозначены минералы, не прошедшие утверждение КНМНК ММА.

минерального вида ("коробицынита-Са"), относящегося к подгруппе ненадкевичита (табл. 1). рованы дополнительные требования конкретно для МГЛ, а именно:

В принятой номенклатуре [19] кроме общих требований ко всем минералам (в соответствии с рекомендациями КНМНК ММА [35]) сформули-

 МГЛ с преобладанием в октаэдрических цепочках разных катионов (титана и ниобия) рассматриваются как разные минеральные виды; – если для Ті-доминантных минералов катионная позиция заселена более чем на 50%, то катион, преобладающий в этой позиции, рассматривается как видообразующий и учитывается в названии минерала в виде суффикса-модификатора (во внекаркасных позициях, включая *C*, принимаются во внимание только катионы, но не молекулы воды);

 для Nb-доминантных аналогов титановых МГЛ должны использоваться другие "корневые" названия;

— для минералов со структурой лабунцовита леммлейнита учитывается заселенность позиции D: если она меньше 50%, то соседняя позиция C может быть заполнена более чем на 50% и доминирующий катион в позиции C является видообразующим;

 для минерала со структурой лабунцовита, в которой обе позиции (Си D) вакантны, предлагается название "лабунцовит-□";

 – для минералов со структурой лабунцовита– леммлейнита учитывается заселенность позиций *А* или *В* разными катионами;

 в структурах вуориярвитов и цепинитов внекаркасные катионы рассредоточены по нескольким расщепленным позициям с низкой заселенностью, и минеральные виды со структурой типа вуориярвита различаются преобладающим внекаркасным катионом независимо от того, какие позиции в структуре минерала он занимает;

 в названиях минералов с удвоенным параметром с элементарной ячейки используется приставка "пара-".

В табл. 1 приведены данные для МГЛ в соответствии с их классификацией и номенклатурой. Помимо минералов, перечисленных в таблице, известен недавно открытый минерал риппит $K_2(Nb_{1.93}Ti_{0.05}Zr_{0.02})[Si_4O_{12}]O(O_{0.93}F_{0.07})$ [21] – аналог синтетического соединения K₂(NbO)₂Si₄O₁₂ [4, 10], гетерополиэдрический каркас которого также построен в результате объединения цепочек связанных вершинами октаэдров NbO₆ через кольца Si₄O₁₂. Риппит тетрагональный: пр. гр. *P4bm*, a = 8.73885(16), c = 8.1277(2) Å, V = 620.69(2) Å³. Этот минерал имеет стехиометрию, близкую к стехиометрии вуориярвита-К, отличаясь от него отсутствием воды. Риппит не входит в группу лабунцовита и в данном обзоре не рассматривается: как отмечалось выше, его каркас относится к иному, чем у МГЛ, топологичекому типу.

2. СТРУКТУРЫ МИНЕРАЛОВ

В отличие от алюмосиликатных цеолитов, для которых известны несколько десятков топологических типов каркасов, члены группы лабунцовита представлены всего двумя топологическими

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

типами: *D*-заполненными и *D*-вакансионными. Как было показано ранее, группа лабунцовита включает в себя моноклинные и ромбические члены. Благодаря описанным выше особенностям МГЛ достаточно разнообразны в структурном отношении, в первую очередь вследствие реализации различных механизмов катионного упорядочения. В пределах группы лабунцовита известны девять структурных типов, каждому из которых соответствует конкретная подгруппа минералов (табл. 1). Ниже приводится описание структур конкретных минеральных видов в соответствии с выделенными структурными типами.

Подгруппа ненадкевичита

Эту подгруппу составляют ромбические члены с общей формулой $A_6(Nb,Ti)_4(O,OH)_4[Si_4O_{12}]_2 \cdot nH_2O$ (Z=1), где $n \approx 8$; $A = Na, \Box$, (K,Ca). Для них характерно наличие двух однотипных внекаркасных позиций, заполненных преимущественно натрием. Расшифровка структур лабунцовита и ненадкевичита опровергла предположение о существовании изоморфного ряда лабунцовит–ненадкевичит [11]. Оказалось, что при сходном (Si–Ti,Nb–Ø)-каркасе структуры лабунцовит является моноклинным, а ненадкевичит – ромбическим, существуют также различия в заполнении внекаркасных катионных позиций этих двух минералов [20].

Кристаллическая структура минералов подгруппы ненадкевичита принципиально отличается от структур моноклинных представителей группы лабунцовита (рис. 6). В основе этого структурного типа лежат вытянутые вдоль направления *а* цепочки Ti(Nb)-центрированных октаэдров, соединенных между собой общими вершинами. Цепочки зигзагообразно изогнуты в плоскости (001) и выпрямлены в плоскости (010) в отличие от лабунцовита и других моноклинных представителей данной группы, где они зигзагообразно изогнуты в плоскости (010) и сильно, волнообразно искривлены в плоскости (001). Вдоль двух других направлений цепочки связаны плоскими четырехчленными кольцами SiO₄-тетраэдров, образуя отрицательно заряженный каркас состава $[(Nb,Ti)_4(O,OH)_4(Si_4O_{12})_2]$ (Z = 1).

В структурах минералов подгруппы ненадкевичита содержатся каналы трех типов. Два из них идут между октаэдрами цепочек и тетраэдрами четырехчленных колец [Si₄O₁₂]. Они имеют в сечении овальную форму и относительно малые размеры поперечных сечений (~3 × 5 Å). Каналы третьего типа более широкие и простираются перпендикулярно узким каналам вдоль оси *с* и в сечении имеют округлую форму восьмичленного кольца размером ~4.5 × 7 Å (рис. 7). В канале первого типа и на пересечении каналов второго и

Рис. 6. Каркас в ромбических (а) и моноклинных (б) представителях группы лабунцовита.

третьего типов находятся атомы натрия и молекулы воды. Позиции Na образуют восьми- и девятивершинники с наименьшим расстоянием Na–O 2.2 Å, что является препятствием для вхождения таких крупных катионов, как K или Ba, в структуры ромбических членов группы лабунцовита.

В подгруппу входят два изоструктурных минерала — ниобиевый ненадкевичит $(Na_{3.76}K_{0.24}Ca_{0.11}Mn_{0.03})[Nb_{2.76}Ti_{1.18}][O_{2.8}(OH)_{1.2}][Si_8O_{24}] \cdot 8H_2O$ [36] и его титановый аналог коробицынит $Na_{4.4}[Ti_{2.80}Nb_{1.2}][O_{2.4}(OH)_{1.6}][Si_8O_{24}] \cdot 7.4H_2O$ [18]. Оба найдены в гидротермальных зонах пегматитовых тел (соответственно на горах Карнасурт и Аллуайв) в Ловозерском щелочном массиве на Кольском полуострове. Оба минерала характеризуются пр. гр. *Рbam* с близкими параметрами ром-

Рис. 7. Широкие каналы в каркасе ромбических минералов.

бических ячеек: для ненадкевичита a = 7.408, b = 14.198, c = 7.148 Å, V = 751.8 Å³ [37], для коробицынита a = 7.350, b = 14.153, c = 7.124 Å, V = 741.1 Å³ [38]. Впервые уточнение координат атомов и факторов заселенности позиций в структуре ненадкевичита было проведено в [37]. При уточнении структуры коробицынита [38] удалось установить расщепление одной из Na-позиций и локализовать атомы водорода.

Третий ромбический член группы – "коробицынит-Са" – найден в фонолитовом массиве Арис (Aris) близ города Виндхук (Windhook) в Намибии в составе поздней гидротермальной ассоциации, включающей в себя натролит, эгирин. манганонептунит и лабунцовит-Мп. Название этого минерала условное, так как "коробицынит-Са" не прошел апробацию в КНМНК ММА из-за недостаточного количества материала (изучены лишь его химический состав и кристаллическая структура). В отличие от других членов подгруппы ненадкевичита этот минерал характеризуется высоким содержанием кальция. Хотя параметры ромбической ячейки соответствуют предыдущим параметрам: a = 7.354(1), b = 14.169(1), c = 7.115(1) Å, анализ погасаний выявил в наборе дифракционных данных большое количество значимых по интенсивности рефлексов 0kl с k = 2n + 1 и h0lс h = 2n + 1, что послужило основанием для понижения симметрии от *Pbam* до *P*2₁2₁2 [34].

Состав и структура Са-аналога коробицынита отражены в его кристаллохимической формуле (Z=1): (Ca_{1.8}Mn_{0.3}Sr_{0.1})(Na_{2.05}K_{0.25})[Ti_{2.1}Nb_{1.7}Fe_{0.2}]O₄[Si₈O₂₄] · 7.4H₂O, где скобками выделены составы каналов и октаэдрических колонок. Идеализированная формула минерала (Z=1): (Ca, \Box)₄(Na, \Box)₄ (Ti,Nb)₄(Si₄O₁₂)₂O₄ · 8H₂O. Особенностями исследованного минерала, отличающими его от коро-

Рис. 8. Упорядочение Са и Na в структуре коробицынита-Са.

бицынита, являются упорядочение и изоморфные замещения катионов Са и Na, сопровождающиеся перестройкой системы водородных связей. Атомы кальция заняли узкие каналы первого типа между двумя трансляционно идентичными колонками октаэдров (рис. 8). Их полиэдрами являются восьмивершинники со средним расстоянием 2.67 Å (в отличие от коробицынита, где Na находится в девятивершиннике с минимальным расстоянием 2.22 Å), что позволяет в них разместиться и крупным атомам калия.

Учитывая, что на поздних стадиях эволюции щелочных комплексов нередко имеет место максимум активности кальция [39], можно предположить, что "коробицынит-Са" мог образоваться путем трансформации коробицынита в результате частичного ионного обмена натрия на кальций, а также (в меньшей степени) — на калий.

Подгруппа лабунцовита

К этой подгруппе отнесены моноклинные минералы со следующей общей кристаллохимической формулой (Z = 1):

 $A_4B_4C_{4-2x}[D_x(H_2O)_{2x}][M_8(O,OH)_8][Si_4O_{12}]_4 \cdot nH_2O,$ где $n \approx 8$; x = 0-2; A=Na, (Ca), \Box ; B=K, Na, (H₃O), \Box ; C = K, Ba, (H₃O), \Box ; $D = Mn^{2+}$, Fe²⁺, Mg, Zn, \Box ; M = Ti, Nb, (Fe³⁺); \Box – вакансия.

Уже в первой структурной работе [40] были выявлены основные кристаллохимические особенности лабунцовита, отличающие его от ромбических членов группы — ненадкевичита и его титанового аналога коробицынита. В структурах моноклинных МГЛ октаэдры в цепочках повернуты друг относительно друга, в результате зигзагообразные цепочки становятся еще и волнооб-

Рис. 9. Кристаллическая структура лабунцовита-Мп.

разно изогнутыми, а кремнекислородные кольца – неплоскими. В местах сближения цепочки сшиваются дополнительными DO_6 -октаэдрами по общим ребрам О–О. Микропористая структура содержит каналы – широкий (І-канал) с восьмичленным сечением (ограничен четырьмя тетраэдрами и четырьмя октаэдрами), идущий вдоль [010], и более узкий (ІІ-канал), ограниченный четырьмя тетраэдрами и двумя октаэдрами и идущий вдоль направления [100]. Третий (ІІІ-канал) направлен вдоль [001] и пересекает два других канала.

Как правило, *D*-позиция смешанная и может содержать двухвалентные катионы Fe, Mn, Mg и Zn и до 60 ат. % вакансий. Возможность широких взаимных замещений катионов в позициях С и D предопределяет непостоянство состава членов подгруппы лабунцовита. Из *D*-заполненных (и, следовательно. С-вакантных) минералов co структурой лабунцовита к настоящему времени описаны лабунцовит-Мп (г. Куфтньюн, Ловозеро) Na₄K₄Mn₂Ti₈(Si₄O₁₂)₄(O,OH)₈ · nH₂O (рис. 9), лабунцовит-Fe (г. Кукисвумчорр. Хибины) Na₄K₄Fe₂Ti₈(Si₄O₁₂)₄(O,OH)₈ · *n*H₂O и лабунцовит-Mg (Ковдор, Кольский п-ов) Na₄K₄Mg₂Ti₈(Si₄O₁₂)₄(O,OH)₈ · $\cdot nH_2O$ [36, 41–43], где n = 10-12 (в скобках указаны места находок голотипных образцов). Впоследствии эти три минерала были найдены в гидротермальных зонах многих других щелочных пегматитов и карбонатитов.

Установленные в результате структурных исследований пространственные группы всех минералов C2/m. Общее содержание катионов в *D*-позиции членов подгруппы лабунцовита варьируется от 0.8 до 2.0 на формулу (Z = 1), а максимальные значения формульных коэффициентов составляют 1.73 для Mg, 1.46 для Mn и

Рис. 10. Кристаллическая структура лабунцовита-

1.18 для Fe [20]. Параметры моноклинных ячеек лабунцовитов лишь в незначительной степени зависят от их химического состава: для лабунцовита-Fe a = 14.29, b = 13.85, c = 7.78 Å, $\beta = 116.8^{\circ}$; для лабунцовита-Mn a = 14.25, b = 13.79, c = 7.78 Å, $\beta = 116.8^{\circ}$; для лабунцовита-Mg a = 14.29, b = 13.75, c = 7.79 Å, $\beta = 117.0^{\circ}$.

Все три минерала изоструктурны, их строение можно рассмотреть на примере лабунцовита-Fe. Титановые колонки лабунцовита-Fe объединяются четырехчленными кольцами [Si₄O₁₂] с образованием гетерополиэдрического каркаса ${M_4(O,OH)_4[Si_4O_{12}]_2}$. Искажение октаэдров вызывает деформацию колец: углы Si-O-Si составляют 138.4°, 143.5° и 134.8° соответственно. Колонки объединяются также дополнительными (с 35% вакансий) *D*Ø₆-октаэдрами состава $[Fe_{0.5}Ti_{0.1}Mg_{0.05}]O_{2.6}(H_2O)_{1.3}$ с расстояниями D-O == 2.067(1) Å и $D-H_2O = 2.074(1)$ Å. Молекулы воды, окружающие *D*-позицию (а именно в позиции C), образуют комплекс $[D(H_2O)_2]^{2+}$ и статистически замещаются атомами Ва, образующими одиннадцативершинник со средним расстоянием Ba-O = 2.974 Å. Таким образом, позиция C смешанная: Ba_{0.35}(H₂O)_{0.65}.

Внекаркасные катионы в структуре лабунцовита-Fe представлены Na, K и Ba. Атомы Na занимают статистически A-позиции с коротким расстоянием A-A = 2.549(4) Å. Они формируют девятивершинники с расстоянием $\langle A-O \rangle \sim 2.537$ Å. Позиция B занята атомами K, которые образуют в каналах третьего типа семивершинники со средним расстоянием B-O = 3.101 Å. Широкий I-канал занят молекулами воды с расщепленными и частично заселенными позициями.

Лабунцовит-П – минерал со структурой лабунцовита, в которой обе позиции (С и D) преимущественно вакантны. Структура этого минерала изучена на образце, найденном в долине Гакмана на г. Юкспор (Хибинский массив, Кольский п-ов) [44]. Кристаллохимическая формула изученного образца следующая (Z = 1): Na_{3 5}K₄ $[Ba_{1,5}][(Mn,Fe)_{0,9}(H_2O)_{1,8}][Ti_{7,8}Nb_{0,2}(O_{4,5}OH_{3,5})_8]$ $[Si_4O_{12}]_4 \cdot 5.4H_2O$. Параметры ячейки: a = 14.298(7), b = 13.816(7), c = 7.792(3) Å, $\beta = 116.85(5)^{\circ}, V =$ $= 1373.3 Å^3$, пр. гр. *C2/m*. В структуре лабунцовита- (рис. 10) ключевые позиции заселены следующим образом: $M1 = \text{Ti}; M2 = \text{Ti}_{0.95} + \text{Nb}_{0.05}, D = (Mn, \text{Fe})_{0.45}; A = \text{Na}; B1 = B1' = \text{K}; C = \text{Ba}_{0.45} + \text{Carrow}$ + (H₂O)_{0 55}. Позиция *D* занята на 47% Mn + Fe, а позиция С смешанная и заселена на 37% Ва и на 47% молекулами воды, координирующими Мп. таким образом, в обеих позициях доминируют вакансии. Идеализированная формула лабунцовита- \Box : Na₂K₂(\Box ,Ba)₂(\Box ,Mn)Ti₄[Si₄O₁₂]₂(OH,O)₄ · 3H₂O.

Известно, что титановые МГЛ с низким суммарным содержанием внекаркасных катионов обычно принадлежат подгруппам вуориярвита и кузьменкоита (табл. 1), а среди членов подгруппы лабунцовита встречаются редко. Это означает, что для таких минералов структурный тип лабунцовита неустойчив. В данном минерале, несмотря на то, что позиция D заполнена менее чем на 50%, сохраняется структура собственно лабунцовита. Таким образом, минералы с одинаковым дефицитом катионов могут иметь структуру как вуориярвита или кузьменкоита, так и лабунцовита, т.е. поля химических составов титановых минералов подгрупп вуориярвита и лабунцовита перекрываются.

Подгруппа паралабунцовита

Структурный тип паралабунцовита отличается от структурного типа лабунцовита только удвоением параметра c в результате упорядочения катионов и молекул воды в позициих C и упорядочения катионов и вакансий в позиции D [19].

Паралабунцовит-Mg первоначально был найден в низкотемпературной ассоциации минералов из щелочно-карбонатной формации Грин Ривер (Green River Formation) в штате Вайоминг (США) и описан как моноклинный лабунцовитовый минерал с удвоенной ячейкой и параметрами a = 14.24, b = 13.74, c = 15.57 Å, $\beta = 116.55^{\circ}$ и пр. гр. I2/m [45], но его кристаллическая структура не была изучена. Структура паралабунцовита-Mg решена на образце из пород Хибинского массива [46]. Параметры ячейки изученного образца: a = 14.278(1), b = 13.778(1), c = 15.592(2) Å, $\beta =$ $= 116.76(1)^{\circ}, V = 2738.96$ Å³. Заселенность ключевых позиций следующая: $C1 = Ba_{0.68}(H_2O)_{0.24}K_{0.08},$ $C2 = (H_2O)_{0.60}Ba_{0.21}K_{0.19}, D1 = Mn_{0.16}Mg_{0.08}$ и

Рис. 11. Кристаллическая структура леммлейнита-К (а) и лемлейнита-Ва (б).

 $D2 = Mn_{0.48}Mg_{0.12}$. Таким образом, Ba^{2+} доминирует в позиции C1, что определяет преобладающую вакансию в позиции D1, в то время как позиция C2 занята молекулами воды благодаря доминированию Mn^{2+} в позиции D2. Согласно [25, 46] катионное упорядочение в позициях C-D МГЛ может быть представлено как последовательное чередование в структуре элементарных ячеек леммлейнита-Ва и лабунцовита-Мп. Оно обусловлено термодинамическим режимом их образования и может быть использовано при реконструкции условий P-T гидротермального минералообразования.

Параметры и пространственные группы элементарных ячеек паралабунцовита- \Box Na₂K₂(\Box ,Ba) (\Box ,Fe)(Ti,Nb)₄(Si₄O₁₂)₂(O, OH)₄ · 7H₂O из щелочной формации Турий Мыс [29] и паралабунцовита-Fe Na₂K₂(Fe,Mg)(Ti,Nb)₄ (Si₄O₁₂)₂(O,OH)₄ · · 7H₂O (гидротермального минерала из карбонатитов массива Вуориярви в Сев. Карелии) соответственно: *a* = 14.24, *b* = 13.77, *c* = 15.57 Å, β = = 116.8°, пр. гр. *D*/*m* [12]; *a* = 14.429(2), *b* = 13.894 (2), *c* = 15.660 (2) Å, β = 117.37(1)°, пр. гр. *C*2/*m*. Паралабунцовит-Fe является аналогом лабунцовита-Fe с удвоенным параметром. Состав ключевых позиций его структуры следующий: *A* = Na_{3.4} \Box _{0.6}, *B* = K_{3.8}Ba_{0.2}, *C* = (H₂O)_{2.6}K_{0.7}Ba_{0.4} \Box _{0.3}, *D* = Fe_{0.7}Mg_{0.6} \Box _{0.7}.

Подгруппа леммлейнита

В отличие от лабунцовитов в минералах леммлейнитового типа позиции *D* вакантные и, соответственно, *С* – заполненные. В подгруппе ла-

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

бунцовита и леммлейнита существуют минералы с промежуточными вариантами заполнения позиций C и D, и отнесение их к лабунцовитам или леммлейнитам зависит от преобладания катионов в D- или C-позиции.

Среди минералов со структурой лабунцовита особое место занимает леммлейнит-К Na₂K₂K₂(Ti,Nb)₄(Si₄O₁₂)₂(O,OH)₄ · 4H₂O [41]. Это предельно калиевый член изоморфного семейства, он не содержит двухвалентных катионов в позиции D (рис. 11а). Анализ дифракционной картины этого минерала выявил специфические "двойниковые" погасания, удовлетворяющие условиям h + k = 2n при l = 2n, h = 2n + 1, k = 2n + 1, что приводит к кажущемуся удвоению параметра с. Микродвойникование является следствием кристаллизации голотипного леммлейнита-К с горы Коашва (Хибинский массив) как ромбического минерала при относительно высокой температуре и последующей трансформации ромбической структуры в моноклинную в результате понижения температуры. Этим объясняется отсутствие в составе данной разновидности леммлейнита-К таких элементов, как Mg, Mn, Fe и Zn. Леммлейнит-К и близкие к нему высококалиевые минералы со структурой лабунцовита и преобладанием калия над барием в позиции С характеризуются повышенным содержанием ниобия [47].

Леммлейнит-Ва Na₄K₄Ba₂Ti₈(Si₄O₁₂)₄O₄(OH)₄ \cdot 8H₂O (г. Кукисвумчорр, Хибины) [48, 49] характеризуется высокой степенью упорядочения Na, К и Ва в позициях *A*, *B* и *C* соответственно. Кристаллохимическая формула голотипного лемм-

Рис. 12. Структурный тип вуориярвита.

лейнита-Ва: $Na_{4,0}(K_{3,7}Na_{0,3})[(Ba_{2,1}(H_2O_{1,9})](\Box_{1,1}Mn_{0,6} Mg_{0,2}Fe_{0,1}) [(Ti_{7,9}Nb_{0,1})(O,OH)_8][Si_4O_{12}]_4 \cdot 8H_2O$ [48].

Параметры ячейки леммлейнита-К и леммлейнита-Ва (пр. гр. C2/m) равны соответственно: $a = 14.33, b = 13.83, c = 7.79 Å, \beta = 117.1°$ [41] и a = $= 14.22, b = 13.75, c = 7.77 Å, \beta = 116.7°$ [49]. Оба минерала по химическому составу и структуре близки к другим МГЛ, однако имеются и отличия. В низкокалиевых (содержание калия не более четырех атомов на ячейку) лабунцовитах весь калий находится в позиции *В*. Избыточный (сверх четырех атомов на ячейку) калий входит в позицию *С*, "конкурируя" там с барием и молекулами воды, причем, если калий практически обобществляет свою позицию с H₂O-вершинами $DØ_6$ -октаэдра, то тяжелый атом бария фиксируется на расстоянии 0.3 Å от H₂O [41] (рис. 116).

Подгруппа вуориярвита

Среди моноклинных членов группы лабунцовита наиболее разупорядоченными и "рыхлыми" структурами характеризуются члены подгруппы вуориярвита [16, 20, 50–53]. Различаются собственно вуориярвиты (Nb-доминантные, среди которых только вуориярвит-К утвержден в качестве самостоятельного минерального вида) и цепиниты (Ti-доминантные).

Экспериментально установлено, что члены подгруппы вуориярвита, особенно титановые (цепиниты), обладают наиболее выраженными среди всех МГЛ катионообменными свойствами [31]. Представляется, что это обусловлено сочетанием нескольких особенностей: низкой насыщенностью внекаркасными катионами; максимально неупорядоченным размещением этих катионов; отсутствием *D*-катионов, "перерезающих" часть цеолитных каналов (рис. 12).

Основу структуры вуориярвита-К (K,Na)_{12-x} $Nb_8(Si_4O_{12})_4O_8 \cdot nH_2O$ (x = 0-6, n = 12-16) из гидротермально измененных карбонатитов массива Вуориярви (Сев. Карелия, Кольский п-ов) [16, 50], как и других представителей группы лабунцовита, составляет смешанный каркас, образованный цепочками (Nb,Ti)-центрированных октаэдров и кольцами [Si₄O₁₂]. Ряд особенностей строения этого каркаса сближает вуориярвит с ромбическими минералами - ненадкевичитом и коробицынитом. К числу этих особенностей относится отсутствие дополнительных сшивающих $(Mn,Fe,Mg,Zn)Ø_6$ -октаэдров, а также сильное смещение центрального катиона в (Nb,Ti)Ø₆-октаэдрах из плоскости квадратного основания в сторону одной из мостиковых вершин. Для одного из двух неэквивалентных атомов ниобия соответствующие расстояния (Nb,Ti)-(O,OH) равны 1.73 и 2.18 Å. Искажения октаэдрических цепочек проявляются и в том, что все связи (Nb,Ti)-Ø в каждом октаэдре неэквивалентны. По этим признакам вуориярвит-К отличается от лабунцовита. Кроме того, вуориярвит характеризуется взаимными разворотами соседних (Nb,Ti)Ø₆-октаэдров вокруг оси цепочки (подобно тому, как это имеет место в структуре лабунцовита), в результате образуются крупные полости, которые могут заполняться ионами калия, бария и оксония.

Характерной особенностью структуры вуориярвита-К, отличающей его от большинства других МГЛ, является большое количество внекаркасных позиций, многие из которых сближены до расстояний, исключающих их одновременное заполнение, в результате в большинстве внекаркасных позиций преобладают вакансии.

Позиция Na1 может быть сопоставлена с позицией D в структуре лабунцовита и может рассматриваться как "сшивка" между двумя соседними (Nb,Ti)-цепочками, хотя и более слабая, чем $DØ_6$ октаэдр в структуре лабунцовита. С некоторой долей условности Na1-полиэдр может быть достроен до октаэдра, если включить в его ближайшее окружение атомы О кремнекислородных циклов с расстояниями Na1–O 2.88 и 3.05 Å.

Таким образом, вуориярвит-К самый неупорядоченный из структурно изученных МГЛ. Его разупорядочение проявляется в неэквивалентности всех четырех тетраэдров в кремнекислородном цикле и всех связей (Nb,Ti)-Ø в каждом октаэдре, несимметричном расщеплении и частичной вакансионности внекаркасных позиций и, как следствие, отсутствии центра симметрии (рис. 13а).

Рис. 13. Кристаллическая структура вуориярвита-К (а) и цепинита-Са (б).

Наблюдаемая ромбическая элементарная ячейка a = 14.692, b = 14.164, c = 27.79 Å вуориярвита-К [50] является в действительности псевдоячейкой, возникающей вследствие микродвойникования, о чем говорят характерные "двойниковые погасания": в массиве отражений присутствуют только те, что удовлетворяют условиям h + l = 4n при k = 2n. Параметры истинной элементарной ячейки вуориярвита-К равны: a == 14.692, b = 14.164, c = 7.859 Å, $\beta = 117.87^\circ$, V == 1445.75 Å³, пр. гр. *Cm* [50].

К вуориярвиту-К структурно близок его (Na,Ti)-аналог — цепинит-Na из Хибинского массива [53, 54]. Упрощенная формула цепинита-Na (Z = 4): (Na,H₃O,K,Sr,Ba)₂(Ti,Nb)₂[Si₄O₁₂] (OH,O)₂ · · 3H₂O [53]. Параметры ромбической псевдоячейки цепинита-Na составляют: a = 14.604(7), b == 14.274(8), c = 28.17(2) Å; параметры истинной моноклинной ячейки: a = 14.604(7), b = 14.274(8),c = 7.933(2) Å, $\beta = 117.40(3)^\circ$, V = 1468.17 Å³; пр. гр. *Cm* [54].

Хотя голотипный образец цепинита-Na в целом является Ti-доминантным минералом, параметры заселенности двух октаэдрических позиций в его структуре различны: в одном независимом октаэдре преобладает Ti, а в другом – Nb. Другая особенность цепинита-Na состоит в том, что в его структуре присутствуют восемь внекаркасных позиций, содержащих крупные катионы (Na, K, Ba, Sr, Ca, H₃O). Таким образом, по симметрии, параметрам ячейки, катионному разупорядочению при заполнении внутрикаркасных полостей и отсутствию существенных примесей *D*катионов, а также по типу микродвойникования

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

цепинит-Na ближе всего к вуориярвиту-К и отличается от него главным образом замещением большей части атомов К на группы H_3O и частично Na на Sr.

К цепиниту-Na близок нецентросимметричный МГЛ с преобладанием вакансий в позиции D, обнаруженный в одном из пегматитов Ловозерского массива г. Карнасурт в Ловозерском щелочном массиве [20]. От цепинита-Na этот минерал отличается преобладанием калия среди внекаркасных катионов и, согласно принятой номенклатуре [19], получил название цепинит-К. Упрошенная формула этого минерала (K,Na,Ba)₄(Ti,Nb)₄[Si₄O₁₂]₂(OH,O)₄ · 6H₂O. Позиция *D* в этом минерале преимущественно вакантна. Цепинит-К и лабунцовит-□, несмотря на очень близкий химический состав, различаются по многим признакам: по оптическим свойствам, морфологии кристаллов, дифрактограммам порошков. Эти минералы относятся к разным структурным типам. Их структуры различаются симметрией и упорядочением внекаркасных компонентов и, таким образом, являются полиморфами.

Кристаллохимическая формула цепинита-К [51]: $[Na_{1,9}][K_{2.6}(H_3O)_{1.4}][Ba_{1.5}K_{0.9}][Mn_{0.3}Zn_{0.2}(H_2O)_{1.5}]$ $[Ti_{6.6}Nb_{1.4}(O_{5.2}OH_{2.8})][Si_4O_{12}]_4 \cdot 8H_2O (Z = 1)$. Параметры ячейки: a = 14.3265(3), b = 13.802(2) c = 7.783(1) Å, $\beta = 116.949(3)^\circ$. Цепинит-К характеризуется пониженной симметрией *Cm* вследствие избирательного заселения атомами Na только одной позиции *A*1, что сближает этот минерал с членами подгруппы гутковаита. Однако в [55] структура цепинита-К решена в пр. гр. *C*2/*m*.

Рис. 14. Кристаллическая структура цепинита-Sr.

Цепинит-К характеризуется также неодинаковым заполнением позиций C1 и C2: в позиции C1преобладает Ва, а позиция C2 содержит равные количества Ва и К. Позиция B в структуре цепинита-К расщеплена на три подпозиции, заселенные К и H₂O. Позиция D на 75% вакантна. Цепинит-К интересен тем, что сочетает элементы различных структур МГЛ (минералов подгрупп гутковаита, леммлейнита, кузьменкоита и вуориярвита), обладая "комбинированным" структурным типом и может в целом рассматриваться как К-доминантный аналог цепинита-Na.

Цепинит-Ca (Ca,K,Na, \Box)₂(Ti,Nb)₂(Si₄O₁₂)(OH, O)₂ · 4H₂O впервые описан как Ca-доминантный аналог цепинита-Na и цепинита-K из гидротермально измененных пегматитовых пород горы Юкспор Хибинского массива [56]. Параметры его моноклинной ячейки (пр. гр. *C2/m*): *a* = 14.484(4), *b* = 14.191(4), *c* = 7.907(2) Å, β = 117.26(2)°. В структуре цепинита-Ca (рис. 136) ключевые позиции заселены следующим образом: *A* = [Na_{1.40}K_{1.11} (H₂O)_{0.35} \Box _{1.14}]₂₄; *A*' = [Ba_{0.35}(H₂O)_{3.65}]₂₄; *B* = [Ca_{0.52}Sr_{0.40}(H₂O)_{2.6} \Box _{0.48}]₂₄; *B*' = [Ba_{0.19}(H₂O)_{3.81}]₂₄; *C* = [Sr_{0.28}(H₂O)_{3.72}]₂₄; *C*' = (Ca_{0.84} \Box _{3.16})₂₄; *D* = (Ca_{0.85} Mn_{0.05}Fe_{0.01}Zn_{0.03} \Box _{1.06})₂₂; *M*1 + *M*2 = (Ti_{6.40}Nb_{1.60})₂₈.

Цепинит-Sr (Sr,Ba,K)(Ti,Nb)₂(Si₄O₁₂)(OH,O)₂ · 3H₂O – один из наиболее редких МГЛ – установлен в составе гидротермального парагенезиса в полостях нефелин-сиенитового пегматита на г. Эвеслогчорр в Хибинском щелочном массиве [57]. Характерной особенностью этого пегматита является разнообразие позднегидротермальных МГЛ, представленных членами структурных типов с низким упорядочением внекаркасных катионов — вуориярвита, парацепинита и кузьменкоита. Здесь впервые за пределами Ловозерского массива обнаружен цинковый представитель группы лабунцовита — кузьменкоит-Zn [58] и найдены цепинит-Na, цепинит-K, цепинит-Ca, цепинит-Sr, парацепинит-Ba, а также вуориярвит-К. Цепинит-Sr обнаружен еще в двух пегматитовых телах Хибино-Ловозерского комплекса, отличающихся разнообразием членов группы лабунцовита [20, 53].

Цепинит-Sr — второй после алсахаровита-Zn [57] член группы лабунцовита, в котором стронций играет видообразующую роль. В цепините-Sr с г. Хибинпахкчорр установлено самое высокое содержание стронция в минералах данной группы: 8.6 мас. % SrO. Отметим, что Sr, так же как и Са, наиболее типичен для членов подгрупп вуориярвита и гутковаита, в качестве примеси обычен в минералах подгрупп парацепинита, органоваита и кузьменкоита и совершенно нехарактерен для представителей подгрупп собственно лабунцовита, паралабунцовита и леммлейнита с упорядоченным распределением внекаркасных катионов.

Кристаллохимическая формула цепинита-Sr (Z = 1): [Sr_{0.9}K_{0.8}Na_{0.4}Ca_{0.4}Ba_{0.3}][Sr_{0.4}(H₂O)_{0.8}] [Ti_{5.6}Nb_{2.4}(OH,O)₈(Si₄O₁₂)₄] · 8.3H₂O. Параметры элементарной ячейки: a = 14.490(3), b = 14.23(1),*c* = 7.881(3) Å, β = 117.28(2)° (пр. гр. *Cm*) [59]. В каналах, параллельных координатным осям, находятся атомы Sr, K, Ca, Na, Ba и молекулы воды, которые статистически с заселенностью менее 0.5 занимают 15 позиций, в каждой из которых преобладают вакансии. Это самое большое число внекаркасных позиций среди всех представителей группы лабунцовита (за исключением алсахаровита-Zn) (рис. 14). Позиция D на 80% вакантна. Во всех внекаркасных позициях преобладают вакансии, что типично для представителей подгруппы вуориярвита. Большое число расщепленных позиций и особенности распределения катионов в них приводят к понижению симметрии от C2/m до Cm. Цепинит-Sr можно рассматривать как наиболее разупорядоченный по катионам член подгруппы вуориярвита. От цепинита-Na он отличается не только преобладанием стронция среди внекаркасных катионов, но и его распределением [59].

Подгруппа парацепинита

К этой подгруппе относятся два минерала с удвоенным *с*-параметром и пр. гр. *C*2/*m*, различающиеся распределением катионов по позициям (рис. 15). Эти гидротермальные минералы образуются в результате трансформационных процессов при их охлаждении.

Кристаллы парацепинита-Na (Na, Sr, K, Ca, Ba)₁₀(Ti, Nb)₁₆[Si₄O₁₂]₈ · 12H₂O образуют эпитаксиальные сростки с кристаллами лабунцовита в пегматитовых породах Хибинского массива (гора Хибинпахкчорр). Параметры ячейки: a = 14.596(2), b = 14.249(2), c = 15.952(3) Å, $\beta = 117.270(3)^{\circ}$, пр. гр. C2/m [60].

Парацепинит-Ва (Ва,Na,K)_{24-x}(Ti,Nb)₁₆[Si₄O₁₂]₈ (OH,O)₁₆ · nH₂O (x = 0-12, n = 24-32) с г. Лепхе-Нельм, Ловозеро [61], характеризуется параметрами ячейки: a = 14.55, b = 14.00, c = 15.70 Å, $\beta = 117.6^{\circ}$, пр. гр. *C2/m*. Это *D*-дефицитный аналог органоваитов и паракузьменкоита-Fe с преобладанием бария во внекаркасных позициях.

Подгруппа кузьменкоита

В минералах подгруппы кузьменкоита позиция *А* вакантна, что главным образом отличает их от лабунцовитов, где эта позиция преимущественно заселена натрием [52]. Эта подгруппа характеризуется наибольшим химическим разнообразием и объединяет 10 минеральных видов, включая потенциально новый минерал лепхенельмит-Mn (табл. 1).

Кузьменкоит-Мп К₄[(H₂O)₄Mn₂][(Ti,Nb)₈(O,OH)₈] [Si₄O₁₂]₈ · 8H₂O найден в гидротермально измененных мурманитовых луявритах г. Сэлсурт и г. Кедыкверпахк в Ловозерском массиве и содержит менее 1% Na₂O [43, 62, 63]. Смешанный каркас в структуре кузьменкоита-Мп аналогичен каркасам минералов со структурой лабунцовита [43, 52, 63]. Различия заключаются лишь в углах поворота и наклона соседних полиэдров. В частности, углы Si-O-Si в кремнекислородных кольцах кузьменкоита-Мп близки между собой и отклоняются от среднего значения 141.7° не более чем на 3°. Позиция D занята практически полностью (с преобладанием марганца), в результате позиция С занята преимущественно молекулами воды. Главной особенностью структуры кузьменкоита является вакантность позиции А из-за низкого содержания натрия. В реальных образцах кузьменкоита небольшая часть калия в позиции В замещена натрием, а позиция D кроме марганца содержит изоморфные примеси железа и магния, а также вакансии. В последнем случае в вершинах $DØ_6$ -октаэдра возможно замещение H_2O на Ва и К.

Первоначально структура кузьменкоита была изучена в рамках пр. гр. C2/m [62]. Она характеризуется параметрами элементарной ячейки, близкими к параметрам лабунцовита: a = 14.369, b = 13.906, c = 7.812 Å, $\beta = 117.09^{\circ}$. Исследование структуры кузьменкоита-Мп в рамках пр. гр. *Ст* [52] позволило найти две дополнительные расщепленные внекаркасные позиции с низкой заселенностью, а также уточнить заселенность ряда позиций с учетом смешанных кривых атомного

Рис. 15. Удвоение *с*-параметра в структуре парацепинита-Na из-за упорядочения Na–Sr.

рассеяния. Пониженная симметрия кузьменкоита-Мп обусловлена различиями в заполнении позиций, связанных псевдоосью второго порядка.

Кузьменкоит-Zn K₂Zn(Ti,Nb)₄(Si₄O₁₂)₂(OH,O)₄ · · (6-8)H₂O – аналог кузьменкоита-Мп с существенным преобладанием Zn над Mn - установлен в гидротермально переработанной зоне трех пегматитовых тел на горе Лепхе-Нельм (Ловозерский щелочной массив) [43]. Из других МГЛ наиболее распространен цепинит-Na здесь $(Na, H_3O, Sr, Ba, K)_2(Ti, Nb)_2(Si_4O_{12})(OH, O)_2 \cdot nH_2O$ [53], с которым кузьменкоит-Zn иногда находится в тесных срастаниях. Кузьменкоит-Zn моноклинный, пр. гр. Ст, уточненные по порошковой дифрактограмме параметры элементарной ячейки: a = 14.40(1), b = 13.851(4), c = 7.781(9) Å, $\beta =$ $= 117.33(8)^{\circ}$. Источником цинка для кузьменкоита-Zn послужил сфалерит ZnS, который и разложился в постмагматических гидротермальных условиях.

Лепхенельмит-Zn Ba₂Zn(Ti,Nb)₄(Si₄O₁₂)₂(O, OH)₄ · 7H₂O установлен в агпаитовом пегматите на г. Лепхе-Нельм в Ловозерском щелочном массиве [58], где он ассоциирует с другими МГЛ (кузьменкоитом-Zn, цепинитом-Na, парацепинитом-Ва и другими минералами). Параметры элементарной ячейки этого минерала: a = 14.381(3), b == 13.889(3), c = 7.793(2) Å, $\beta = 117.52(3)^\circ$, пр. гр. *Cm*.

Лепхенельмит-Zn — четвертый цинковый представитель группы лабунцовита после органоваита-Zn, алсахаровита-Zn, а также кузьменкоита-Zn, с которым он образует изоморфный ряд. В то же время он третий бариевый член подгруппы кузьменкоита после леммлейнита-Ва и парацепинита-Ва. Такое разнообразие ярко подчеркивает сильное сродство лабунцовитоподобных структур к катионам Zn и Ba, а лепхенельмит-Zn — первое природное соединение, в котором барий и цинк одновременно являются видообразующими компонентами. К формированию минерала со столь необычным для природных соединений сочетанием катионов привело локальное обогащение гидротермального раствора одновременно барием и цинком, высвобождающимися при растворении содержащих их ранних минералов. Важным условием представляется окислительная обстановка, не позволяющая цинку с большим сродством к S^{2–} принять сульфидную форму.

Атомное отношение Ti:Nb в двух неэквивалентных *M*Ø₆-октаэдрах лепхенельмита-Zn практически одинаково и составляет 3:1, а каркасные полиэдры, включая тетраэдры SiO₄, сильно искажены из-за вхождения в каналы большого количества очень крупного катиона Ba²⁺. *D*-позиция заполнена на 60% ионами Zn, Mn, Fe и Mg с преобладанием цинка. Внекаркасные катионы, среди которых доминирует барий, а также молекулы воды, занимают в цеолитных полостях большое число позиций, нередко расщепленных и, как правило, с большим количеством вакансий. В структуре этого минерала обнаружены 10 (без учета расщеплений) позиций щелочноземельных и щелочных катионов А и пять позиций молекул воды, которые находятся в вершинах DO_6 -октаэдра. Лепхенельмит-Mn – недостаточно изученный минерал. В некоторых кристаллах лепхенельмита-Zn образуются Mn-доминантные зоны.

К подгруппе кузьменкоита относится и карупмеллерит-Са (Na,K,Ca)₄Ca₂(Nb,Ti)₈[Si₄O₁₂]₄(OH, O)₈ · $\cdot nH_2O$ из гидротермально измененного пегматита в южной части щелочного комплекса Илимаусак, Гренландия [64]. Как отмечалось выше, содержание кальция в собственно лабунцовитах не превышает 0.1 атома на элементарную ячейку. Вместе с тем известны МГЛ с существенным содержанием кальция в составе. Из более 300 анализов химического состава этих минералов [20] 31 соответствует содержанию Са более одного атома на (Si,Al)₁₆, а в ряде случаев формульный коэффициент Са превышает 2. В то же время практически отсутствуют составы с Са_{0,9-1,3}. Этот факт может свидетельствовать о разрыве смесимости минералов группы лабунцовита при варьировании содержания кальция и о возможных структурных различиях между высоко- и низкокальциевыми членами этой группы.

Кристаллическая структура карупмеллерита-Са с преимущественным содержанием Са по сравнению с Na, K, Ba, Sr и преимущественным содержанием Nb по сравнению с Ti изучена методом Ритвельда [65]. В этой структуре в $DØ_6$ -октаэдрах (заполненных на 70% катионами Са и Mg) преобладает Са. В этих октаэдрах расстояния катион-кислород (2.48–2.56 Å при среднем 2.53 Å) больше, чем средние расстояния D-Ø в леммлейните-Ва и кузьменкоите-Мп (2.16 и 2.17 Å соответственно). Особенность карупмеллерита-Са заключается также в заполнении С-позиции катионами Са и Na, а не Ва и К, как в большинстве остальных членов группы лабунцовита. Таким образом, кальций в этой структуре играет двоякую роль — как часть квазикаркаса (в позиции D) и как внекаркасный катион (в позиции С). Крупные щелочные катионы К и Na, а также молекулы воды заполняют пустоты каркаса. Как и в структуре кузьменкоита, позиция А остается вакантной. Позиция В статистически заполнена К и Na с небольшим преобладанием К: расстояния катион-анион находятся в пределах 2.81(6)-3.58(4) Å (среднее 3.20 Å), координационный полиэдр – девятивершинник. По распределению молекул воды по трем независимым позициям карупмеллерит схож с леммлейнитом-Ва. Развернутая структурная формула минерала (Z = 1): $\Box_4(K_{1.03}Na_{0.87})(Ca_{0.57}Na_{0.30}Ba_{0.02})(Ca_{1.39}Mn_{0.02})$ $(Nb_{2.71}Ti_{1.20}Fe_{0.05})(Nb_{2.63}Ti_{1.28}Fe_{0.05})[Si_4O_{12}]_4(O,OH)_8$ · 11H₂O.

Таким образом, в структуре карупмеллерита-Са при общем сходстве со структурой кузьменкоита-Мп отмечается значительный дефицит внекаркасных катионов (2.8 из теоретически возможных 12) при одновременном повышенном содержании H₂O. Замещение Ті на более крупный Nb, Mn – на Са и повышенное содержание H₂O приводят к некоторому увеличению параметров элементарной ячейки по сравнению с кузьменкоитом-Mn: a = 14.641(1), b = 14.214(1), c = 7.9148(2) Å, $\beta = 117.36(1)^\circ$, пр. гр. C2/m [65].

Помимо кузьменкоитов и карупмеллерита-Са к подгруппе кузьменкоита относятся их Nb-доминантные аналоги — члены гьердингенитовой системы твердых растворов, различающиеся доминирующим катионом в *D*-позиции. Первые представители этой изоморфной серии — гьердингенит-Fe K₄Fe₂Nb₈(Si₄O₁₂)₄O₈ · *n*H₂O (*n* = 10–12) [66] и гьердингенит-Mn K₄Mn₂Ti₈(Si₄O₁₂)₄(OH)₈ · $\cdot n$ H₂O (*n* = 10–12) [67] — открыты в минеральных ассоциациях гидротермального генезиса из щелочных гранитов комплекса Гьердинген, Норвегия. В их структурах *D* = Fe и Mn соответственно.

Гьердингенит-Na $(K,Na)_2Na(Nb,Ti)_4(Si_4O_{12})_2$ (OH,O)₄ · 5H₂O и гьердингенит-Ca K₂Ca(Nb,Ti)₄ (Si₄O₁₂)₂(O,OH)₄ · 6H₂O – аналоги гьердингенита-Fe и гьердингенита-Mn с доминированием Na и Ca в позиции *D* соответственно. Они являются продуктами изменения гетерофиллосиликата вуоннемита Na₁₁Nb₂Ti(Si₂O₇)₂(PO₄)₂O₃F под воздействием щелочных гидротермальных растворов. Гьердингенит-Na найден в щелочном массиве Сент-Илер (Mont Saint-Hilaire, Квебек, Канада) в ассоциации с цеолитами в виде псевдоморфоз по кристаллам вуоннемита размером до 12 см. Водный гетерофиллосиликат эпистолит $Na_4Nb_2Ti(Si_2O_7)_2O_2(OH)_2 \cdot 4H_2O$, также присутствующий в этой ассоциации, является промежуточным членом трансформационного ряда вуоннемит \rightarrow эпистолит \rightarrow гьердингенит-Na.

Гьердингенит-Са найден на горе Карнасурт Ловозерского массива Кольского полуострова в виде псевдоморфоз по хорошо ограненным кристаллам вуоннемита в ассоциации с натролитом, органоваитом-Мп, органоваитом-Zn, бериллитом, эпидидимитом и йофортьеритом.

Первоначально гьердингенит-Na был описан как ромбический минерал [68] с параметрами ячейки типа ненадкевичита a = 7.34, b = 14.0, c == 7.15 Å, поскольку не было учтено микродвойникование моноклинного кристалла, при котором ромбическая симметрия является псевдосимметрией, и оба минерала относятся к подгруппе кузьменкоита. Из-за плохого качества кристаллов структуры гьердингенита-Na и гьердингенита-Ca решены методом Ритвельда [69].

В структуре гьердингенита-Са $DØ_6$ -октаэдр заполнен на 65% главным образом Са, соответственно, соседняя позиция *C* заселена меньше чем на 50%. Позиция *A* вакантна, в то время как заселенность позиции *B* К_{0.46}Na_{0.21} $\square_{0.33}$. Гьердингенит-Са — это второй после карупмеллерита-Са член группы лабунцовита с доминированием кальция в позиции *D*. В гьердингените-Na позиция *D* полностью занята Na с небольшой примесью Са. Позиции *A* и *C* вакантны, а позиция *B* занята полностью: ее состав K_{0.50}Na_{0.38}Ca_{0.12}.

Оба минерала моноклинные (пр. гр. C2/m) с параметрами ячейки гьердингенита-Na и гьердингенита-Ca соответственно: a = 14.626(2), b == 14.160(1), c = 7.910(1) Å, $\beta = 117.43(2)^{\circ}$ и a == 14.6365(6), b = 14.2049(5), c = 7.8919(4) Å, $\beta = 117.467(5)^{\circ}$. Присутствие катиона Ca²⁺, большего по размеру, чем Fe²⁺ и Mn²⁺, приводит к бо́льшим параметрам ячейки по сравнению с параметрами гьердингенита-Fe и гьердингенита-Mn, сравнимыми с параметрами карупмеллерита-Ca.

Таким образом, оба минерала, гьердингенит-Na и гьердингенит-Са, изоструктурны гьердингенитам-Fe и Mn и демонстрируют двоякую роль катионов Na и Ca с низкими силовыми характеристиками [70] в отличие от более крупных катионов K, Ba, которые всегда занимают только внекаркасные позиции.

Буроваит-Са (Na,K,Sr,Ba)₅Ca₂(Ti,Nb)₈[Si₄O₁₂]₄ (OH,O)₈ · 12H₂O происходит из гидротермальной зоны эгирин-микроклинового пегматита Хибинского массива (г. Хибинпахчорр). Минерал образует кристаллы до 0.5-2 мм в ассоциации с рядом МГЛ (лабунцовитом-Мп, цепинитом-Na, парацепинитом-Na), цеолитами (анальцимом, натролитом) и рядом других водных минералов гидротермального генезиса [71].

Параметры ячейки буроваита-Са: a = 14.529(3), $b = 14.203(3), c = 7.899(1) \text{ Å}, \beta = 117.37(1)^{\circ},$ пр. гр. С2/т. Позиция D имеет октаэдрическую координацию и занята атомами Са на 65%. Внекаркасные катионы Na, K, Ca, Sr, Ba и молекулы воды находятся в позициях трех сортов. Позиция А наполовину заполнена главным образом ионами натрия (Na_{0.41}Ca_{0.06}Sr_{0.01}). Позиция В занята только атомами калия (К_{0 48}). Позиция С заселена молекулами воды и ионами калия с небольшой примесью бария [(H₂O)_{0.64}K_{0.19}Ba_{0.01}]. Буроваит-Са изоструктурен гьердингериту-Са [69], а также карупмеллериту-Са [64] и отличается от него преимущественно составом двух независимых октаэдров цепочек (Ti_{0 67}Nb_{0 33} и Ti_{0 77}Nb_{0 23}) и частичным заселением позиции А атомами Na.

Подгруппа органоваита

К структурному типу органоваита относятся минералы, кристаллизующиеся в пр. гр. C2/m с удвоенным по сравнению с лабунцовитами параметром *с*. В этих минералах позиции *D* заполнены, *A* —вакантные. Представляется важным, что в случае минералов, относящихся к структурному типу органоваита, удвоение параметра *с* имеет иную природу, чем в паралабунцовитах с пр. гр. I2/m [12]. Оно обусловлено не только упорядочением *D*-катионов, но и тем, что соседние октаэдрические слои в их структурах трансляционно неэквивалентны.

К подгруппе органоваита относятся изоструктурные Nb-доминантные минералы органоваит-Mn K₂Mn(Nb,Ti)₄(Si₄O₁₂)₂(O,OH)₄ · 6H₂O [72], органоваит-Zn K₂Zn(Nb,Ti)₄(Si₄O₁₂)₂(O,OH)₄ · 6H₂O [73] и их (Ti,Fe)-аналог паракузьменкоит-Fe (K,Ba)₂Fe(Ti,Nb)₄[Si₄O₁₂]₂(O,OH)₄ · 7H₂O [74]. Органоваит-Mn и органоваит-Zn образуют непрерывный изоморфный ряд. Содержание других *D*-катионов (Mg и Fe) в этих минералах невысоко. Интересно отметить, что избыточные по отношению к идеализированной формуле органоваита атомы цинка могут входить в позиции калия в виде комплекса [Zn(H₂O)₂]²⁺ [72–74].

Для органоваитов характерно полное или почти полное заселение позиции *D* малыми двухвалентными катионами (Mn, Zn, Fe); в обеих позициях внекаркасных катионов присутствуют главным образом крупные катионы K и Ba, а позиция *A*, которая обычно заселена натрием, вакантна. Эти особенности, а также конфигурация каркаса сближают подгруппу органоваита с подгруппой кузьменкоита. Все структурно изученные образцы минералов подгруппы органоваита являются полисинтетическими двойниками. Параметры ячеек органоваита-Mn и органоваита-Zn равны

Минерал	<i>A</i> 1	A2	B 1	<i>B</i> 2	<i>C</i> 1	<i>C</i> 2	D
Гутковаит-Мп	$Ca_{1.2}\square_{0.8}$	H ₂ O	K _{0.5}	K _{2.4}	K _{0.2}	Ba _{0.2}	(Mn,Fe) _{1.8}
Нескевараит-Fe	Na _{2.4}	K _{1.6}	K _{1.4}	K _{0.8}	Ba _{0.5}	K _{0.7}	$Fe_{0.7}Mg_{0.4}$
Алсахаровит-Zn	Na _{0.7} Ca _{0.7}	$Sr_{0.7}Na_{0.3}$	(H ₂ O) _{0.9}	K _{1.0}	Ba _{0.2}	(H ₂ O) _{1.8}	$Zn_{1.6}(Mn, Fe)_{0.2}$

Таблица 2. Распределение различных компонентов по позициям в минералах подгруппы гутковаита

соответственно: a = 14.55, b = 14.00, c = 15.70 Å, $\beta = 117.6^{\circ}$ и a = 14.535, b = 13.93, c = 15.665 Å, $\beta = 117.6^{\circ}$.

Органоваит-Мп и органоваит-Zn найдены в гидротермально переработанной пегматоидной породе на горе Карнасурт (Ловозерский массив). Подобно гьердингениту-Na и гьердингениту-Ca органоваит-Мn и органоваит-Zn образуют псевдоморфозы по кристаллам вуоннемита, реже – самостоятельные мелкие кристаллы. Источником марганца и цинка для этих минералов послужили соответственно серандит HNaMn₂Si₃O₉ и сфалерит ZnS, разложившиеся под воздействием щелочных гидротермальных растворов.

Паракузьменкоит-Fe (K,Ba)₂Fe(Ti,Nb)₄[Si₄O₁₂]₂ (O,OH)₄ · 7H₂O из щелочного пегматита г. Кедыкверпахк, Ловозеро, характеризуется параметрами элементарной ячейки [73]: a = 14.41, b = 13.88, c == 15.59 Å, $\beta = 117.5^{\circ}$, пр. гр. *C2/m*. Избыток *D*-катионов (Fe, Mn, Zn, Mg) в паракузьменкоите-Fe, составляющий 0.2 атома на формулу, может быть связан, как и в случае органоваитов, с вхождением части цинка и/или марганца во внекаркасную позицию в виде комплекса [$M(H_2O)_2$]²⁺.

Подгруппа гутковаита

Структурный тип гутковаита по заполнению позиций А, В и С аналогичен структурному типу лабунцовита. Однако если для центросимметричных структур минералов подгруппы лабунцовита и леммлейнита характерны две А-позиции, связанные осью симметрии второго порядка, то в структуре минералов данной подгруппы эти две А-позиции не эквивалентны и либо заселяются разными катионами, либо одна из них вакантна. Такое упорядоченное заселение разнотипных Апозиций (в меньшей степени С- и В-позиций) определяет понижение симметрии от C2/m до Cm (табл. 2). Кроме того, в структурах гутковаита и его аналогов наблюдается избирательное вхождение ионов бария только в одну из позиций в вершинах $DØ_6$ -октаэдра, занятых преимущественно молекулами H₂O, что также является одной из причин понижения симметрии. Эти особенности делают минералы подгруппы гутковаита наиболее эффективными "разделителями" щелочных и щелочноземельных катионов.

Первым структурно изученным представителем подгруппы гутковаита является гутковаит-Mn CaK₂Mn(Ti,Nb)₄(Si₄O₁₂)₂(O,OH)₄ · 5H₂O – низконатриевый и одновременно Ca-содержащий представитель группы лабунцовита [75], обнаруженный на горе Малый Маннепахк Хибинского щелочного массива. Кристалл гутковаита-Mn оказался микросдвойникованным по плоскостям (001) и ($\overline{4}$ 01) истинной моноклинной решет-

стям (001) и (401) истинной моноклинной решетки, что вызывало ложное повышение симметрии до ромбической с учетверением параметра c ($c_{\text{ромб}} =$ = 28.17 Å). Параметры истинной моноклинной ячейки: a = 14.30(2), b = 13.889(7), c = 7.760(10) Å, $\beta = 117.51^{\circ}$. Уточненные массовые коэффициенты компонент двойника составляют 0.6 и 0.4.

В структуре гутковаита-Мп реализуется принципиально иное, чем в других МГЛ, распределение внекаркасных катионов, в том числе кальция [76, 77]. Кристаллохимическая формула гутковаита-Мп: $[(Ca_{1,2}\square_{0,8})\square_2][K_3(H_2O)][(K_{0,2}Ba_{0,2}(H_2O)_{3,6}] (Mn_{1.7}Fe_{0.1})(Ti_{7.8}Nb_{0.2})(OH,O)_8[Si_4O_{12}]_4 <math>\cdot 5.1H_2O$, где первыми тремя квадратными скобками выделены составы групп позиций *A*, *B* и *C* в структуре лабунцовита.

Каркас структуры гутковаита-Мп, состоящий из волнообразно изогнутых цепочек (Ti,Nb)Ø₆октаэдров, дополнительных MnØ₆-октаэдров и колец (Si₄O₁₂), практически идентичен каркасу структуры лабунцовита-Мп [12, 38]. Позиция А распадается на две подпозиции А1 и А2, одна из которых занята преимущественно Са, другая остается вакантной. Позиции В и С также разделены на две при разном их заселении катионами: обе В-позиции заселены атомами калия в разной пропорции, а С – атомами К и Ва (позиции С1 и С2 соответственно). Понижение симметрии от *C*2/*m* у лабунцовита до *Cm* у гутковаита привело к появлению дополнительных позиций внекаркасных катионов и их частичной заселенности, которая была уточнена с использованием смешанных кривых атомного рассеяния. Са-центрированный полиэдр в гутковаите-Мп редуцирован до семивершинника со средним расстоянием Са–О = = 2.48 Å [75].

К структурному типу гутковаита относятся также алсахаровит-Zn NaSrKZn(Ti,Nb)₄[Si₄O₁₂]₂ (OH,O)₄ · 7H₂O и нескевараит-Fe (Na₂K₂)K₄Fe₂Ti₈ (Si₄O₁₂)₄(O,OH)₈ · nH₂O ($n \approx 12$).

Рис. 16. Кристаллическая структура алсахаровита-Zn (а) и нескевараита-Fe (б).

Алсахаровит-Zn — цинк-доминантный минерал с горы Лепхе-Нельм, Ловозерский массив [76]. Полученные для него параметры ромбической псевдоячейки с учетверенным периодом c = 27.73 Å указывали на двойникование кристалла по типу вуориярвита с матрицей перехода от экспериментальной ромбической ячейки к истинной моноклинной: [-1 0 0 /0 -1 0/0.25 0 0.25] и [1 0 0/0 1 0/-0.25 0 0.25]. Параметры истинной элементарной ячейки: a = 14.491(6), b = 13.911(6), c = 7.822(4) Å, $\beta = 117.59(1)^\circ$, пр. гр. *Ст.* Уточненные массовые коэффициенты компонент двойника составляют 0.59 и 0.41 (рис. 16).

Первоначально структуру алсахаровита-Zn исследовали в рамках обычной для лабунцовитов центросимметричной пр. гр. *C2/m*, однако данные химического анализа недостаточно полно соответствовали полученной в результате структурного анализа модели. Повторное исследование с понижением симметрии до пр. гр. *Cm* позволило найти дополнительные позиции с частичной заселенностью, а также уточнить их с учетом смешанных кривых атомного рассеяния.

Кристаллохимическая формула алсахаровита-Zn (Z= 1): [(Na_{0.7}Ca_{0.7}□_{0.6})(□_{1.0}Sr_{0.7}Na_{0.3})][□_{2.98}K_{1.02}] [Ba_{0.2}(H₂O)_{3.64}□_{0.16}][Zn_{1.64}(Mn,Fe)_{0.18}][Ti_{5.68}Nb_{2.32} (OH_{4.82}O_{3.18})][Si₄O₁₂]₄ · nH₂O, где □ – вакансия; первыми четырьмя квадратными скобками выделены составы ключевых позиций A1 + A2, B, C1 + C2 и D. Алсахаровит-Zn обладает смешанным составом катионов и содержит в значительных количествах Na, Ca, K, Ba, Sr и Zn, а пять щелочных и щелочноземельных катионов распределены по четырем позициям. В позиции A1 находятся весь кальций и часть натрия, в позиции A2 — весь стронций и остальная часть натрия; позиция B заселена только калием, в позиции C1 находится весь барий, а позиция C2 содержит только молекулы воды. Таким образом, алсахаровит-Zn демонстрирует уникальный случай "структурной сепарации" химических элементов. Особенностью алсахаровита-Zn является также почти полная заселенность позиции D средними по размеру катионами (с доминированием Zn). Отметим, что в алсахаровите-Zn впервые для группы лабунцовита установлена видообразующая роль стронция. Еще один представитель, в котором также стронций играет видообразующую роль, — цепинит-Sr.

Нескевараит-Fe, обнаруженный в керне скважины на участке Нескевара в массиве Вуориярви (Сев. Карелия) в полостях гидротермально измененных карбонатитов, характеризуется преобладанием железа в позиции D [77]. Наблюдаемый удвоенный период ячейки с указывал на двойникование по типу леммлейнита. Параметры истинной элементарной ячейки: *a* = 14.450(6), *b* = 13.910(6), c = 7.836(4) Å, $\beta = 117.420(5)^{\circ}$, пр. гр. *Ст.* Кристаллохимическая формула нескевараита-Fe (Z = 1): $[Na_{2.0}(K_{1.6}Na_{0.4})][K_{2.2}\Box_{1.0}(H_3O)_{0.8}][K_{0.72}Ba_{0.48}(H_2O)_{2.2}\Box_{0.6}]$ $[Fe_{0.66}Mg_{0.44}][Ti_{4.8}Nb_{3.2}(OH_{5.27}O_{2.73})][Si_4O_{12}]_4 \cdot nH_2O,$ где квадратными скобками выделены составы ключевых групп позиций A, B, C и D (рис. 16). Особенностью нескевараита-Fe является упорядоченное распределение атомов Nb по разным октаэдрическим позициям: в одной преобладает титан, в другой содержится равное количество титана и ниобия.

По симметрии, параметрам элементарной ячейки, разделению позиций A, B и C и упорядоченному распределению катионов по ним нескевараит-Fe схож с алсахаровитом-Zn и отличается от него доминированием Fe в позиции D при более низкой ее заселенности, высокой заселенностью позиций A и B и упорядоченным распределением Ti и Nb по двум октаэдрическим позициям (рис. 16).

Особенности строения делают эти минералы (включая леммлейнит-Ва) наиболее эффективными "разделителями" щелочных и щелочноземельных катионов не только среди членов группы лабунцовита, но и, вероятно, среди природных соединений вообще, что может иметь важное практическое значение.

3. КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ МИНЕРАЛОВ ГРУППЫ ЛАБУНЦОВИТА

Завершая обзор структур МГЛ, сформулируем общие выводы, вытекающие из сопоставления результатов структурных исследований разных образцов.

Заполнение каркасных и внекаркасных позиций, упорядочение катионов, симметрия и параметры элементарной ячейки у МГЛ различны, в связи с чем выделяется большое число структурных типов.

По симметрии среди МГЛ выделяются ромбические и моноклинные члены.

Структура ромбических минералов характеризуется отсутствием "сшивающих" $DØ_6$ -октаэдров и наличием двух однотипных внекаркасных позиций A, заполненных преимущественно натрием, так как небольшой размер полостей является препятствием для вхождения таких крупных катионов, как K или Ba.

Среди моноклинных членов группы лабунцовита наиболее простой и упорядоченной структурой характеризуются лабунцовиты и их аналоги леммлейниты с вакансиями в D-позициях. В моноклинных МГЛ с упорядоченными катионами (пр. гр. C2/m или I2/m) одно- и двухвалентные катионы распределены по четырем позициям (A, B, C и D). Остальные структурные типы в рамках этой группы могут быть выведены из этих простейших структур путем смещения, расщепления и различного заполнения внекаркасных позиций.

Позиция A заселяется преимущественно атомами натрия. Кратность этой позиции равна 8, но максимально возможному ее заполнению в лабунцовите отвечают четыре атома Na на формулу с Z = 1, так как при большей заселенности позиции A атомы натрия оказались бы попарно сближены до недопустимо короткого расстояния 2.5 Å. Таким образом, заселенность A-позиции в центросимметричных лабунцовитовых структурах носит статистический характер.

В минералах подгруппы кузьменкоита вследствие низкого содержания натрия позиция *A* вакантна, что является главным отличием кузьменкоита от лабунцовита. Позиция *A* в структурно изученных высококальциевых МГЛ в значительной степени вакантна. Несмотря на низкое содержание натрия, вхождения кальция в эту позицию не наблюдается. Позиция *A* остается вакантной и в структуре карупмеллерита-Са, где содержание кальция в целом преобладает над содержанием натрия.

Принципиально иное распределение катионов в позиции *A* реализуется в минералах подгруппы гутковаита, где заселяется только одна из двух связанных осью симметрии второго порядка *A*-позиций либо обе, но разными компонентами. Упорядочение заселения разнотипных *A*-, *B*- и *C*позиций делает минералы подгруппы гутковаита наиболее эффективными "разделителями" щелочных и щелочноземельных катионов не только среди членов группы лабунцовита, но и, вероятно, среди природных соединений вообще. Это свойство может иметь важное практическое значение.

Позиция *В* в моноклинных МГЛ с упорядоченными катионами обычно занята калием. В низкокалиевых (менее четырех атомов на ячейку) лабунцовитах весь калий находится именно в этой позиции. Позиция *В* также может расщепляться на группу подпозиций с частичной заселенностью. Характерной особенностью структуры вуориярвита-К и некоторых других неупорядоченных моноклинных МГЛ подгруппы вуориярвита, отличающей его от большинства других МГЛ, является большое число преимущественно вакантных внекаркасных позиций, близко расположенных, в том числе, в окрестности аналога *В*позиции.

Позиция D в структурах большинства моноклинных МГЛ подгрупп леммлейнита и вуориярвита преимущественно вакантна. В вуориярвите-К она заполнена ионами натрия. Необычна позиция, занимаемая стронцием с заселенностью 0.22, в цепините-Na. Она может трактоваться как октаэдрическая (аналог позиции D), однако по сравнению с обычными "сшивающими" катионами стронций смещен из центра квадрата, образуемого атомами кислорода MO_6 -октаэдров цепочек.

Позиция C (при условии вакантности позиции D) в МГЛ заполнена атомами Ва и К. Леммлейнит-К является членом группы лабунцовита с наиболее высокой концентрацией калия и не содержит двухвалентных катионов в позиции D, а B-позиция основная для калия. Избыточный (сверх четырех атомов на ячейку) калий входит также в позицию C, "конкурируя" там с барием и молекулами воды. Если калий практически обобществляет свою позицию с H_2O -вершинами DO_6 октаэдра, то тяжелый атом Ва фиксируется более жестко на расстоянии 0.3 Å от позиции H_2O . У леммлейнита-Ва с содержанием бария более двух атомов на формулу происходит полное упорядочение Na, K и Ва соответственно в позициях *A*, *B* и *C* при доминировании Ва в *C*-позиции.

С точки зрения генезиса и кристаллохимии принципиально различаются две разновидности леммлейнита-К. Разновидность первого типа, к которой относится и голотип этого минерала, первоначально кристаллизовалась как ромбический минерал, но при понижении температуры трансформировалась в моноклинную фазу полисинтетического двойника. Эта разновидность практически не содержит двухвалентных катионов, а концентрация калия в ней достигает 7.64 атомов на формулу.

Разновидность второго типа изначально кристаллизовалась как моноклинный минерал. Она характеризуется переменным содержанием Ва, Mg, Mn и Fe и образует непрерывные изоморфные ряды с леммлейнитом-Ва и членами подгруппы лабунцовита.

В отличие от большинства МГЛ в карупмеллерите-Са позиция C содержит в основном катионы Са и Na (с общей заселенностью 23%), а не Ва и К. Эти катионы статистически чередуются с D-катионами, среди которых преобладает кальций. Заселенность позиции D в карупмеллерите-Са составляет 70%.

Роль кальция и стронция в МГЛ двоякая. Эти катионы могут входить как в позицию D (или ее аналог) и участвовать в формировании квазикаркаса, так и заполнять полости как типичные внекаркасные катионы (при координационных числах более 6). Средняя длина связи Са–О (2.53 Å) значительно выше средних длин связей в $DØ_6$ -октаэдрах лабунцовитов (около 2.1 Å). Высококальциевые члены группы лабунцовита отличаются от собственно лабунцовита также углами взаимного разворота полиэдров, составляющих смешанный каркас.

С одной стороны, существование карупмеллерита-Са с преобладанием кальция в D-позиции и общим преобладанием натрия среди внекаркасных катионов говорит о том, что D-позиция больше подходит для кальция, чем для натрия. С другой стороны, эта позиция имеет наибольшее сродство к двухвалентным катионам с более высокими, чем у Са, силовыми характеристиками, таким как Mg, Mn, Fe и Zn. По-видимому, нужна специфичная геохимическая обстановка для кристаллизации МГЛ с Са, и особенно с Na, в позиции D, такая как высокая насыщенность гидротермальных растворов следующими парами катионов: Na + Ca, Ca + K или Na + K. В последнем случае активность Na должна быть выше, чем К. Низкотемпературные гидротермальные растворы в щелочных комплексах Сент-Илер и Илимаусак были в большей степени насыщены натрием и кальцием или обеднены Mg, Mn, Fe и Zn по сравнению с гидротермалитами Кольского полуострова, таких как Ловозеро, Хибины и Ковдор, что послужило причиной наблюдаемых различий в кристаллохимии значительной части найденных там МГЛ.

Подгруппы МГЛ могут быть выстроены в ряд, в котором четко проявляется тенденция к закономерному изменению физико-химических свойств минералов, включая параметры ИК-спектра и способность к ионному обмену: подгруппы лабунцовита, паралабунцовита и леммлейнита — подгруппа гутковаита — подгруппы кузьменкоита и органоваита → подгруппы вуориярвита и парацепинита → ромбические члены (подгруппа ненадкевичита). В большинстве случаев этому ряду соответствует и последовательность образования: расположенные ближе к концу ряда минералы кристаллизуются позже, что особенно хорошо видно в сростках различных МГЛ. В поздних минералах наблюдаются относительно более слабые водородные связи, образуемые молекулами воды, и более низкие температуры дегидратации, что тоже косвенно свидетельствует о более низких температурах образования.

Обращает на себя внимание, что в начале ряда находятся в основном минералы с заполненной позицией *D* в их структуре, а в конце – с дефицитом катионов в ней или не содержащие в своей структуре позиции D (подгруппы вуориярвита, парацепинита, ненадкевичита). Исключением являются леммлейниты, которые в отличие от других моноклинных *D*-дефицитных представителей всей группы характеризуются высокой степенью катионного упорядочения, что сближает их с лабунцовитами. Сходство леммлейнитов с лабунцовитами проявляется также в существовании непрерывных изоморфных рядов между членами этих подгрупп. В то же время между представителями других подгрупп смесимость во многих случаях ограничена. Это полтверждается, в частности, наличием резких фазовых границ между срастающимися индивидами, принадлежащими разным подгруппам.

Генезис МГЛ тесно связан с гидротермальной стадией формирования щелочных пегматитов, на которой происходит массовая кристаллизация цеолитов [78]. Образование того или иного минерального вида зависит от конкретных условий (температурного режима, активности различных элементов). Находки новых лабунцовитоподобных минералов продолжаются, что открывает перспективу для дальнейшего минералогического и структурного изучения этой разнообразной и интересной, в том числе в практическом отношении, группы.

Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" при поддержке Министерства науки и высшего образования РФ (проект RFMEFI62119X0035) в рамках госзадания ФНИЦ "Кристаллография и фотоника" РАН в части обобщения данных о кристаллохимии минералов группы лабунцовита и в соответствии с темой госзадания (номер государственного учета АААА-А19-119092390076-7) в части литературного поиска (частично), написания и дополнения отдельных разделов обзора, включая данные об ИК-спектроскопии и генезисе.

СПИСОК ЛИТЕРАТУРЫ

- Pekov I.V., Chukanov N.V. // Rev. Mineral. Geochem. 2005. V. 57. P. 145.
- Rocha J., Brandao P., Lin Z. et al. // J. Phys. Chem. 1996. V. 100. № 36. P. 14978.
- 3. *Rocha J., Brandao P., Lin Z. et al.* // Chem. Commun. 1996. V. 5. P. 669.
- Crosnier M.P., Guyomard D., Verbaere A. // Ferroelectrics. 1991. V. 124. P. 61.
- Philippou A., Anderson M.W. // Zeolites. 1996. V. 16. № 2-3. P. 98.
- 6. Cruciani G., Deluca P., Nastro A., Pattisson P. // Micropor. Mesopor. Mater. 1998. V. 21. № 1–3. P. 143.
- 7. Bortun A.I., Bortun L.N., Khainakov S.A. et al. // Solvent Extraction and Ion Exchange. 1999. V. 17. № 3. P. 649.
- 8. *Чуканов Н.В., Пеков И.В., Расцветаева Р.К. //* Успехи химии. 2004. Т. 73. № 3. С. 227.
- 9. *Baussy G., Garuba R., Baumer A., Turco G.* // Bull. Soc. Franc. Miner. Crist. 1974. V. 97. № 6. P. 433.
- Foster M.C., Arbogast D.J., Photinos P. et al. // J. Appl. Cryst. 1999. V. 32. P. 421.
- Органова Н.И., Шлюкова З.В., Забавникова Н.И. и др. // Изв. АН СССР. Сер. геол. 1976. № 2. С. 98.
- 12. Органова Н.И., Архипенко Д.К., Диков Ю.П. и др. // Минерал. журн. 1981. Т. З. № 2. С. 49.
- 13. Karup-Moeller S. // N. Jb. Miner. Mh. 1986. B. H2. S. 49.
- 14. *Mandarino J.A., Anderson V.* Monteregian Treasures. The Minerals of Mont Saint-Hilaire, Quebec–Cambridge, 1989. 281 p.
- Horvath L., Gault R.A. // Mineral. Record. 1990. V. 21. № 4. P. 284.
- 16. Субботин В.В., Волошин А.В., Пахомовский Я.А. и др. // Докл. РАН. 1998. Т. 358. № 4. С. 517.
- 17. Хомяков А.П., Нечелюстов Г.Н., Расцветаева Р.К., Дорохова Г.И. // Записки ВМО. 1999. Ч. 128. № 5. С. 54.
- Пеков И.В., Чуканов Н.В., Хомяков А.П. и др. // Записки ВМО. 1999. Ч. 128. № 3. С. 72.
- Chukanov N.V., Pekov I.V., Khomyakov A.P. // Eur. J. Mineral. 2002. V. 14. P. 165.

- 20. *Чуканов Н.В., Пеков И.В., Задов А.Е. и др.* Минералы группы лабунцовита (кристаллохимия, систематика, свойства и генезис). М.: Наука, 2003. 320 с.
- Sharygin V.V., Doroshkevich A.G., Seryotkin Y.V. et al. // Minerals. 2020. V. 10. P. 1102.
- 22. Aksenov S.M., Bykova E.A., Rastsvetaeva R.K. et al. // Acta Cryst. B. 2018. V. 74. P. 1.
- Золотарев А.А., Кривовичев С.В. // Записки РМО. 2003. № 3. С. 101.
- 24. Золотарев А.А., Кривовичев С.В. // Вестн. Санкт-Петерб. ун-та. Сер. 7. 2006. Вып. 3. С. 57.
- Organova N.I., Krivovichev S.V., Zolotarev A.A., Shlyukova Z.V. // Minerals as Advanced Materials. Berlin: Springer-Verlag, 2008. P. 95.
- 26. *Чуканов Н.В., Пеков И.В., Задов А.Е. и др.* // Записки ВМО. 2001. Ч. 130. № 2. С. 46.
- 27. *Пеков И.В., Чуканов Н.В., Задов А.Е. и др. //* Записки ВМО. 2002. Ч. 131. № 1. С. 28.
- 28. *Chukanov N.V.* Infrared Spectra of Mineral Species: Extended Library. Dordrecht; Heidelberg; New York; London: Springer-Verlag GmbH, 2014. 1716 p.
- 29. Chukanov N.V., Pekov I.V., Rastsvetaeva R.K., Nekrasov A.N. // Can. Mineral. 1999. V. 37. P. 901.
- Pekov I.V., Chukanov N.V., Yamnova N.A. et al. // Can. Mineral. 2007. V. 45. P. 529.
- Пеков И.В., Турчкова А.Г., Кононкова Н.Н., Чуканов Н.В. // Тр. Всерос. семинара "Щелочной магматизм Земли". Москва, 2002. С. 76.
- 32. *Golowin R., Holzheid A., Sönnichsen F.D., Chukanov N.V.//* Chemie der Erde – Geochem. 2014. V. 74. № 3. P. 343.
- 33. Coombs D.S., Alberti A., Armbruster Th. et al. // Can. Mineral. 1997. V. 35. P. 1571.
- 34. Расцветаева Р.К., Аксенов С.М., Чуканов Н.В., Треммель Г. // Докл РАН. 2013. Т. 452. № 5. С. 525.
- Nickel E.H., Grice J.D. // Can. Mineral. 1998. V. 36. P. 913.
- 36. Кузьменко М.В., Казакова М.Е. // Докл. АН СССР. 1955. Т. 100. № 6. С. 1159.
- Perrault G., Boucher C., Vicat J. et al. // Am. Mineral. 1973. V. 58. P. 1102.
- 38. Расцветаева Р.К., Чуканов Н.В., Пеков И.В. // Докл. РАН. 1997. Т. 357. № 3. С. 364.
- 39. *Моисеев М.М., Чуканов Н.В.* // Новые данные о минералах. 2006. Т. 41. С. 56.
- 40. *Головастиков Н.И.* // Кристаллография. 1973. Т. 18. № 5. С. 950.
- 41. *Расцветаева Р.К., Чуканов Н.В., Пеков И.В. и др. //* Кристаллография. 1998. Т. 43. № 5. С. 874.
- 42. Хомяков А.П., Нечелюстов Г.Н., Феррарис Дж. и др. // Записки ВМО. 2001. Ч. 130. № 4. С. 36.
- 43. *Чуканов Н.В., Пеков И.В., Задов А.Е. и др. //* Записки ВМО. 2002. Ч. 131. № 2. С. 45.
- 44. Розенберг К.А., Расцветаева Р.К., Пеков И.В., Чуканов Н.В. // Кристаллография. 2002. Т. 47. № 2. С. 265.
- 45. Milton Ch., Mrose M.E., Fahey J.J., Chao E.C.T. // Geol. Soc. Am. Bull. 1958. V. 69. P. 1614.
- 46. Золотарев А.А., Кривовичев С.В., Яковенчук В.Н. и др. // Докл. РАН. 2006. Т. 410. № 1. С. 86.

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

- 47. Armbruster T., Krivovichev S.V., Weber T. et al. // Am. Mineral. 2004. V. 89. P. 1655.
- 48. Чуканов Н.В., Пеков И.В., Расцветаева Р.К. и др. // Записки ВМО. 2001. Ч. 130. № 3. С. 36.
- 49. Расцветаева Р.К., Чуканов Н.В., Пеков И.В. // Докл. РАН. 1997. Т. 357. № 1. С. 64.
- Rastsvetaeva R.K., Tamazyan R.A., Pushcharovsky D.Y., Nadezhina T.N. // Eur. J. Mineral. 1994. V. 6. P. 503.
- 51. Розенберг К.А., Расцветаева Р.К., Чуканов Н.В., Пеков И.В. // Докл. РАН. 2002. Т. 386. № 3. С. 345.
- 52. Расцветаева Р.К., Чуканов Н.В., Пеков И.В. // Кристаллография. 2000. Т. 45. № 5. С. 830.
- Шлюкова З.В., Чуканов Н.В., Пеков И.В. и др. // Записки ВМО. 2001. Т. 130. № 3. С. 43.
- 54. Расцветаева Р.К., Органова Н.И., Рождественская И.В. и др. // Докл. РАН. 2000. Т. 371. № 3. С. 336.
- 55. Золотарев А.А., Кривовичев С.В. // Записки РМО. 2008. Т. 137. № 1. С. 61.
- 56. Pekov I.V., Chukanov N.V., Ferraris G. et al. // N. Jb. Miner. Mh. 2003. № 10. P. 461.
- 57. *Пеков И.В., Чуканов Н.В., Задов А.Е. и др.* // Записки ВМО. 2003. № 1. С. 52.
- 58. *Пеков И.В., Чуканов Н.В., Шилов Г.В. и др.* // Записки ВМО. 2004. № 1. С. 49.
- 59. Розенберг К.А., Расцветаева Р.К., Пеков И.В. и др. // Докл. РАН. 2003. Т. 393. С. 784.
- 60. Органова Н.И., Кривовичев С.В., Шлюкова З.В., Задов А.Е. // Кристаллография. 2004. Т. 49. № 6. С. 1042.
- Чуканов Н.В., Пеков И.В., Задов А.Е. и др. // Записки ВМО. 2003. № 1. С. 38.
- Головина Н.И., Шилов Г.В., Чуканов Н.В., Пеков И.В. // Докл. РАН. 1998. Т. 362. № 3. С. 350.

- 63. Чуканов Н.В., Пеков И.В., Головина Н.И. и др. // Записки ВМО. 1999. Ч. 128. № 4. С. 42.
- 64. *Pekov I.V., Chukanov N.V., Petersen O.V. et al.* // N. Jb. Miner. Mh. 2002. № 10. P. 433.
- 65. Ямнова Н.А., Пеков И.В., Кабалов Ю.К. и др. // Докл. РАН. 2000. Т. 375. № 4. С. 487.
- Raade G., Ferraris G., Gula A., Ivaldi G. // Can. Mineral. 2002. V. 40. P. 1629.
- 67. *Raade G., Chukano N.V., Kolitsch U. et al.* // Eur. J. Mineral. 2004. V. 16. P. 979.
- Perrault G., Vicat J., Sang N. // Can. Mineral. 1969.
 V. 10. P. 143.
- 69. *Pekov I.V., Chukanov N.V., Yamnova N.A. et al.* // Can. Mineral. 2007. V. 45. P. 529.
- Chukanov N.V., Pekov I.V. // Rev. Mineral.Geochem. 2005. V. 57. P. 105.
- 71. Азарова Ю.В., Шлюкова З.В., Золотарев А.А., Органова Н.И. // Записки ВМО. 2009. Ч. СХХХVIII. № 2. С. 40.
- 72. Чуканов Н.В., Пеков И.В., Задов А.Е. и др. // Записки ВМО. 2001. Ч. 130. № 2. С. 46.
- 73. Чуканов Н.В., Пеков И.В., Семенов Е.И. и др. // Записки ВМО. 2001. Ч. 130. № 6. С. 63.
- 74. *Пеков И.В., Чуканов Н.В., Задов А.Е. и др. //* Записки ВМО. 2002. Ч. 131. № 1. С. 28.
- Расцветаева Р.К., Пеков И.В., Некрасов Ю.В. // Кристаллография. 2001. Т. 46. № 3. С. 415.
- 76. Розенберг К.А., Расцветаева Р.К., Пеков И.В., Чуканов Н.В. // Докл. РАН. 2002. Т. 383. № 5. С. 657.
- Розенберг К.А., Расцветаева Р.К., Чуканов Н.В., Субботин В.В. // Кристаллография. 2002. Т. 47. № 3. С. 453.
- Пеков И.В., Турчкова А.Г., Ловская Е.В., Чуканов Н.В. Цеолиты щелочных массивов. М.: Экост, 2004. 168 с.