____ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 535.544, 535.56, 548.736

Посвящается памяти А.М. Балбашова

ИЗМЕРЕНИЕ И РАСЧЕТ ПОКАЗАТЕЛЕЙ ПРЕЛОМЛЕНИЯ КРИСТАЛЛОВ СЕМЕЙСТВА ЛАНГАСИТА Sr₃NbFe₃Si₂O₁₄, Ba₃NbFe₃Si₂O₁₄, Ba₃TaFe₃Si₂O₁₄ И СВЯЗЬ ОПТИЧЕСКОЙ АКТИВНОСТИ С ОСОБЕННОСТЯМИ РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОННОЙ ПЛОТНОСТИ

© 2022 г. А. Ф. Константинова¹, Т. Г. Головина^{1,*}, А. П. Дудка¹, И. О. Горячук², В. И. Соколов²

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ² Институт фотонных технологий ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: tatgolovina@mail.ru* Поступила в редакцию 14.06.2022 г. После доработки 23.06.2022 г. Принята к публикации 23.06.2022 г.

Исследованы оптические свойства монокристаллов Sr₃NbFe₃Si₂O₁₄, Ba₃NbFe₃Si₂O₁₄ и Ba₃TaFe₃Si₂O₁₄ – перспективных мультиферроиков из семейства лангасита (пр. гр. *P*321, Z = 1). Кристаллы выращены методом бестигельной зонной плавки. Проведено сравнение измеренных и рассчитанных показателей преломления данных кристаллов. Выполнен расчет параметров оптической активности по структурным данным. Проведен сравнительный анализ атомных структур по данным прецизионного рентгеноструктурного анализа. Определена корреляция структурных особенностей и оптических свойств кристаллов.

DOI: 10.31857/S0023476122060145

введение

Семейство лангасита получило свое название по аббревиатуре кристалла La₃Ga₅SiO₁₄, который, в свою очередь, относится к структурному типу Ca₃Ga₂Ge₄O₁₄ (пр. гр. *P*321, *Z* = 1) [1, 2]. С учетом атомных позиций формулу лангаситов с катионами *A*, *B*, *C*, *D* можно записать в виде [*A*(3*e*)]₃[*B*(1*a*)][*C*(3*f*)]₃[*D*(2*d*)]₂[O1(2*d*)]₂[O2(6*g*)]₆[O3(6*g*)]₆. Лангаситы привлекли огромное внимание исследователей благодаря своим уникальным пьезоэлектрическим и нелинейным оптическим свойствам [3]. Возможность изоморфного замещения катионов в различных структурных позициях позволила синтезировать множество соединений этого семейства с разнообразными физическими свойствами [4].

В последние годы большой интерес привлекли соединения семейства лангасита, содержащие магнитные катионы [5–7]. В частности, было обнаружено, что в лангаситах, содержащих ионы железа в позициях 3f, наблюдается антиферромагнитное упорядочение с температурой Нееля $T_{\rm N} \sim 30$ К [8, 9]. Кроме того, при определенных условиях эти кристаллы проявляют электрическую поляризацию [10]. Одновременное наличие

электрического и магнитного параметров порядка делает такие кристаллы перспективными мультиферроиками [7]. Магнитоэлектрические эффекты наблюдаются только при температурах ниже температуры магнитного упорядочения T_N . Повышение T_N является одной из задач, важных для практических применений.

В цикле работ по исследованию структуры кристаллов семейства лангасита Са₃Ga₂Ge₄O₁₄ [11] и Nd₃Ga₅SiO₁₄ [12] выявлено, что структурной основой для возникновения хиральности кристаллов и проявления ими оптической активности является особое спиральное распределение (разупорядочение) электронной плотности. Широкое распределение локальных окружений атомов в соединении Nd₃Ga₅SiO₁₄ подтверждено результатами исследования методом ядерного магнитного резонанса [13]. Далее гипотеза электронных спиралей использовалась для объяснения структурной причины проявления мультиферроидных свойств в случае трех кристаллов с магнитными ионами $(Sr_3NbFe_3Si_2O_{14}$ (SNFS) [14], Ba₃NbFe₃Si₂O₁₄ (BNFS) [15] и Ba₃TaFe₃Si₂O₁₄ (**BTFS**) [16]) (рис. 1). Установлено, что магнитные моменты ионов железа в позициях 3f формируют

Рис. 1. Хиральная структура железосодержащего лангасита Ba₃TaFe₃Si₂O₁₄ при 95 К. Окружность указывает на расположение спирали электронной плотности.

спираль [7, 9]. Теоретическое описание спиральной магнитной структуры и условия существования мультиферроидных свойств в лангаситах представлены в [9]. В настоящее время железосодержащие кристаллы семейства лангасита активно исследуются [17–19].

В [20, 21] исследована связь оптических свойств кристаллов семейства лангасита со структурой, в том числе структурная основа хиральности и оптической активности этих кристаллов. При этом кристаллы, содержащие ионы Fe, в данных работах не исследовались.

Цель настоящей работы – исследование оптических свойств железосодержащих кристаллов семейства лангасита SNFS, BNFS, BTFS и нахождение связи этих свойств со структурой кристалла.

МЕТОДИКА ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ $Sr_3NbFe_3Si_2O_{14}$, $Ba_3NbFe_3Si_2O_{14}$, $Ba_3TaFe_3Si_2O_{14}$

Выращивание монокристаллов лангаситов, содержащих сравнительно крупные ионы железа, является сложной задачей. Нет свидетельств, что это может быть сделано методом Чохральского, каким обычно выращивают кристаллы классических лангаситов без железа [22].

Исследуемые монокристаллы выращены А.М. Балбашовым из Национального исследовательского университета "МЭИ" методом бестигельной зонной плавки на аппаратуре УРН-2-3П [23]. Рост осуществлялся на монокристаллическую затравку, вырезанную из монокристалла, выращенного на поликристаллическую затравку. Для обеспечения плавного расплавления поликристаллической заготовки она предварительно переплавлялась зонной плавкой на скорости 35 мм/ч в воздушной среде. Рост осуществлялся при давлении кислорода над расплавом 10 атм (SNFS), 15 атм (BNFS, BTFS). Отжиг кристалла проводился в процессе выращивания в течение 2 ч при температуре 1200°С (SNFS) и 1000°С (BNFS, BTFS), далее происходило плавное снижение температуры отжига в течение 5 ч. Скорость выращивания составляла 2-4 мм/ч для SNFS, 5-6 мм/ч для BNFS, 7-10 мм/ч для BTFS при вращении кристалла со скоростью 20 об./мин для SNFS, 40 об./мин для BNFS и BTFS, при вращении заготовки со скоростью 1 об./мин. Типичный размер полученных монокристаллов: диаметр - 5-6 мм для SNFS, 6-8 мм для BNFS и BTFS, длина – 40–50 мм для SNFS, 40–60 мм для BNFS и BTFS.

ИЗМЕРЕНИЕ ПОКАЗАТЕЛЕЙ ПРЕЛОМЛЕНИЯ КРИСТАЛЛОВ Sr₃NbFe₃Si₂O₁₄, Ba₃NbFe₃Si₂O₁₄, Ba₃TaFe₃Si₂O₁₄

Измерение показателей преломления кристаллов проведено рефрактометрическим мето-

Рис. 2. Графики зависимости интенсивности отраженного излучения I_{refl} от угла падения θ , полученные на приборе призменного контакта для образцов La₃Ta_{0.5}Ga_{5.5}O₁₄ (а) и Ba₃TaFe₃Si₂O₁₄ (б) при двух ортогональных поляризациях зондирующего луча.

дом, который основан на явлении полного внутреннего отражения (**ПВО**) света [24]. Луч падает на границу раздела измерительной призмы и образца (показатели преломления N и n соответственно) со стороны призмы. Если угол падения θ превышает критический угол θ_{cr} , то наблюдается **ПВО**, т.е. прошедшая световая волна отсутствует. При этом показатель преломления образца определяется с учетом известного значения N согласно закону преломления Снеллиуса–Декарта:

 I_{refl} , отн. ед.

300

250

200

150

62 63

300

250

200

$$n = N\sin(\theta_{\rm cr}). \tag{1}$$

Величину θ_{cr} определяли из графика зависимости интенсивности отраженного излучения I_{refl} от угла падения θ : переход через критический угол ПВО сопровождается скачкообразным уменьшением I_{refl} .

Измерения $I_{refl}(\theta)$ проводили на приборе призменного контакта Metricon 2010/M (Metricon Corporation) [25]. Основным элементом прибора является измерительная призма из материала с высоким показателем преломления (ZrO₂, N = 2.147 на длине волны $\lambda = 632.8$ нм). Исследуемый образец приводится в оптический контакт с рабочей гранью измерительной призмы с помощью пневматического толкателя. Граница раздела призма—образец зондируется лазерным лучом со стороны призмы, величина I_{refl} измеряется кремниевым фотодетектором.

Прибор призменного контакта оснащен He– Ne-лазером 05-LHP-488 (Melles Griot) мощностью 0.9 мВт с диаметром пучка (по уровню $1/e^2$) d = 0.65 мм ($\pm 5\%$) и угловой расходимостью $\delta =$ = 1.24 мрад. Падающий на рабочую грань призмы лазерный луч линейно поляризован либо перпендикулярно плоскости падения (*TE*), либо в плоскости падения (*TM*), что позволяет измерять показатели преломления анизотропных образцов. Если исследуемая кристаллическая пластинка вырезана перпендикулярно своей оптической оси, то при *TE*- и *TM*-измерениях будут найдены соответственно n_o и n_e (главные показатели преломления кристалла).

Сначала были проведены измерения показателей преломления n_o , n_e для образца лангатата La₃Ta_{0.5}Ga_{5.5}O₁₄ (LTG), вырезанного перпендикулярно оптической оси, и выполнено сравнение полученных результатов с данными [26–28]. После этого проведены измерения показателей преломления для трех образцов SNFS, BNFS, BTFS. На рис. 2 представлены типичные графики зависимости I_{refl} от угла падения θ , полученные при изучении LTG (прозрачный кристалл) и BTFS (поглощающий кристалл). На вставках на данных рисунках показана область углов вблизи критического угла ПВО в увеличенном масштабе, а значения θ_{cr} , найденные по графику, отмечены вертикальными чертами.

Отметим, что измерение показателя преломления образцов SNFS, BNFS, BTFS имеет ряд особенностей. Данные образцы непрозрачны для видимого излучения, что приводит к сглаживанию графика зависимости интенсивности отраженного излучения I_{refl} от угла падения вблизи критического угла и затрудняет определение значения данного угла (например, рис. 2б). Кроме того, все образцы имеют высокий показатель преломления. Измерения критического угла ПВО могут осуществляться для образцов-пластинок, только если их показатель преломления меньше, чем у измерительной призмы (т.е. n < N). Так как показатель преломления измерительной призмы N = 2.147 близок к показателям преломления кри-

Образец	$\theta_{\rm cr}(TE)$, град	θ _{cr} (<i>TM</i>), град	n, TE	n, TM	n _{cp}	$n_{\rm pacy}^{\rm M}$	$n_{\rm pacy}^{\rm o}$
LTG	64.639	66.417	1.9401 (<i>n</i> _o)	1.9677 (n _e)	1.9539	1.8217	1.9394
SNFS	62.508	62.56	1.9046	1.9055	1.9051	1.7286	1.9251
BNFS	64.74	64.66	1.9418	1.9404	1.9411	1.7426	1.9458
BTFS	63.164	63.185	1.9158	1.9162	1.9160	1.6450	1.9179

Таблица 1. Экспериментальные и рассчитанные показатели преломления кристаллов $La_3Ta_{0.5}Ga_{5.5}O_{14}$, $sr_3NbFe_3Si_2O_{14}$, $Ba_3NbFe_3Si_2O_{14}$, $Ba_3TaFe_3Si_2O_{14}$

сталлов, выполненные измерения сделаны вблизи границы рабочего диапазона прибора (рис. 2).

Измерения проводили при двух ортогональных поляризациях падающего луча и для образцов различной ориентации. Результаты, усредненные по всем выполненным измерениям, приведены в табл. 1. В качестве погрешности взято стандартное отклонение: для $\theta_{cr} - 0.005^{\circ} - 0.09^{\circ}$, для *n* – 0.00008–0.0015. Для образца LTG, вырезанного перпендикулярно оптической оси, полученные показатели преломления для ТЕ- и ТМполяризаций соответствуют значениям n_o, n_e. Полученные значения для LTG хорошо согласуются (с точностью до третьего знака) с известными экспериментальными данными $n_o = 1.9389, n_e =$ = 1.9646 [26, 27]. Остальные кристаллы вырезаны под косым углом к оптической оси, вероятно, поэтому сушественного различия в результатах ТЕи ТМ-измерений для них не наблюдается (табл. 1). В качестве результата принимаются средние значения показателей преломления по всем измерениям.

РАСЧЕТ ПОКАЗАТЕЛЕЙ ПРЕЛОМЛЕНИЯ И ПАРАМЕТРОВ ОПТИЧЕСКОЙ АКТИВНОСТИ КРИСТАЛЛОВ Sr₃NbFe₃Si₂O₁₄, Ba₃NbFe₃Si₂O₁₄, Ba₃TaFe₃Si₂O₁₄

Расчет показателей преломления методом молекулярных рефракций. В [20] проведен расчет показателей преломления для некоторых кристаллов семейства лангасита. Но при этом не исследовались кристаллы данного семейства, содержащие Fe.

Расчет показателей преломления *n* кристаллов семейства лангасита проводили с использованием метода молекулярных рефракций по формуле [29]:

$$R = \frac{(n^2 - 1)}{(n^2 + 2)} \frac{M}{D},$$
 (2)

где R — молекулярная рефракция, n — средний показатель преломления кристалла, M — молярная масса, D — плотность кристалла.

Величины рефракции *R* можно определить разными способами. Во-первых, можно посчитать величину *R* как сумму рефракций ионов:

$$R_{\rm BNFS} = 3R_{\rm Ba^{2+}} + R_{\rm Nb^{5+}} + 3R_{\rm Fe^{3+}} + 2R_{\rm Si^{4+}} + 14R_{\rm O^{2-}}.$$
 (3)

Для расчетов использовали значения кристаллических ионных рефракций, приведенные в [29]. Полученные величины $n_{\text{расч}}^{\mu}$ приведены в табл. 1, где также даны экспериментальные показатели преломления. Видно, что полученные значения показателей преломления сильно занижены, особенно это касается кристаллов, содержащих Fe. Во-вторых, можно рассчитать рефракцию исследуемых кристаллов, разбивая формулу на простые "фрагменты", например:

$$R_{\rm BNFS} = 3R_{\rm BaO} + \frac{1}{2}R_{\rm Nb_2O_5} + \frac{3}{2}R_{\rm Fe_2O_3} + 2R_{\rm SiO_2}.$$
 (4)

Рефракции "фрагментов", представляющих собой простые оксиды, взяты из [29]. Результаты расчетов этим способом ($n_{\text{расч}}^{\text{o}}$) гораздо лучше сходятся с экспериментом, чем при расчете через ионные рефракции (табл. 1).

Расчет показателей преломления и вращения плоскости поляризации света по структурным данным. Взаимосвязь между структурой и оптической активностью может быть выявлена расчетным путем. Для этого проведен расчет показателей преломления no, ne и вращения плоскости поляризации света ρ исследуемых кристаллов по программе WinOptAct [30]. Чтобы применить данную программу, нужно знать атомную структуру исследуемого кристалла (сорта атомов, их координаты и анизотропные параметры атомных смещений для соответствующей абсолютной конфигурации). Используя эти данные и варьируя поляризуемость ионов, можно приблизительно рассчитать величины n_o , n_e и ρ . Так как решение, получаемое при расчете по WinOptAct, сильно зависит от поляризуемостей ионов, которые неизвестны, при расчете необходимо на что-то ориентироваться. В данном случае из известных данных есть только средний показатель преломления. В качестве основы для расчета параметров кристаллов SNFS, BNFS, BTFS взяты поляризуемости ионов, полученные в [21] при оценке показателей преломления и оптической активности для кристаллов $Sr_3NbGa_3Si_2O_{14}$, $Sr_3TaGa_3Si_2O_{14}$, Ва₃ТаGа₃Si₂O₁₄. Поляризуемость ионов Fe подбиралась, а поляризуемости остальных ионов меня-

31 101 035120	10103512014 , $Da31a103512014$ no nporpamme winopract npu drune bound $\lambda = 052.0$ nm							
Состав	Поляризуемости ионов		Эксп. <i>п</i> _{ср}	Расчет n _o , n _e , WinOptAct	Расчет р, град/мм			
LTG	$\alpha(La, 3e) = 2.25 \alpha(Ga1, 2d) = 1.35 \alpha(Ga2, 3f) = 0.84 \alpha(Ga3, 1a) = 0.88$	$\alpha(O1, 2d) = 1.19$ $\alpha(O2, 6g) = 1.6$ $\alpha(O3, 6g) = 1.18$ $\alpha(Ta, 1a) = 0.3$	$n_o = 1.9401$ $n_e = 1.9677$	$n_o = 1.9385$ $n_e = 1.9643$	$ ρ_{\parallel} = -14.6 $ $ ρ_{\perp} = 26.3 $ (эксп. $ρ_{\parallel} = -14.6$ [32])			
SNFS	$\alpha(\text{Sr, } 3e) = 3.1 \\ \alpha(\text{Fe, } 3f) = 2.58 \\ \alpha(\text{O1, } 2d) = 1.1 \\ \alpha(\text{O2, } 6g) = 0.85$	$\alpha(O3, 6g) = 0.75$ $\alpha(Si, 2d) = 0.07$ $\alpha(Nb, 1a) = 0.2$	$n_{\rm cp} = 1.9051$	$n_o = 1.8886$ $n_e = 1.9226$	$\begin{array}{l} \rho_{\parallel}=-40.6\\ \rho_{\perp}=26.1 \end{array}$			
BNFS	$\alpha(Ba, 3e) = 3.6\alpha(Fe, 3f) = 2.91\alpha(O1, 2d) = 1.1\alpha(O2, 6g) = 0.85$	$\alpha(O3, 6g) = 0.75$ $\alpha(Si, 2d) = 0.07$ $\alpha(Nb, 1a) = 0.19$	$n_{\rm cp} = 1.9411$	$n_o = 1.9080$ $n_e = 1.9740$	$\begin{array}{l} \rho_{\parallel} = -37.1 \\ \rho_{\perp} = 33.2 \end{array}$			

 $n_{\rm cp} = 1.9160$

 $\alpha(O3, 6g) = 0.75$

 $\alpha(Si, 2d) = 0.07$

 $\alpha(Ta, 1a) = 0.23$

Таблица 2. Расчет показателей преломления и оптической активности кристаллов La₃Ta_{0.5}Ga_{5.5}O₁₄, Sr₃NbFe₃Si₂O₁₄, Ba₃NbFe₃Si₂O₁₄, Ba₃TaFe₃Si₂O₁₄, Ba₃TaFe₃Si₃O₁₄, Ba₃TaFe₃Si₂O₁₄, Ba₃TaFe₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃O₁₄, Ba₃Si₃

лись по возможности немного. Результат проверяли по среднему показателю преломления. Полученные величины приведены в табл. 2, где ρ_{\parallel} – вращение плоскости поляризации света при его распространении в направлении оптической оси, а ρ_{\perp} – соответствующая величина для направления, перпендикулярного к оптической оси (это было бы вращением плоскости поляризации света при отсутствии двупреломления) [31]. Также в табл. 2 приведены результаты расчета для кристалла LTG, для которого получено хорошее соответствие (с точностью до третьего знака) с известными величинами n_o , n_e и ρ_{\parallel} [27, 32].

 $\alpha(Ba, 3e) = 3.4$

 α (Fe, 3f) = 2.9

 $\alpha(O1, 2d) = 1.1$

 $\alpha(O2, 6g) = 0.85$

BTFS

Можно предположить, что кристаллы SNFS, BNFS, BTFS будут иметь большую оптическую активность, так как кристаллы такого же типа без Fe (Ca₃TaGa₃Si₂O₁₄, Ca₃NbGa₃Si₂O₁₄, Sr₃TaGa₃Si₂O₁₄, Sr₃NbGa₃Si₂O₁₄) имеют большую оптическую активность [33, 34]. Это предположение подтверждается при расчете. Например, для Sr₃NbGa₃Si₂O₁₄ $\rho = -41$ град/мм [33], и для SNFS получается примерно столько же (табл. 2). Кроме того, видно, что величины ρ_{\parallel} и ρ_{\perp} имеют разные знаки: вдоль оптической оси имеет место правое вращение, перпендикулярно оптической оси — левое. Это наблюдается и в других кристаллах семейства лангасита, как показано в [21].

СТРУКТУРА КРИСТАЛЛОВ Sr₃NbFe₃Si₂O₁₄, Ba₃NbFe₃Si₂O₁₄, Ba₃TaFe₃Si₂O₁₄

Для дифракционного исследования образцы кристаллов были обкатаны в эллипсоиды, форма

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022

которых близка к сферической с диаметром 0.3– 0.4 мм. Дифракционные эксперименты проведены при температурах 90 и 295 К на дифрактометре Xcalibur S с двумерным CCD-детектором (Rigaku Oxford Diffraction). Расчет интегральных интенсивностей из дифракционных картин проведен по программе CrysAlisPro вместо CrysAlis [35], для обработки данных и уточнения модели структуры использована программа ASTRA [36], для построения разностных синтезов Фурье – программа Jana2006 [37].

 $n_o = 1.8811$

 $n_{a} = 1.9490$

 $\rho_{||} = -24.3$

 $\rho_{\perp} = 23.7$

Хиральность, проявление оптической активности и мультиферроидных свойств кристаллами SNFS, BNFS и BTFS являются следствием общей структурной особенности, присущей всем лангаситам, а именно наличия спиралей электронной плотности, элементы которых относятся к атомам разных химических сортов и не связаны винтовой осью симметрии. Электронная плотность в кристаллах, "размазанная" около катионной позиции 3f и анионной позиции O3(6g), только имитирует тройную винтовую ось симметрии и формирует трехзаходную спираль вдоль оси с кристалла (рис. 3). Виток спирали завершается в пределах трех элементарных ячеек, ось спирали проходит через атом Nb(1a) или Ta(1a) в начале координат.

Степень распределения электронной плотности ("размазывание") вдоль линии спирали (различие спиралей) зависит от химического состава кристаллов. Атомная геометрия железосодержащих лангаситов определяется каркасом из жестких Si(2d)-тетраэдров и менее жестких Fe(3f)-тетраэдров. При "постоянном" каркасе "размазыКОНСТАНТИНОВА и др.

Рис. 3. Спирали электронной плотности железосодержащих лангаситов при 295 К.

вание" электронной плотности определяется плотностью упаковки атомов, которая возрастает в ряду SNFS–BNFS–BTFS при переходе к более крупным катионам. Больший объем пустот в SNFS допускает больший размах смешения атомов кислорода ОЗ. Рисунок 3 показывает, что направление преимущественных смещений ОЗ ориентировано по линии спирали и уменьшается в ряду SNFS-BNFS-BTFS. Следствием изотермических изоморфных замещений центрального атома спирали (Nb(1a) \rightarrow Ta(1a), переход $BNFS \rightarrow BTFS$) является подвижка атома Fe(3f) в тетраэдре на 18 s.u. вдоль оси а ячейки [15], характеристики ближайших кислородных атомов спирали меняются в меньшей степени, изменение геометрии, в целом, умеренное (рис. 3). При переходе от SNFS к BNFS или BTFS геометрия структуры изменяется весьма сильно. Таблица 3 показывает близость размеров элементарных ячеек и объемов полиэдров в кристаллах BNFS и BTFS, а также их значительное отличие от случая SNFS.

Присутствие обменного магнитного взаимодействия ионов железа усиливает "размазывание" электронной плотности по сравнению со случаем немагнитных кристаллов [14]. При охлаждении атомы структуры перестраиваются главным образом за счет уменьшения большой полости, центрированной катионом в позиции 3e (Sr или Ba), и изменения тетраэдра вокруг атома Fe(3f) [14, 15]. В магнитных лангаситах при понижении температуры дополнительно происходит увеличенное сжатие элементарной ячейки вдоль оси c, что приводит к большему сжатию спирали.

Проявление кристаллами оптической активности также зависит от характеристик спиралей, поэтому можно ожидать высокой оптической активности железосодержащих лангаситов, что в целом подтверждается (табл. 2). Корреляция оптической активности и атомной структуры кристаллов наблюдается в ряду SNFS-BNFS-BTFS. Именно в такой последовательности возрастают объем элементарной ячейки и плотность упаковки атомов (табл. 3), уменьшается свобода смешений атомов кислорода O3(6g) (рис. 3), с одной стороны, и уменьшается величина вращения плоскости поляризации света, проходящего параллельно оптической оси (табл. 2), с другой. Аналогичная "обратная" зависимость имеет место в ряду лангаситов Ca₃TaGa₃Si₂O₁₄-Sr₃TaGa₃Si₂O₁₄-Ba₃TaGa₃Si₂O₁₄ [20]. На основании этих двух наблюдений можно предположить, что величина оптической активности в направлении оптической оси возрастает по мере увеличе-

Образец	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	Объем 3 <i>е</i> -полиэдра, Å ³	Объем 1 <i>а</i> -октаэдра, Å ³
SNFS	8.26069(7)	5.13148(5)	303.254(5)	31.08(1)	10.058(6)
BNFS	8.52421(8)	5.23372(5)	329.343(8)	35.40(2)	10.311(8)
BTFS	8.53532(3)	5.23329(2)	330.18(6)	35.50(3)	10.31(1)

Таблица 3. Структурные параметры исследованных образцов при 293 К

968

ния "размазывания" электронной плотности атомов кислорода, передающих взаимодействие между катионами в позиции 3*f*, которые вместе формируют спирали электронной плотности в кристаллах семейства лангасита.

Переход BNFS \rightarrow BTFS (замена Nb \rightarrow Ta) имеет некоторые особенности из-за определенного "насыщения" упаковки атомов и влияния разнонаправленных факторов. Объем элементарной ячейки при таком переходе немного возрастает (табл. 3), несмотря на сохранение размера замещающего иона при "удвоении" его массы ($r(Nb_{VI}^{+5}, Ta_{VI}^{+5}) = 0.64$ Å). Свойства, задаваемые спиралями электронной плотности, в этом случае еще соответствуют описанной выше тенденции, но другие свойства, определяемые атомами во всем массиве кристалла, уже не подчиняются этой зависимости. В частности, значения показателей преломления при переходе от BNFS к BTFS демонстрируют некоторый "регресс" (табл. 1).

ЗАКЛЮЧЕНИЕ

Методом бестигельной зонной плавки выращены монокристаллы $Sr_3NbFe_3Si_2O_{14}$, $Ba_3NbFe_3Si_2O_{14}$ и $Ba_3TaFe_3Si_2O_{14}$ — перспективные мультиферроики из семейства лангасита. Проведено сравнение измеренных и рассчитанных оптических свойств кристаллов. Показатели преломления данных кристаллов измерены рефрактометрическим методом, а также рассчитаны методом молекулярной рефракции: они возрастают в ряду SNFS-BTFS-BNFS. Выполнен расчет параметров оптической активности по структурным данным: определено, что величина вращения плоскости поляризации света в направлении оптической оси уменьшается в ряду SNFS-BNFS-BTFS.

Проведен сравнительный анализ атомных структур по данным прецизионного рентгеноструктурного анализа, на основании чего определена корреляция структурных особенностей и оптических свойств кристаллов. Предложено связать величину оптической активности в направлении оптической оси со степенью "размазывания" электронной плотности атомов кислорода, передающих взаимодействие между катионами в позиции *3f* вдоль линии спирали электронной плотности в кристаллах семейства лангасита (ряд SNFS–BNFS–BTFS).

При этом показатели преломления, определяемые не только атомами спиралей, но и атомами во всем массиве кристалла, чувствительны к большему числу факторов. В частности, при замене на более тяжелые ионы при переходе BNFS \rightarrow BTFS наблюдается не совсем понятное увеличение объема элементарной ячейки и объема Ba(3*e*)-полиэдра. Вероятно, из-за такого несколько необычного изменения плотности упа-

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022

ковки атомов ряд кристаллов по возрастанию показателей преломления несколько перестраивается: SNFS–BTFS–BNFS.

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Милль Б.В., Буташин А.В., Эллерн А.М., Майер А.А. // Изв. АН СССР. Неорган. материалы. 1981. Т. 17. № 9. С. 1648.
- Белоконева Е.Л., Белов Н.В. // Докл. АН СССР. 1981. Т. 260. № 6. С. 1363.
- Каминский А.А., Милль Б.В., Саркисов С.Э. // Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. С. 197.
- Mill B.V., Pisarevsky Yu.V. // Proc. IEEE/EIA Int. Frequency Control Symp., Kansas City, Missouru, USA, 2000. P. 133.
- Ivanov V.Yu., Mukhin A.A., Prokorov A.S., Mill B.V. // Solid State Phenom. 2009. V. 152–153. P. 299. https://doi.org/10.4028/www.scientific.net/SSP.152-153.299
- Zhou H.D., Lumata L.L., Kuhns P.L. et al. // Chem. Mater. 2009. V. 21. P. 156. https://doi.org/10.1021/cm8018082
- Marty K., Bordet P., Simonet V. et al. // Phys. Rev. B. 2010. V. 81. P. 054416. https://doi.org/10.1103/PhysRevB.81.054416
- Lyubutin I.S., Naumov P.G., Mill' B.V. et al. // Phys. Rev. B. 2011. V. 84. P. 214425. https://doi.org/10.1103/PhysRevB.84.214425
- Pikin S.A., Lyubutin I.S. // Phys. Rev. B. 2012. V. 86. P. 064414.

https://doi.org/10.1103/PhysRevB.86.064414 10. Narita H., Tokunaga Y., Kikkawa A. // Phys. Rev. B.

- Naria H., Tokunaga T., Kikkawa A. // Phys. Rev. B. 2016. V. 94. P. 094433. https://doi.org/10.1103/PhysRevB.94.094433
- 11. Дудка А.П., Милль Б.В. // Кристаллография. 2013. Т. 58. № 4. С. 593. https://doi.org/10.7868/S0023476113040085
- Дудка А.П., Милль Б.В. // Кристаллография. 2014. Т. 59. № 5. С. 759. https://doi.org/10.7868/S0023476114050038
- Zorko A., Bert F., Bordet P. et al. // J. Phys.: Conf. Ser. 2009. V. 145. P. 012006. https://doi.org/10.1088/1742-6596/145/1/012006
- Дудка А.П., Балбашов А.М. // Кристаллография. 2018. Т. 63. № 1. С. 43. https://doi.org/10.7868/S002347611801006X
- Dudka A.P., Balbashov A.M., Lyubutin I.S. // Cryst. Growth Des. 2016. V. 16. P. 4943. https://doi.org/10.1021/acs.cgd.6b00505
- Дудка А.П., Балбашов А.М., Любутин И.С. // Кристаллография. 2016. Т. 61. № 1. С. 31. https://doi.org/10.7868/S0023476116010057
- Toulouse C., Cazayous M., de Brion S. et al. // Phys. Rev. B. 2015. V. 92. P. 104302. https://doi.org/10.1103/PhysRevB.92.104302

- Ramakrishnan M., Joly Y., Windsor Y.W. et al. // Phys. Rev. B. 2017. V. 95. P. 205145. https://doi.org/10.1103/PhysRevB.95.205145
- Rathore S.S., Nathawat R., Vitta S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 554. https://doi.org/10.1039/d0cp04965d
- 20. Константинова А.Ф., Головина Т.Г., Набатов Б.В. и др. // Кристаллография. 2015. Т. 60. № 6. С. 950. https://doi.org/10.7868/S0023476115060144
- Константинова А.Ф., Головина Т.Г., Дудка А.П. // Кристаллография. 2018. Т. 63. № 2. С. 218. https://doi.org/10.7868/S0023476118020091
- Uda S., Wang S.Q., Konishi N. et al. // J. Cryst. Growth. 2002. V. 237–239. P. 707. https://doi.org/10.1016/S0022-0248(01)02007-3
- Balbashov A.M., Egorov S.K. // J. Cryst. Growth. 1981. V. 52. P. 498.
 - https://doi.org/10.1016/0022-0248(81)90328-6
- 24. *Ландсберг Г.С.* Оптика: учебное пособие для вузов. 6-е изд. М.: ФИЗМАТЛИТ, 2010. 848 с.
- 25. https://www.metricon.com/
- Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.
- Калдыбаев К.А., Константинова А.Ф., Перекалина З.Б. Гиротропия одноосных поглощающих кристаллов. М.: Изд-во "Институт социально-экономических и производственно-экологических проблем инвестирования", 2000. 294 с.

- 28. *Stade J., Bohaty L., Hengst M., Heimann R.B.* // Cryst. Res. Technol. 2002. V. 37. № 10. P. 1113. https://doi.org/10.1002/1521-4079(200210)37:10<1113::AID-CRAT1113>3.0.CO;2-E
- 29. Бацанов С.С. Структурная рефрактометрия. М.: Высшая школа, 1976. 304 с.
- Glazer A.M. // J. Appl. Cryst. 2002. V. 35. P. 652. https://doi.org/10.1107/S0021889802013997
- Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 207 с.
- З2. Гераськин В.В., Козлова Н.С., Забелина Е.В., Исаев И.М. // Материалы электронной техники. 2009. № 3. С. 33.
- 33. *Heimann R.B., Hengst M., Rossberg M., Bohm J.* // Phys. Status Solidi. A. 2003. V. 198. № 2. P. 415. https://doi.org/10.1002/pssa.200306627
- Wei A., Wang B., Qi H., Yuan D. // Cryst. Res. Technol. 2006. V. 41. № 4. P. 371. https://doi.org/10.1002/crat.200510589
- Agilent Technologies. 2011. Agilent Technologies UK Ltd., Oxford, UK, Xcalibur CCD system, CrysAlisPro Software system, Version 1.171.35.21.
- Dudka A. // J. Appl. Cryst. 2007. V. 40. P. 602. https://doi.org/10.1107/S0021889807010618
- 37. *Petricek V., Dusek M., Palatinus L.* Jana2006. The crystallographic computing system. 2006. Institute of Physics, Praha, Czech Republic.