_____ ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ ___ СТРУКТУР

УДК 548.736

СТРУКТУРНЫЙ АНАЛИЗ В СОВРЕМЕННОЙ КРИСТАЛЛОГРАФИИ

© 2022 г. С. В. Борисов^{1,*}, Н. В. Первухина¹, С. А. Магарилл¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия *E-mail: borisov@niic.nsc.ru

Поступила в редакцию 06.12.2021 г. После доработки 06.12.2021 г. Принята к публикации 20.01.2022 г.

Трактовка трансляционной симметрии как следствия образования в атомных системах комплекса стоячих плоских упругих колебаний объясняет причину стабильности кристаллического состояния. Она дополняет традиционную кристаллографию энергетической функцией пространственной симметрии, вскрывает механизмы и последовательность упорядочения позиций атомов. Стандартная методика кристаллографического анализа показана на примере структур ортоборатов: тригональной и моноклинной модификаций H₃BO₃ и гексагональной Tl₃BO₃.

DOI: 10.31857/S0023476122040051

введение

Необходимым и достаточным условием кристаллического состояния служит трансляционная симметрия, т.е. трехмерная решетка эквивалентных точек. Из этого геометрического образа стартует кристаллография, не задаваясь вопросом, каким способом он реализуется в системах материальных частиц — атомов.

Еще в 70-х годах прошлого века стали обращать внимание на особенности кристаллизации, в том числе на раздельные процессы упорядочения (или плавления) разных сортов атомов, например, катионов и анионов [1–3]. Затем был пик исследований плоских сеток атомов, известный как "решеточная химия" [4–6], но до выяснения причин образования трансляционной симметрии так и не дошли.

В 1992 г. была предложена модель динамики материальных частиц, образующих энергетически стабильное состояние [7]. В этом состоянии всевозможные конфигурации атомов в растворе или в конденсированном аморфном состоянии преобразуются в повторяющуюся в трех измерениях конфигурацию в объеме элементарной ячейки. Такое принципиальное преобразование, лишаюшее атомы их индивидуальных степеней свободы (с выделением соответствующей энергии в форме теплоты кристаллизации), надо рассматривать как особое состояние вещества наравне с газообразным, жидким и аморфным. Причина стабильности этого состояния, механизмы его образования — главные вопросы кристаллографии.

В концепции [7] трансляционное упорядочение возникает, когда движения атомов при потере энергии (снижении температуры) переходят в плоские упругие стоячие волны разных направлений и длин. Каждая такая волна может корректировать позиции центров масс атомов, смещая более тяжелые к узловым точкам с нулевой амплитудой колебаний и создавая таким образом трансляцию, равную половине длины волны (снижая при этом энергию волны, т.е. стабилизируя ситуацию). Стоячие волны, собравшие в своих узловых плоскостях максимальную плотность атомов (с учетом их массы), определяют облик структуры, ее "скелет". Любые три некопланарные плоскости с высокой плотностью позиций атомов (названные "скелетными") дают трансляционную сетку узлов - точек пересечений, в окрестностях которых окажутся позиции атомов [8].

Спонтанный процесс совместного упорядочения захватывает атомы разных сортов, и в результате получаем истинную трансляционную ячейку, для которой предыдущие варианты упорядочения окажутся ее подъячейками с существенно меньшими объемами.

Поскольку массы атомов и атомные амплитуды рассеяния рентгеновских лучей связаны почти линейно, находить плоскости с высокой плотностью можно по максимальным величинам структурных амплитуд F_{hkl} , рассчитанных для представляющих интерес сортов атомов или их сочетаний. Заметим, что если раньше кристаллографические плоскости (*hkl*) считали следствием трансляционной решетки (возник-

hkl	d_{hkl}	F_{Σ}	F _{ан}	$F_{ m B}$				
010	6.10	36	25	10				
121	3.31	—	_	10				
111	3.31	—	_	15				
003	3.19	174	130	19				
221	2.91	52	40	8.9				
212	2.84	—	_	13.6				
022	2.57	52	41	—				
211	2.24	52	66	—				
132	2.24	—	66	—				
322	2.08	50	62	—				
331	1.99	—	_	11.8				
114	1.98	—	_	10.2				
032	1.87	—	_	11.2				
006	1.59	90	69	—				
151	1.32	—	_	10.1				
009	1.06	49	41	_				

Таблица 1. Расчетные F_{hkl} для структуры I: для всех атомов (F_{Σ}), для атомов кислорода (F_{aH}) и бора (F_{B})

шей неизвестно как!), то в данной концепции именно эти узловые плоскости стоячих волн в конце процесса создают трансляционную решетку (конечно, если кристалл при данном составе вырастет!).

В результате многолетних работ по проверке данной концепции кристаллического состояния на примерах самых разных структур механизм кристаллизации выглядит следующим образом: в предкристаллизационной фазе вещества формируются энергетически устойчивые группировки атомов – как за счет химических взаимодействий, так и за счет локальной симметрии (тетраэдры SiO₄, треугольники CO₃ и BO₃, кубооктаэдры полианионов Кеггина [*М*'*M*₁₂O₄₀] и другие [3]). За этим химическим этапом следует механический когерентная сборка таких зародышей (темплатов), в процессе которой элементы локальной симметрии и локального упорядочения позиций атомов образуют дальний порядок, т.е. трансляционную симметрию. В ней максимально сохраняются элементы локальной симметрии, делающей идентичными "скелетные" плоскости для разных групп атомов [3, 9].

Методика исследования кристаллических структур – кристаллографический анализ – опирается на программу расчета параметров подрешеток [10], использует стандартные программы расчета F_{hkl} и другие закономерности геометриче-

ской кристаллографии. Стандартные процедуры анализа покажем на примере трех структур ортоборатов, имеющих в качестве темплата атомную BO_3 -группу с локальной симметрией равностороннего треугольника 3/m.

КРИСТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ

Для тригональной кристаллической структуры H₃BO₃ (**I**) (пр. гр. $P3_2$, a = 7.045, c = 9.560 Å, Z = 6, V = 411 Å³ [11]) с целью поиска "скелетных" плоскостей сделан расчет *F_{hkl}:* для всех атомов структуры (F_{Σ}), только для атомов кислорода (F_{aH}) и для атомов бора (F_B) при условии, что легкий атом бора находится в центре массы всей группы ВО₃. Наибольшие значения F_{hkl} для этих трех вариантов собраны в табл. 1 (прочерк означает, что амплитуда для данной плоскости не входит в группу интенсивных, т.е. не имеет значительную плотность заданных атомов). Симметрия 32 предполагает, что $F_{hkl} = F_{\overline{h+k},hl} = F_{k,\overline{h+k},l}$, т.е. для расчета под-решетки имеем все три координатные плоскости, а элементарной ячейкой будет ромбоэдр с тройной осью вдоль одной из диагоналей. Для подрешеток атомов кислорода были рассчитаны в соответствии с [10] три варианта и три для атомов бора (табл. 2). Программа находит параметры ячеек как для примитивной решетки узлов пересечений

СТРУКТУРНЫЙ АНАЛИЗ

hkl	Δ	Матрица перехода	<i>a</i> , <i>b</i> , <i>c</i> , Å	α, β, γ, град	$\begin{vmatrix} a_F, b_F, c_F, \\ \mathring{A} \end{vmatrix}$		<i>a_I</i> , <i>b_I</i> , <i>c_I</i> , Å	α _{<i>I</i>} , β _{<i>I</i>} , γ _{<i>I</i>} , град		
	Вариант 1									
211 $\overline{3}21$ $1\overline{3}1$	21	10/42 10/52 1/3 -10/52 1/21 1/3 -1/21 -10/42 1/3	3.54 3.54 3.54	44.21 44.21 44.21	4.43 4.43 4.43	73.93 73.93 73.93	6.56 6.56 6.56	23.43 23.43 23.43		
	•		Ba	риант 2		•				
$ \begin{array}{r} 111 \\ \overline{2}11 \\ 1\overline{2}1 \end{array} $	9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.96 3.96 3.96	61.83 61.83 61.83	5.68 5.68 5.68	91.56 91.56 91.56	6.79 6.79 6.79	34.85 34.85 34.85		
			Ba	риант 3						
$\begin{array}{c} 2\overline{1}2\\ \overline{1}22\\ \overline{1}\overline{1}2\end{array}$	18	1/3 0 1/6 0 1/3 1/6 -1/3 -1/3 1/6	2.84 2.84 2.84	91.56 91.56 91.56	4.96 4.96 4.96	110.19 110.19 110.19	3.96 3.96 3.96	61.83 61.83 61.83		
	1		Ba	риант 4	1	1		1		
$ \overline{2}21 \\ 0\overline{2}1 \\ 201 $	12	$\begin{array}{r} -1/6 \ 1/6 \ 1/3 \\ -1/6 \ -1/3 \ 1/3 \\ 1/3 \ 1/6 \ 1/3 \end{array}$	3.78 3.78 3.78	55.54 55.54 55.54	5.17 5.17 5.17	85.96 85.96 85.96	6.69 6.69 6.69	30.53 30.53 30.53		
			Ba	риант 5						
$\begin{array}{c} 022\\ \overline{2}02\\ 2\overline{2}2\end{array}$	24	$\begin{array}{r} 1/6 \ 1/3 \ 1/6 \\ -1/3 \ -1/6 \ 1/6 \\ 1/6 \ -1/6 \ 1/6 \end{array}$	2.58 2.58 2.58	85.96 85.96 85.96	4.37 4.37 4.37	107.48 107.48 107.48	3.78 3.78 3.78	55.54 55.54 55.54		
Вариант б										
$ \overline{121} \overline{111} 2\overline{11} $	9	$\begin{array}{c} 0 \ 1/3 \ 1/3 \\ -1/3 \ -1/3 \ 1/3 \\ 1/3 \ 0 \ 1/3 \end{array}$	3.96 3.96 3.96	61.83 61.83 61.83	5.68 5.68 5.68	91.56 91.56 91.56	6.79 6.79 6.79	34.85 34.85 34.85		

Таблица 2. Параметры "скелетных" атомных подрешеток для структуры I

плоскостей, так и параметры гранецентрированной и объемноцентрированной решеток, построенных на основе этой примитивной ячейки. Это помогает в дальнейшем анализе при оценке упаковки атомов, если иметь в виду, что примитивная ячейка кубической *F*-решетки — это остроугольный ромбоэдр с углом 60°, а кубическая *I*-ячейка — тупоугольный с углом ~109.5°.

Число узлов подрешетки в элементарной ячейке определяет детерминант из индексов *h*, *k*, *l* координатных плоскостей. В результате анализа приходим к заключению, что позиции анионов в структуре упорядочены подрешетками, близкими к *F*-кубической ($a_F = 5.17$ Å, $\alpha_F = 85.96^\circ$, вариант 4) или *P*-кубической ($a_P = 2.58$ Å = $1/2a_F$, $\alpha_P = \alpha_F = 85.96^\circ$, вариант 5), в которой заполнены 18 узлов из 24. Есть и менее регулярная подрешетка – вариант 1 (табл. 2). Наблюдается аналогичная картина упорядочения центров ВО₃-групп, где

имеем *F*-решетку узлов с $a_F = 5.68$ Å, $\alpha_F = 91.56^{\circ}$ и *P*-решетку с $a_P = 2.84$ Å $= 1/2a_F$, $\alpha_P = \alpha_F = 91.56^{\circ}$ (варианты 2, 3, 6 в табл. 2).

Ортоборная кислота H_3BO_3 образует также триклинную структуру II (пр. гр. $P\overline{1}$, a = 7.0187, b = 7.035, c = 6.5472 Å, $\alpha = 92.49^\circ$, $\beta = 101.46^\circ$, $\gamma =$ $= 119.76^\circ$, Z = 4, V = 271.19 Å³ [12]). Плоскости (*hkl*) с высокой плотностью заполнения атомов этой структуры представлены в табл. 3. Для расчета подрешеток здесь надо взять три исходные плоскости, так как нет симметрично связанных ((*hkl*) и ($\overline{h \ k \ l}$) – это одна и та же система). Примитивную ячейку для любой тройки координатных плоскостей можно привести либо к параллелепипеду с тремя острыми углами между координатными осями, либо с тремя тупыми, либо к граничному случаю с тремя углами 90°. Чтобы этого добиться, нужно менять при расчетах по про-

hkl	d_{hkl}	F_{Σ}	F _{ан}	F _B
110	3.42		_	12
211	3.31	—	_	10
002	3.16	118	86	13
121	3.16	_	_	12
121	3.13	_	_	12
121	3.02	_	_	12
200	2.95	36	28	_
021	2.91	34	26	_
$\overline{1}\overline{1}2$	2.67	_	_	10
$2\overline{2}1$	2.64	38	30	_
$\overline{2}02$	2.50	35	29	_
321	2.25	38	48	_
210	2.23	35	45	_
131	2.22	35	44	_
131	2.10	_	43	_
$\overline{21}2$	2.09	_	43	_
112	2.08	—	_	8
321	2.03	—	44	—
031	2.01	_	32	9
300	1.96	_	_	8
302	1.90	—	_	8
$\overline{3}\overline{2}3$	1.69	—	35	—
212	1.64	—	33	—
004	1.58	65	45	_
133	1.49	—	30	_
$\overline{3}\overline{3}1$	1.17	36	30	_
006	1.05	39	26	-

Таблица 3. Расчетные F_{hkl} для структуры II: для всех атомов (F_{Σ}), для атомов кислорода (F_{aH}) и бора (F_{B})

грамме [10] направление вектора \mathbf{d}_{hkl} , т.е. индексы (*hkl*) на ($\overline{h} \ \overline{k} \ \overline{l}$), и только тогда имеет смысл анализировать *F*- и *I*-подрешетки, производные от данной примитивной [13]. По параметрам *a* и *b* и углам α и γ элементарная ячейка структуры II близка к ячейке структуры I, а параметр $c_{II} \approx 2/3c_{I}$ в соответствии с числом $Z_{II} = 2.3Z_{I}$ (4 и 6).

Расчет подрешеток для анионов в структуре II (табл. 4) дает только одну, близкую к F-кубической (вариант 3), но зато есть анионная подрешетка (вариант 4), близкая по параметрам к нере-

гулярной в структуре I (вариант 1, табл. 2). Единственная подрешетка для ВО₃-групп (вариант 6, табл. 4) показывает низкую регулярность по сравнению со структурой I.

На рис. 1, 2 даны проекции решеток атомов этих двух структур. Если представить, что на рис. 1а все группы BO_3 совмещены с осями 3_2 (внутри ячейки), то получим картину, близкую с рис. 36, где проекция структуры II показана не вдоль оси *c*, а вдоль нормали к плоскости *ab*. В этом приближении структура I состоит из трех слоев (вдоль оси *c*) толщиной ~3.2 Å, а

916

СТРУКТУРНЫЙ АНАЛИЗ

таолица п									
hkl	Δ	Матрица перехода	a, b, c, Å	α, β, γ, град	a_F, b_F, c_F, \AA	$\alpha_F, \beta_F, \gamma_F,$ град	<i>a_I, b_I, c_I,</i> Å	α _{<i>I</i>} , β _{<i>I</i>} , γ _{<i>I</i>} , град	
Вариант 1									
$02\overline{1}$	8	1/2 1/2 0	3.53	55.27	6.60	89.65	6.70	33.38	
221		0 1/4 1/2	3.67	61.55	6.10	92.50	6.37	34.46	
$2\overline{2}1$		1/2 1/4 1/2	3.89	88.56	3.52	104.64	5.16	45.16	
			Bap	оиант 2					
221	8	1/2 3/4 1/2	5.16	61.55	3.51	72.80	6.37	26,60	
$2\overline{2}1$		1/2 1/4 1/2	3.89	45.38	6.11	86.03	8.04	23.97	
$20\overline{2}$		1/2 1/2 0	3.53	42.96	6.70	89.75	8.43	24.99	
			Bap	оиант 3					
321	21	-10/52 1/21 1/3	2.88	61.78	3.47	85.59	4.42	31.94	
131		-1/21 $-10/42$ $1/3$	2.79	60.175	3.61	87.08	4.53	31.94	
211		10/42 10/52 1/3	2.34	55.73	4.21	97.05	5.01	34.48	
			Bap	оиант 4					
210	14	10/28 10/35 1/2	3.52	43.77	4.48	74.03	6.60	23.33	
321		-1/14 1/7 1/2	3.61	44.64	4.32	72.95	6.50	23.29	
131		1/14 -1/7 1/2	3.50	43.79	4.49	74.34	6.61	23.40	
			Bap	оиант 5					
$\overline{3}2\overline{1}$	14	-10/24 $-1/7$ 0	2.66	36.53	6.60	90.22	7.68	23.47	
131		-10/28 $-10/35$ $1/2$	4.48	66.30	2.65	75.37	5.27	27.08	
131		-1/14 1/7 1/2	3.61	51.42	4.62	87.61	6.48	23.04	
	Вариант б								
121	6	1/2 1/2 1/2	4.21	87.35	4.05	103.89	5.63	44.87	
121		1/6 -1/6 1/2	3.71	58.11	7.06	95.10	7.24	36.12	
$2\overline{1}\overline{1}$		2/3 1/3 0	4.07	61.42	6.60	90.09	6.82	34.08	

Таблица 4. Параметры "скелетных" атомных подрешеток для структуры II

структура II – из двух слоев толщиной ~3.3 Å, как это было показано в [11].

Нормали, проходящие в центрах треугольников на проекции *ab* структуры II, — это псевдооси 3, и они выполняют ту же роль в организации структуры, что и оси 3₂ в структуре I, где по каким-то причинам центры групп BO₃ отклонились от тройных осей, но сохранили тригональную симметрию. В обеих структурах в начале координат находится пустой канал, окруженный анионами кислорода, связанными водородными связями, лежащими в плоскости слоя.

Любопытно, что существует и "однослойная" структура с аналогичной архитектурой. Это структура Tl_3BO_3 (III) (пр. гр. $P6_3/m$, a = 9.275, c == 3.775 Å, Z = 2, $V = 281 Å^3$ [14]). Место самого легкого катиона – водорода – в ней занимает тяжелый и крупный Tl^+ . Данные кристаллографического анализа структуры III представлены в табл. 5 и 6, проекции решеток атомов – на рис. 3. Сочетание тройной или шестерной оси симметрии с перпендикулярной зеркальной плоскостью исключает наличие псевдокубических подрешеток – они будут сдвойникованы этой зеркальной плоскостью – плоскостью {111} куба [15]. Для катионов Tl⁺ такой будет *I*-подрешетка варианта 2 с $a_I = 3.99$ Å, $\alpha_I = 84.4^\circ$, для анионов это варианты 6 и 9 с соразмерными подрешетками $a_I^6 = 1/2a_I^9$.

Основное упорядочение в этой структуре осуществляют гексагональные подрешетки массивного катиона Tl^+ — это варианты 1 и 4, причем в первом варианте вместе с Tl^+ упорядочены и центры групп BO₃, так что пустым узлом в этой подрешетке остается узел на оси 6₃ на зеркальной плоскости (рис. 36). В результате имеем колонку пустых TlO₆-октаэдров вдоль оси *с* и группы BO₃ на тройных осях внутри ячейки. Симметрия 6₃/*m* делает эту структуру двухслойной за счет увеличения горизонтальной трансляции, но *с*-трансля-

Рис. 1. Структура I: а – *ху*-проекция решеток атомов, толстыми линиями выделены ВО₃-треугольники, *z*-координаты атомов В даны в долях параметра *c*; б – *yz*-проекция и ее сечение скелетными плоскостями (032), толстыми линиями выделены ВО₃-треугольники.

ция соответствует одному слою предыдущих структур. Катионы Tl⁺ и BO₃-группы образуют упаковку, близкую к плотнейшей гексагональной двухслойной упаковке с одной третью вакантных позиций в каждом слое, так что BO₃-группы находятся в центрах тригональных призм из Tl⁺-катионов с центрированными боковыми гранями. Заметим, что позиции тяжелого катиона Tl⁺ близки к позициям анионов кислорода – самых тяжелых в псевдогексагональной структуре II с удвоенной трансляцией вдоль псевдооси 3 (рис. 26, 3а).

ЗАКЛЮЧЕНИЕ

В литературе отмечается, что соединения с атомными группировками типа ВО₃-групп часто

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022

Рис. 2. Структура II: а – *ху*-проекция решеток атомов и ее сечение плоскостями (210) и (300) (тонкие линии), толстыми линиями выделены BO_3 -треугольники, *z*-координаты атомов В даны в долях параметра *c*; б – проекция структуры вдоль нормали к плоскости *ab* (показаны псевдоплоскости "*m*" и "*c*"); в – *уz*-проекция и ее сечение скелетными плоскостями ($0\overline{3}$ 1) и (002), толстыми линиями выделены BO_3 -треугольники.

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022

Рис. 3. Структура III: а – *ху*-проекция решеток атомов и ее сечение плоскостями (240), (300), (030) и ($\overline{620}$) (тонкие линии), толстыми линиями выделены BO₃-треугольники, TlO₆-октаэдр около начала координат, *z*-координаты атомов B даны в долях параметра *c*; б – *уz*-проекция структуры, толстыми линиями выделены тригональная призма с центрированными боковыми гранями из атомов Tl и группы BO₃.

кристаллизуются в структурном типе кальцита (CaCO₃, пр. гр. $R\overline{3}c$, a = 4.98, c = 17.192 Å, Z = 6 [16]). Симметрию в нем определяют как CO₃-треугольники, так и кислородные CaO₆-октаэдры с катионом Са в точках с симметрией $\overline{3}$. Слои CO₃-групп вдоль оси *с* имеют толщину $c/6 \approx 2.9$ Å, причем на всех тройных осях катион Са чередуется с углеродом через c/4, и, поскольку оба катиона лежат в плоскостях скользящего отражения, можно говорить о двух блоках структуры толщиной c/2 с идентичным катионным каркасом, т.е. о псевдотрансляции c/2 (рис. 4).

В структурах I и II слои BO_3 -треугольников имеют строение, близкое к кальциту, но 1/3 узлов в них вакантные, окруженные анионами, что явно демонстрирует отсутствие в центре катиона (более крупного, чем H⁺).

Существенное снижение симметрии структуры II по сравнению с I компенсируется тем, что в II имеется сильно выраженная псевдосимметрия,

СТРУКТУРНЫЙ АНАЛИЗ

(¹ ah)					
hkl	d_{hkl}	F_{Σ}	F _{T1}	F _{Tl + O}	F _{ан}
011	3.42	_	_	_	27
111	2.93	329	331	329	_
030	2.68	289	298	283	_
130	2.23	—	_	—	29
002	1.89	415	382	410	29
041	1.77	_	_	—	23
240	1.52	337	335	339	_
431	1.25	_	258	244	_
113	1.21	—	_	247	_
242	1.18	301	300	303	_
161	1.17	256	250	259	_
351	1.10	269	261	267	—

Таблица 5. Расчетные F_{hkl} для структуры III: для всех атомов (F_{Σ}), для атомов Tl (F_{Tl}), Tl + O (F_{Tl+O}) и кислорода (F_{ah})

Таблица 6. Параметры "скелетных" атомных подрешеток для структуры III

hkl	Δ	Матрица перехода	<i>a</i> , <i>b</i> , <i>c</i> , Å	α, β, γ, град	a_F, b_F, c_F, \AA	$\alpha_F, \beta_F, \gamma_F,$ град	a _I , b _I , c _I , Å	α _{<i>I</i>} , β _{<i>I</i>} , γ _{<i>I</i>} , град		
	Вариант 1									
$\begin{array}{c} 012\\ \overline{1}02\\ 1\overline{1}2 \end{array}$	6	1/3 2/3 1/6 -2/3 -1/3 1/6 1/3 -1/3 1/6	2.63 2.63 2.63	91.84 91.84 91.84	4.60 4.60 4.60	110.32 110.32 110.32	3.66 3.66 3.66	62.18 62.18 62.18		
Вариант 2										
$ \begin{array}{c} 110\\ \overline{2}10\\ 002 \end{array} $	6	$\begin{array}{ccccccc} 1/3 & 2/3 & 0 \\ -1/3 & 1/3 & 0 \\ 0 & 0 & 1/2 \end{array}$	2.18 2.18 4.40	90 90 60	4.91 4.91 5.80	132.86 132.86 52.68	4.91 4.91 3.78	67.40 67.40 25.64		
	1	1	В	ариант 3	I	1	1	1		
$014 \\ \overline{1}04 \\ 1\overline{1}4$	12	1/3 2/3 1/12 -2/3 -1/3 1/12 1/3 -1/3 1/12	2.30 2.30 2.30	110.32 110.32 110.32	4.42 4.42 4.42	117.30 117.30 117.30	2.63 2.63 2.63	91.84 91.84 91.84		
Вариант 4										
$ \begin{array}{r} 112\\ \overline{2}12\\ 1\overline{2}2 \end{array} $	18	$\begin{array}{r} 1/3 \ 1/3 \ 1/6 \\ -1/3 \ 0 \ 1/6 \\ 0 \ -1/3 \ 1/6 \end{array}$	1.93 1.93 1.93	68.63 68.63 68.63	2.91 2.91 2.91	96.86 96.86 96.86	3.19 3.19 3.19	39.91 39.91 39.91		

приближающая конфигурацию атомов к высшей для гексагональных структур с симметрией *P6/mmc* [15].

симметрии, а постепенно повышается со степенью упорядочения позиций атомов. Зародышем (темплатом) структуры III, вероятно, служат две

Надо понимать, что энергетическая стабильность не возникает мгновенно при достижении

тригональные призмы Tl_9^+ вокруг BO_3 -групп, связанные центром инверсии (рис. 3а). В струк-

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022

Рис. 4. Структура кальцита CaCO₃: а – *ху*-проекция решеток атомов и ее сечение плоскостями (110), $(\overline{2}10)$, $(1\overline{2}0)$, (300), (030) – тонкие линии; толстыми линиями выделен CaO₆-октаэдр, центрированный CO₃-группой; справа внизу тонкими линиями показан CaO₆–октаэдр, *z*-координаты атомов даны в долях параметра *c*; б – *yz*-проекция и ее сечение скелетными плоскостями (024) и ($\overline{024}$), *z*-координаты всех атомов на плоскостях (0012). Са – большой черный кружок, С – малый черный кружок, О – пустой малый кружок [18].

туре возможна дополнительная стабильность за счет связей Tl—Tl при образовании "пустого" TlO₆-октаэдра. В структуре кальцита с большой долей вероятности подобным темплатом будет октаэдрическое окружение CO_3 -группы катионами Ca [17].

Полагаем, что разработанный метод кристаллографического анализа структур может существенно расширить поле деятельности современной кристаллографии, поскольку он включает присутствие главного действующего фактора материального мира — энергии, и ее взаимодействие с симметрией как особого свойства геометрии пространства [18].

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект № 121031700313-8).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Anderson J.S.* // J. Chem. Soc. Dalton Trans. 1973. P. 1107.
- Martin R.L.J. // J. Chem. Soc. Dalton Trans. 1974. № 12. P. 1135.
- 3. Борисов С.В., Магарилл С.А., Первухина Н.В. // Успехи химии. 2015. Т. 84. № 4. С. 393.
- O'Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. P.1782.
- Delgado-Friedrichs O., Foster M.D., O'Keeffe M. et al. // J. Solid State Chem. 2005. V. 178. P. 2533.
- 6. *Wells A.F.* Structural Inorganic Chemistry. Oxford: Clarendon Press, 1984.
- 7. *Борисов С.В.* // Журн. структур. химии. 1992. Т. 33. № 6. С. 123.
- Борисов С.В., Магарилл С.А., Первухина Н.В. Алгоритмы и практика кристаллографического анализа атомных структур. Новосибирск: Изд-во СО РАН, 2012. 111 с.

- 9. Борисов С.В., Магарилл С.А., Первухина Н.В. // Журн. структур. химии. 2019. Т. 60. № 8. С. 1243.
- 10. Громилов С.А., Быкова Е.А., Борисов С.В. // Кристаллография. 2011. Т. 56. № 6. С. 1013.
- Shuvalov R.R., Burns P.C. // Acta Cryst. C. 2003. V. 59. P. 47.
- Gajhede M., Larsen S., Rettru S. // Acta Cryst. C. 1986. V. 42. P. 545.
- 13. Борисов С.В., Магарилл С.А., Первухина Н.В. // Журн. структур. химии. 2022 (в печати).
- 14. Piffard Y., Marchand R., Tournoux M. // Rev. Chim. Miner. 1975. V. 12. P. 210.
- 15. Борисов С.В., Первухина Н.В., Магарилл С.А. // Кристаллография. 2020. Т. 65. № 4. С. 540.
- 16. *Antao S.M., Hassan I. //* Can. Mineral. 2010. V. 48. P. 1225.
- 17. Борисов С.В., Магарилл С.А., Первухина Н.В. // Журн. структур. химии. 2021. Т. 62. № 7. С. 1105.
- 18. Борисов С.В., Магарилл С.А., Первухина Н.В. // Кристаллография. 2022. Т. 67. № 2. С. 209.