УДК 548.314

_____ СТРУКТУРА ОРГАНИЧЕСКИХ __ СОЕДИНЕНИЙ

СТРУКТУРНЫЕ ОСОБЕННОСТИ КОМПЛЕКСА Cu(II) С 5-ФЕНИЛТЕТРАЗОЛАТ АНИОНОМ И 4,4'-ДИМЕТИЛ-2,2'-БИПИРИДИНОМ

© 2022 г. К. С. Смирнова¹, Ю. А. Голубева¹, Е. В. Лидер^{1,*}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

**E-mail: lisalider@ngs.ru* Поступила в редакцию 23.12.2021 г. После доработки 23.12.2021 г. Принята к публикации 09.02.2022 г.

Определена кристаллическая структура биядерного комплекса Cu(II) с 5-фенилтетразолом и 4,4'диметил-2,2'-бипиридином (*dmbipy*) – $[Cu_2(dmbipy)_2L_4]$. Комплекс кристаллизуется в моноклинной пр. гр. $P2_1/c$. Искаженное квадратно-пирамидальное окружение атомов Cu(II) образовано пятью атомами азота, принадлежащих трем 5-фенилтетразолат анионам и одной молекуле *dmbipy*. Благодаря наличию межмолекулярных взаимодействий $\pi \cdots \pi$ и C–H $\cdots \pi$ биядерные фрагменты соединяются в супрамолекулярную слоистую структуру. Энергия связи рассчитана в рамках теории функционала плотности для двух моделей комплекса [Cu₂(*dmbipy*)₂L₄] с различными способами координации мостикового 5-фенилтетразола.

DOI: 10.31857/S0023476122040154

ВВЕДЕНИЕ

Азотсодержащие гетероциклы широко используются в качестве строительных блоков при синтезе потенциальных лекарственных средств, поскольку атомы азота способны легко образовывать водородные связи с различными биологическими мишенями [1, 2]. В частности, большой интерес вызывает возможное использование тетразолов и их комплексов в мелицине [3, 4]. Известно более 20 различных видов биологической активности соединений, в состав которых входит тетразольный цикл [5]. Однако до недавнего времени тетразол и комплексы на его основе редко изучали в качестве противоопухолевых агентов. Одной из возможных причин является склонность тетразолов к образованию практически нерастворимых координационных полимеров, что ограничивает их использование в медицине.

Удалось частично решить проблему растворимости координационных соединений на основе тетразола за счет синтеза разнолигандных комплексов с производными тетразола и пиридина. В частности, получена серия цитотоксичных комплексов Cu(II) на основе тетразола, 5-фенилтетразола, 5-метилтетразола, 5-бензилтетразола и 2,2'-бипиридина/1,10-фенантролина [6—9]. Синтез комплекса Cu(II) с 5-фенилтетразолом и 4,4'диметил-2,2'-бипиридином описан в [9], однако комплекс не был структурно охарактеризован. Чтобы прогнозировать количественные характеристики биологической активности, необходимо знать структурные особенности соединений. В связи с этим в настоящей работе определена кристаллическая структура биядерного комплекса Cu(II) с 5-фенилтетразолом и 4,4'-диметил-2,2'-бипиридином (*dmbipy*) – координационного соединения [Cu₂(*dmbipy*)₂L₄] – и проведен анализ его структурных особенностей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплекс $[Cu_2(dmbipy)_2L_4]$ синтезирован по методике, описанной в [9]. После отделения осадка комплекса через неделю из водно-этанольного маточного раствора удалось получить монокристаллы $[Cu_2(dmbipy)_2L_4]$, пригодные для рентгеноструктурного анализа (**PCA**).

Рентгенофазовый анализ (РФА) проводили на дифрактометре Shimadzu XRD-7000 (Си K_{α} -излучение, Ni-фильтр, диапазон 20 5°–50°, шаг 0.03°, накопление 1 с). Поликристаллы для РФА истирали в агатовой ступке в присутствии гептана. Полученную суспензию наносили на полированную сторону стандартной кварцевой кюветы. После высыхания гептана образец представлял собой тонкий ровный слой (толщина ~100 мкм).

Дифрактометр Bruker D8 Venture (излучение Мо K_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор) применяли для сбора данных РСА. Поправки на

Брутто-формула	$C_{52}H_{44}Cu_2N_{20}$	
Молярная масса	1076.15	
<i>Т</i> , К	100.0	
Сингония, пр. гр., Z	Моноклинная, <i>Р</i> 2 ₁ / <i>с</i> , 2	
<i>a</i> , <i>b</i> , <i>c</i> , Å	13.8324(6), 10.2228(4),	
	16.9577(8)	
β, град	95.503(2)	
$V, Å^3$	2386.87(18)	
$ ho_{\rm выч},$ г/см ³	1.497	
μ, мм ⁻¹	0.953	
Размер кристалла, мм	$0.162 \times 0.04 \times 0.018$	
20, град	4.66-61.11	
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-19 \le h \le 19, -14 \le k \le 14,$	
	$-24 \le l \le 24$	
Общее число отражений	95250	
Число независимых	7297 [$R_{int} = 0.0526$,	
отражений	$R_{\sigma} = 0.0232$]	
Число уточняемых пара-	336/0	
метров/ограничений		
GooF по F^2	1.042	
$R_1/wR_2 \left[I > = 2\sigma\left(I\right)\right]$	0.0309/0.0749	
<i>R</i> ₁ / <i>wR</i> ₂ [все данные]	0.0397/0.0794	
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.45/0.42	

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры [$Cu_2(dmbipy)_2L_4$]

поглощение вводили с использованием программы SADABS [10]. Кристаллическая структура комплекса Cu(II) была расшифрована и уточнена с помощью программного обеспечения OLEX2 [11], SHELXT [12] и SHELXL [13]. Параметры смещений всех атомов, кроме водорода, уточнены в анизотропном приближении. Положения атомов водорода были рассчитаны в соответствии с их геометрическими позициями и уточнены с использованием модели "наездника". Кристаллографические данные и информация об уточненной структуре приведены в табл. 1. Они депонированы в Кембриджскую базу структурных данных (ССDС № 2110408) и могут быть получены у авторов или по адресу: https://www.ccdc.cam. ac.uk/structures/.

Квантово-химические расчеты проведены на вычислительном кластере ИНХ СО РАН с помощью программы Amsterdam Density Functional (ADF) в рамках теории функционала плотности (Density Functional Theory – DFT) [14]. В расчетах использовали обобщенно-градиентное приближение (Generalized Gradient Approximation – GGA), функционал плотности Perdew–Burke– Ernzerhof (PBE) [15] в комбинации с полноэлектронным базисным набором TZ2P [16]. Анализ поверхности Хиршфельда для комплекса Cu(II) был проведен с помощью программы CrystalExplorer17 [17], и получена 2D-развертка этой поверхности.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплекс Cu(II) с 5-фенилтетразолом и 4,4'диметил-2,2'-бипиридином [Cu(*dmbipv*) L_2] был получен ранее в результате взаимодействия водного раствора ацетата Cu(II) с *dmbipy*, растворенным в этаноле, и последующим добавлением этанольного раствора фенилтетразола [9]. Комплекс не был структурно охарактеризован, однако на основании данных электронного парамагнитного резонанса (ЭПР) было сделано предположение, что он является моноядерным ввиду отсутствия расщепления в нулевом поле и разрешенного по g-тензору ЭПР-спектра, что характерно для моноядерных комплексов Cu(II). В настоящей работе для получения комплекса использована методика [9], в результате чего после отделения основного осадка комплекса спустя неделю из водно-этанольного маточного раствора удалось выделить монокристаллы $[Cu_2(dmbipy)_2L_4]$, пригодные для РСА. Сравнение дифрактограммы комплекса, полученного по приведенной выше методике, и теоретической дифрактограммы, построенной на основе данных РСА (рис. 1), доказывает, что поликристаллическая фаза соответствует биядерному комплексу [$Cu_2(dmbipy)_2L_4$], а не моноядерному, как предполагалось ранее.

Соединение [$Cu_2(dmbipy)_2L_4$] кристаллизуется в моноклинной пр. гр. P2₁/c. Катионы меди окружены пятью атомами азота, которые образуют вокруг центрального атома немного искаженную квадратную пирамиду. 5-Фенилтетразолат анион проявляет два способа координации: монодентатный (атомом азота N2 тетразольного цикла) и бидентатно-мостиковый (атомами N1 и N2 тетразольного цикла). Молекула 4,4'-диметил-2,2'бипиридина хелатирует центральный атом двумя атомами азота (рис. 2а). Таким образом, наличие мостиковой координации у 5-фенилтетразолата приводит к образованию биядерного соединения. Благодаря наличию межмолекулярных взаимодействий $\pi \cdot \cdot \pi$ и C–H··· π биядерные фрагменты соединяются в супрамолекулярную слоистую структуру. Похожие биядерные соединения Cu(II) с различной координацией мостикового тетразолат аниона уже установлены и описаны для $[Cu_2(phen)_2(тетразолат)_4]$ [8], $[Cu_2(bipy/phen)_2(5-$ (4-хлорфенил)тетразолат)₄] [18], [Cu₂(*phen*)₂L₄] [19], $[Cu_2(bipy)_2L_4]$ [20], $[Cu_2(bipy)_2(5-бензилтетразо$ лат)₄] и [Cu₂(*dmbipy*)₂(5-бензилтетразолат)₄] [6].

Анализ поверхности Хиршфельда для кристаллической структуры комплекса Cu(II) был

Рис. 1. Дифрактограммы комплекса [$Cu_2(dmbipy)_2L_4$]: 1 – экспериментальные, 2 – теоретический расчет.

Рис. 2. Структура комплекса [$Cu_2(dmbipy)_2L_4$] (а) и межмолекулярный π ··· π -стэкинг (б). Атомы водорода не показаны.

проведен с целью исследовать межатомные контакты и их вклад в кристаллическую упаковку. На поверхности нормированных контактов d_{norm} (рис. 3) имеются несколько областей, которые показывают наличие донора и акцептора (атомы азота и водорода), образующих межмолекулярные взаимодействия [21]. По данным 2D-развертки поверхности Хиршфельда вклад межмолекулярных контактов N···H составляет 27.1%, H···H – 45%, C···H – 22.2%, C···C – 3.6%, N···C – 1.8% и

КРИСТАЛЛОГРАФИЯ том 67 № 4 2022

Рис. 3. Поверхность Хиршфельда, отображенная в виде *d*_{norm} (сверху) и 2D-развертка поверхности, показывающая все межмолекулярные взаимодействия, контакты Н…Н, N…H и C…C (снизу).

Си…Н – 0.3% (рис. 3). Область при $d_e = d_i \approx 1.8$ Å на 2D-развертке контактов С…С демонстрирует наличие π … π -стэкинга (~3.6 Å) между соседними молекулами 4,4'-диметил-2,2'-бипиридина, что также продемонстрировано на рис. 26 [22].

Помимо межмолекулярного π - π -взаимодействия в комплексе наблюдается внутримолекулярное взаимодействие между 4,4'-диметил-2,2'бипиридином и бензольным циклом 5-фенилтетразолат аниона (рис. 4а). Этот π -стэкинг (3.691 Å) возникает при повороте бензольного цикла вокруг оси, проходящей вдоль 5-фенилтетразола. В результате двугранный угол между плоскостями, проходящими через фрагменты мостикового лиганда (тетразольный и бензольный циклы), равен 60.21°. В Кембриджской базе структурных данных имеется структура похожего соединения [Cu₂(*bipy*)₂L₄], содержащего вместо 4,4'-диметил-2,2'-бипиридина молекулу 2,2'-бипиридина [20]. В отличие от комплекса [Cu₂(*dmbipy*)₂L₄] лиганд L в соединении [Cu₂(*bipy*)₂L₄] координируется атомами N2 и N3 (рис. 46). Таким образом, бензольный цикл находится достаточно далеко для образования π - π -взаимодействия с 2,2'-бипиридином, а двугранный угол равен 15.57°, что намного меньше, чем в случае комплекса [Cu₂(*dmbipy*)₂L₄]. Для монодентатно координированного 5-фенилтетразолата также наблюдается поворот бензольного цикла: двугранный угол равен 33.13° для комплекса [Cu₂(*dmbipy*)₂L₄] и 4.17° для [Cu₂(*bipy*)₂L₄]. Таким образом, наблюдаются заметные различия в строении похожих систем (табл. 2).

Расчеты методом DFT проводили для оценки относительной устойчивости комплексов $[Cu_2(ambipy)_2L_4]$ и $[Cu_2(bipy)_2L_4]$, в частности получены значения энергии связи. Энергию связи рассчитывают как разность между энергией молекулы и суммой значений энергии атомов [23, 24]. Были спроектированы две модели для каждого соединения: экспериментально полученная по

Таблица 2. Различия в строении комплексов $[Cu_2(dmbipy)_2L_4]$ и $[Cu_2(bipy)_2L_4]$

Параметр	$[Cu_2(dmbipy)_2L_4]$	$[Cu_2(bipy)_2L_4]$
Тип мостиковой координации L ⁻	Атомы N1 и N2	Атомы N2 и N3
Двугранный угол (монодентатный лиганд), град	33.13	4.17
Двугранный угол (мостиковый лиганд), град	60.21	15.57
Энергия связи при координации N1 и N2, эВ	-793.51	-726.70
Энергия связи при координации N2 и N3, эВ	-793.87	-727.13

Рис. 4. Внутримолекулярный π -стэкинг в комплексе [Cu₂(*dmbipy*)₂ L_4] (а) и строение [Cu₂(*bipy*)₂ L_4] (б). Атомы водорода не показаны.

результатам РСА и модель с другой координацией мостикового лиганда (табл. 2). Таким образом, для $[Cu_2(dmbipy)_2L_4]$ и $[Cu_2(bipy)_2L_4]$ рассмотрены четыре системы с различной координацией ионов меди – атомами N1 и N2 или N2 и N3. Из данных табл. 2 видно, что соединение $[Cu_2(bipy)_2L_4]$ с координацией N1 и N2 примерно на 0.43 эВ (41.5 кДж/моль) менее стабильно по сравнению с соединением с координацией лигандов по N2- и N3-положениям. Из-за разницы в энергии образование комплекса $[Cu_2(bipy)_2L_4]$ с координацией лиганда по N1 и N2 менее выгодно и маловероятно. В случае комплекса [$Cu_2(dmbipy)_2L_4$] наблюдается аналогичный результат: энергетически более выгодно образование соединений с мостиковой координацией лигандов атомами N2 и N3, разница в энергии связи при разных типах координации составляет 0.36 эВ (34.7 кДж/моль). Следовательно, образование изомера с координацией лигандов атомами N1 и N2, по-видимому, обусловлено стерическими факторами, возникающими при упаковке молекул в кристаллах.

ЗАКЛЮЧЕНИЕ

Получены монокристаллы биядерного комплекса меди [$Cu_2(dmbipy)_2L_4$]. Согласно рентгеноструктурному анализу 5-фенилтетразолат анион проявляет как бидентатно-мостиковую, так и монодентатную координацию. Анализ поверхности Хиршфельда показал наличие донорно-акцепторных межмолекулярных взаимодействий N…H, а также π - π -стэкинга между соседними молекулами 4,4'-диметил-2,2'-бипиридина. В результате мостиковой координации L⁻ атомами N1 и N2 наблюдается поворот бензольного цикла вокруг оси, проходящей вдоль 5-фенилтетразолата. С помощью квантово-химических расчетов показано, что в биядерных комплексах меди на основе бипиридина и L⁻ энергетически более предпочтительна координация мостикового лиганда Lатомами N2 и N3. Однако при упаковке молекул в кристаллах могут возникать стерические затруднения, приводящие к образованию изомеров с другим типом координации мостикового лиганда.

Авторы выражают благодарность Т. Сухих за предоставление рентгенодифракционных дан-

ных, полученных в ЦКП ИНХ СО РАН, и А. Матвеевой за выполнение рентгенофазового анализа.

Работа выполнена при поддержке Российского научного фонда (проект № 20-73-10207) и Министерства науки и высшего образования Российской Федерации (проект № 121031700321-3).

СПИСОК ЛИТЕРАТУРЫ

- Kerru N., Gummidi L., Maddila S. et al. // Molecules. 2020. V. 25. № 8.
- https://doi.org/10.3390/molecules25081909 2. *Heravi M.M., Zadsirjan V.* // RSC Adv. 2020. V. 10.
- № 72. P. 44247. https://doi.org/10.1039/D0RA09198G
- 3. *Popova E.A., Trifonov R.E., Ostrovskii V.A.* // Russ. Chem. Rev. 2019. V. 88. № 6. P. 644. https://doi.org/10.1070/RCR4864
- 4. *Popova E.A., Protas A.V., Trifonov R.E.* // Anti-Cancer Agents Med. Chem. 2017. V. 17. № 14. P. 1856. https://doi.org/10.2174/1871520617666170327143148
- Kaushik N., Kumar N., Kumar A., Singh U.K. // Immunol., Endocr. Metab. Agents Med. Chem. 2018. V. 18. № 1. P. 3. https://doi.org/10.2174/1871522218666180525100850
- Eremina J.A., Smirnova K.S., Klyushova L.S. et al. // J. Mol. Struct. 2021. V. 1245. P. 131024. https://doi.org/10.1016/j.molstruc.2021.131024
- Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. P. 120169. https://doi.org/10.1016/j.ica.2020.120169
- Eremina J.A., Lider E.V., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2019. V. 487. P. 138. https://doi.org/10.1016/j.ica.2018.12.011
- Eremina J.A., Ermakova E.A., Smirnova K.S. et al. // Polyhedron. 2021. V. 206. P. 115352. https://doi.org/10.1016/j.poly.2021.115352
- Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.: Madison, WI, 2017.

- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- 12. *Sheldrick G.M.* // Acta Cryst. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- 13. *Sheldrick G.M.* // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 14. ADF2013, Software for Chemistry and Materials, Theoretical Chemistry, Vrije Universiteit, Amsterdam (The Netherlands), 2013.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. № 9. P. 1142. https://doi.org/10.1002/jcc.10255
- 17. *Turner M.J., McKinnon J.J., Wolff S.K. et al.* CrystalExplorer17. University of Western Australia, 2017. http://hirshfeldsurface.net
- Kumari J., Mobin S.M., Mukhopadhyay S. et al. // Inorg. Chem. Commun. 2019. V. 105. P. 217. https://doi.org/10.1016/j.inoche.2019.05.006
- Saha M., Vyas K.M., Martins L.M.D.R.S. et al. // Polyhedron. 2017. V. 132. P. 53. https://doi.org/10.1016/j.poly.2017.04.016
- 20. Shao Z.-H., Luo J., Cai R.-F. et al. // Acta Cryst. E. 2004. V. 60. № 2. P. m225. https://doi.org/10.1107/S1600536804001345
- 21. *McKinnon J.J., Jayatilaka D., Spackman M.A.* // Chem. Commun. 2007. № 37. P. 3814. https://doi.org/10.1039/B704980C
- 22. *Spackman M.A., McKinnon J.J.* // CrystEngCommun. 2002. V. 4. № 66. P. 378. https://doi.org/10.1039/b203191b
- Te Velde G., Bickelhaupt F.M., Baerends E.J. et al. // J. Comput. Chem. 2001. V. 22. № 9. P. 931. https://doi.org/10.1002/jcc.1056
- 24. Bickelhaupt F.M., Baerends E.J. // Rev. Comput. Chem. 2000. V. 15. P. 1. https://doi.org/10.1002/9780470125922.ch1