___ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 541.133.1

ИОННАЯ ПРОВОДИМОСТЬ КРИСТАЛЛОВ ФЛЮОРИТОВОГО ТВЕРДОГО РАСТВОРА СИСТЕМЫ PbF₂-CdF₂-MnF₂

© 2022 г. Н. И. Сорокин^{1,*}, И. И. Бучинская¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: nsorokin1@yandex.ru* Поступила в редакцию 09.05.2022 г. После доработки 01.06.2022 г. Принята к публикации 01.06.2022 г.

Ионная проводимость σ_{dc} твердых растворов $Pb_{1-x}Cd_xF_2$ и $(Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF_2$ со структурой флюорита (пр. гр. $Fm\overline{3}m$) изучена методом импедансной спектроскопии. Концентрационные серии кристаллических образцов $Pb_{1-x}Cd_xF_2$ ($0.2 \le x \le 0.5$) и $(Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF_2$ ($0 \le x \le 0.1$) выращены из расплава методом вертикальной направленной кристаллизации во фторирующей атмосфере. Состав $Pb_{0.67}Cd_{0.33}F_2$, соответствующий точке температурного минимума на фазовой диаграмме и обладающий максимальным уровнем проводимости $\sigma_{dc} = 2 \times 10^{-4}$ См/см при 293 K, рассматривается в качестве исходной матрицы для получения новых фторпроводящих твердых электролитов с улучшенными свойствами. Обнаружено, что концентрационная зависимость $\sigma_{dc}(x) = 5.5 \times 10^{-4}$ См/см наблюдается для состава с x = 0.03, которая превышает проводимость матрицы в 2.7 раза. При 0.07 < $x \le 0.1$ присутствует примесная фаза, ухудшающая электрофизические свойства образцов ($Pb_{0.67}Cd_{0.33}$)_{1-x} Mn_xF_2 .

DOI: 10.31857/S0023476122060248

введение

Соединения и твердые растворы на основе PbF₂ представляют несомненный интерес как фтор-ионные твердые электролиты [1, 2]. Одним из таких материалов является образующийся в конденсированной системе PbF2-CdF2 твердый раствор $Pb_{1-x}Cd_xF_2$ ($0 \le x \le 1$) со структурой флюорита (тип CaF₂, пр. гр. $Fm\overline{3}m$) и постоянным числом ионов в элементарной кристаллической ячейке [3, 4]. Согласно данным термического анализа и сравнительной оценке коэффициентов распределения CdF₂ в специально выращенных монокристаллах $Pb_{1-x}Cd_xF_2$ [4, 5] в этой системе наблюдается минимум на линии ликвидуса, координаты которого $T = 1018 \pm 5$ К и x = 0.33. Конгруэнтный характер плавления твердого раствора Pb_{0.67}Cd_{0.33}F₂ открывает возможность выращивания из расплава однородных по составу кристаллов [4, 6].

В [3] на поликристаллических образцах изучена концентрационная зависимость ионной проводимости $\sigma(x)$ для изовалентного твердого раствора Pb_{1-x}Cd_xF₂ при $0 \le x \le 1$. Керамики были получены твердофазным синтезом в Ni-ампулах (650°С, атмосфера HF, 15 ч). Максимальная величина $\sigma = 8 \times 10^{-5}$ См/см при 300 К обнаружена у состава $x = 0.35 \pm 0.05$, который не совпадает с температурным минимумом на линии ликвидуса (x = 0.33). Поэтому представляется важным подтвердить корреляцию между максимальной величиной ионной проводимости и составом температурного экстремума 2 : 1 (x = 0.33) в системе PbF₂-CdF₂.

В [4, 7, 8] изучалась ионная проводимость монокристаллов твердого раствора $Pb_{1-x}Cd_xF_2$ с x = 0.33, выращенных направленной кристаллизацией из расплава по методу Бриджмена. Проводимость кристаллов $Pb_{0.67}Cd_{0.33}F_2$ равна $\sigma_{dc} \sim 10^{-4}$ См/см при комнатной температуре. Твердый раствор $Pb_{1-x}Cd_xF_2$ (x = 0.33) является фторпроводящим твердым электролитом, его высокая анионная проводимость обусловлена структурными анионными дефектами при изоморфных замещениях катионов Pb^{2+} на Cd^{2+} [8–10].

Теплофизические свойства монокристалла $Pb_{0.68}Cd_{0.32}F_2$ изучались в [11], в [5, 12] обсуждается взаимосвязь между кондуктометрическими и термическими свойствами твердого раствора $Pb_{1-x}Cd_xF_2$ ($0 \le x \le 1$). Известны данные о существовании во флюоритовой матрице кластеров типа структурных фрагментов упорядоченной тетрагональной фазы Pb_2CdF_6 [8, 10, 13] для состава $Pb_{0.67}Cd_{0.33}F_2$.

Высокая ионная проводимость в сочетании с низкой температурой плавления (1018 К) позволяют рассматривать флюоритовый твердый раствор $Pb_{0.67}Cd_{0.33}F_2$ как перспективную матрицу для создания фторидных твердых электролитов для химических источников тока нового поколения, работающих при комнатной температуре [14, 15]. Ранее было исследовано влияние на ионную проводимость $Pb_{0.67}Cd_{0.33}F_2$ изоморфных замещений, включающих в себя гетеровалентные примеси Li⁺, Na⁺ и Ce³⁺ [4, 8, 16]. Однако увеличения проводимости σ_{dc} ($Pb_{0.67}Cd_{0.33}$)_{1-x} Ce_xF_{2+x} ($0 \le x \le 0.03$) не наблюдалось, а в случае ($Pb_{0.67}Cd_{0.33}$)_{0.97}Na_{0.03}F_{1.97} величина σ_{dc} даже уменьшилась.

Твердый раствор $Pb_{0.67}Cd_{0.33}F_2$ выбран в качестве исходной матрицы для дальнейшего поиска новых фторпроводящих твердых электролитов с улучшенными свойствами. В рамках этого поиска исследовано влияние изомофных изовалентных замещений на примере катионов Mn^{2+} с существенно меньшим радиусом по сравнению с Pb^{2+} и Cd^{2+} на ионную проводимость флюоритовой матрицы $Pb_{0.67}Cd_{0.33}F_2$. В отличие от флюоритовых компонентов MF_2 (M = Pb, Cd, Ca, Sr, Ba) с координационным числом **КЧ** = 8 и ионными радиусами $r_M = 1.10 - 1.42$ Å [17] для катионов компонент MnF_2 обладает структурой типа рутила TiO₂ (пр. гр. $P4_2/mmm$), KЧ = 6 и $r_{Mn} = 0.67$ Å.

Исследование флюоритового твердого раствора $Pb_{1-x}Mg_xF_2$ [16, 18] показало, что изоструктурная дифториду марганца примесь MgF_2 увеличивает проводимость кристаллов. Как показано в [19], в состав ($Pb_{0.67}Cd_{0.33}$)_{1-x} Mn_xF_2 катионы Mn^{2+} входят изоструктурно до x = 0.05; при увеличении их концентрации в кристаллах выпадает мелкодисперсная тетрагональная фаза. Трехкомпонентные составы можно рассматривать как композиционные материалы, которые тоже представляют интерес с точки зрения ионной проводимости.

Цель работы заключается в подтверждении корреляции между величиной максимальной ионной проводимости и составом $PbF_2: CdF_2 = 2:1$ ($Pb_{0.67}Cd_{0.33}F_2$) в системе PbF_2-CdF_2 и исследовании влияния изовалентной примеси Mn^{2+} на ионную проводимость флюоритовой матрицы для составов ($Pb_{0.67}Cd_{0.33}$)_{1-x} Mn_xF_2 при $x \le 0.1$.

Статья написана по материалам доклада на Девятой Международной конференции "Кристаллофизика и деформационное поведение перспективных материалов", 22–26 ноября 2021 г., Москва, НИТУ "МИСиС".

ЭКСПЕРИМЕНТ

Выращивание кристаллов. Концентрационные серии кристаллов $Pb_{1-x}Cd_xF_2$ и $(Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF_2$, составы которых приведены в табл. 1, выращены методом вертикальной направленной кристаллизации (Бриджмена) в многоячеистых графитовых тиглях в смешанной фторирующей атмосфере Не и продуктов пиролиза политетрафторэтилена. Методика выращивания кристаллов неоднократно описана в предыдущих работах (например, в [19]). Кристаллы составов (Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF₂, x = 0.03, 0.05, 0.07, ранее выращивались для выявления прелела существования тверлого раствора и исследования его оптических свойств [19]. В настоящей работе использовали коммерческие реактивы PbF₂, CdF₂ и MnF₂ марки "х.ч.", предварительно высушенные в вакууме и проплавленные во фторирующей атмосфере для очистки от кислородсодержащих примесей. Потери вещества в процессе кристаллизации не превышали 2% от массы исходной загрузки. Скорость опускания тигля равна 3.5 мм/ч, температурный гралиент в ростовой зоне – 50 K/см.

Рентгенофазовый анализ. Фазовый состав и параметры элементарной ячейки полученных образцов определяли методом рентгенофазового анализа (РФА). Съемку рентгенограмм проводили на порошковом рентгеновском дифрактометре Rigaku MiniFlex 600 с использованием излучения Cu K_{α} (Ni- K_{β} -фильтр). Идентификацию фаз выполняли в программе PXDRL (Rigaku) по базе данных ICDD PDF-2 (версия 2017). Параметры элементарных ячеек флюоритовой фазы определяли по программе DICVOL [20] и уточняли в рамках пр. гр. $Fm\overline{3}m$ методом полнопрофильного анализа Le Bail [21] с использованием программеного обеспечения Jana2006 [22].

Электропроводность. Монокристаллические образцы Pb_{1-x}Cd_xF₂ для электрофизических измерений вырезали из средних участков кристаллических буль в виде плоскопараллельных дисков толщиной 5 мм (вкладка на рис. 1). Для этих образцов площадь серебряных контактов составляла 50 мм². Толщина плоскопараллельных образцов $(Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF_2$ составляла 7 мм, площадь серебряных контактов – 25 мм². Статическую электропроводность σ_{dc} на постоянном токе кристаллов измеряли методом импедансной спектроскопии. В качестве проводящих контактов использовали серебряную пасту Leitsilber. Измерения импеданса Ζ*(ω) электрохимических ячеек Ад кристалл Ад выполняли в диапазонах частот $5-5 \times 10^5$ Гц и сопротивлений $1-10^7$ Ом (импе-

Состав кристалла	Фазовый состав	Параметры решетки, Å	σ _{<i>dc</i>} , См/см	Т, К
$Pb_{0.8}Cd_{0.2}F_2$		$a_f = 5.830(2)$	5×10^{-5}	
$Pb_{0.7}Cd_{0.3}F_2$		$a_f = 5.724(2)$	1.2×10^{-4}	
$Pb_{0.67}Cd_{0.33}F_2$		$a_f = 5.755(1)$	2×10^{-4}	
	Флюорит		1.4×10^{-4} [7]	293
$Pb_{0.6}Cd_{0.4}F_2$		$a_f = 5.719(2)$	1.7×10^{-4}	
$Pb_{0.5}Cd_{0.5}F_2$		$a_f = 5.664(2)$	7.2×10^{-5}	
$(Pb_{0.67}Cd_{0.33})_{0.97}Mn_{0.03}F_2$		$a_f = 5.73(1)$	5.5×10^{-4}	295
$(Pb_{0.67}Cd_{0.33})_{0.95}Mn_{0.05}F_2$		$a_f = 5.72(1)$	3.3×10^{-4}	
$(Pb_{0.67}Cd_{0.33})_{0.97}Mn_{0.07}F_2$	Флюорит + тетраго-	$a_f = 5.71(1)$	3.3×10^{-4}	
$(Pb_{0.67}Cd_{0.33})_{0.9}Mn_{0.1}F_2$	нальная фаза	$a_t = 4.013(2)$	1.3×10^{-4}	
		$c_t = 16.898(4)$		

Таблица 1. Параметры решетки флюоритовой фазы и ионная проводимость (σ_{dc}) кристаллов $Pb_{1-x}Cd_xF_2$ и ($Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF_2$ при комнатной температуре

дансметр Tesla BM—507), в вакууме ~1 Па. Относительная погрешность измерений $Z^*(\omega)$ составляла 5%.

Импедансные измерения позволяли надежно определить объемное сопротивление R_b кристаллов по пересечению годографов импеданса $Z^*(\omega)$

электрохимических ячеек с осью активных сопротивлений. Значения проводимостей σ_{dc} определяли по формуле

$$\sigma_{dc} = h/SR_b$$

где *h* – толщина кристалла, *S* – площадь электрода.

Рис. 1. Дифрактограммы кристаллов $Pb_{0.67}Cd_{0.33}F_2$ (*1*) и ($Pb_{0.67}Cd_{0.33})_{0.9}Mn_{0.1}F_2$ (*2*). Показаны положения рефлексов Брэгга для фаз пр. гр. *Fm* $\overline{3}m$ и *I4/mmm*. На вкладке образец, вырезанный из середины кристалла $Pb_{0.67}Cd_{0.33}F_2$.

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022

Рис. 2. Концентрационная зависимость ионной проводимости $\sigma(x)$ для монокристаллов (*1*, σ_{dc}) и поликристаллов (*2*, σ на частоте 10 кГц [3]) твердого раствора Pb_{1-x}Cd_xF₂.

Наличие в спектрах импеданса блокирующего эффекта от инертных (серебряных) электродов при низких частотах указывает на ионную природу электропереноса в исследуемых кристаллах. Ионный транспорт в кристаллах $Pb_{0.67}Cd_{0.33}F_2$ обусловлен анионами F⁻: на это прямо указывают результаты исследования методом ¹⁹F ЯМР [10, 13] и теоретических расчетов методами молекулярной динамики и квантовой химии [9, 23], в которых обнаружена высокая диффузия анионов F⁻.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По результатам РФА параметры решетки исходных компонентов равны a = 5.939(4) и 5.388(2) Å для PbF₂ и CdF₂ соответственно (пр. гр. $Fm\overline{3}m$). Однофазные кристаллы флюоритовой структуры получены для $Pb_{1-x}Cd_xF_2$ с x = 0.2-0.5 и при легировании марганцем флюоритовой матрицы вплоть до состава ($Pb_{0.67}Cd_{0.33}$)_{0.95} $Mn_{0.05}F_2$ (табл. 1). При более высоком содержании MnF₂ в объеме выращенных кристаллов выпадает примесная тетрагональная фаза, изоструктурная группе соединений Ba_2MF_6 (M = Mn, Co, Zn). Исследования оптического поглощения и люминесценции кристалла (Pb_{0.67}Cd_{0.33})_{0.95}Mn_{0.05}F₂ [19] указывают на октаэдрическую симметрию окружения ионов Mn²⁺. Дифрактограммы исходной матрицы Рb_{0.67}Cd_{0.33}F₂ и двухфазного образца с максимальным содержанием марганца $(Pb_{0.67}Cd_{0.33})_{0.9}Mn_{0.1}F_2$ показаны на рис. 1.

Концентрационные зависимости ионной проводимости $\sigma(x)$ для монокристаллов (кривая *1*, данные настоящей работы) и поликристаллов (кривая *2*, данные [3]) твердого раствора Pb_{1-x}Cd_xF₂ показаны на рис. 2. Состав, соответствующий точке температурного минимума на фазовой диаграмме Pb_{0.67}Cd_{0.33}F₂, обладает максимальным уровнем проводимости $\sigma_{dc} = 2 \times 10^{-4}$ См/см. Проводимость монокристалла Pb_{0.67}Cd_{0.33}F₂ превышает величину электропроводности поликристаллического образца Pb_{0.65}Cd_{0.35}F₂ в 2.5 раза, что обусловлено отсутствием межзеренных границ в монокристаллическом образце.

В твердом растворе $Pb_{0.67}Cd_{0.33}F_2$, соответствующем составу стехиометрии Pb_2CdF_6 , особенности его спектров ЯМР на ядрах ¹⁹F, ¹¹¹Cd и ²⁰⁷Pb объясняются наличием тетрагональных кластеров дефектов во флюоритовой кубической матрице [10, 13]. В [8] с помощью рентгеноструктурного анализа обнаружены дополнительные пики электронной плотности вблизи катионных позиций 4а с координатами (0, 0, 0) пр. гр. $Fm\overline{3}m$, которые соответствуют смещениям катионов по осям третьего и четвертого порядка (расщепление катионных позиций). В предположении, что именно катионы Cd²⁺ находятся в этих смещенных позициях и образуются калмийсолержащие кластеры, расчеты привели к существенному уточнению карты электронной плотности. Расщепление катионной позиции в структуре флюоритового твердого раствора является одним из признаков образования структурных кластеров дефектов в кристаллах $M_{1-x}R_xF_{2+x}$ (M =Sr, Ba, R - редкоземельные элементы) [24-26].

На основании рентгеноструктурных данных сделан вывод, что позиции фтора 8c с координатами (1/4, 1/4, 1/4) пр. гр. $Fm\overline{3}m$ заняты только на 75% (25% вакансий фтора в анионной подрешетке). Для сохранения электронейтральности кристалла требуются межузельные ионы фтора, количество которых должно быть равно числу ионов фтора, отсутствующих в основных анионных позициях 8c. Действительно, на карте электронной плотности [8] вблизи позиций 4b с координатами (1/2, 1/2, 1/2) находятся несколько пиков электронной плотности, которые можно отнести к межузельным позициям ионов фтора.

Существование вакансий фтора и межузельных ионов фтора в кристалле $Pb_{0.67}Cd_{0.33}F_2$ в [8] интерпретировано как образование антифренкелевских точечных дефектов. Антифренкелевские дефекты являются основным типом точечных дефектов, ответственных за ионный перенос во фторидных кристаллах со структурой флюорита [27].

Рис. 3. Концентрационная зависимость ионной проводимости $\sigma_{dc}(x)$ монокристаллов (Pb_{0.67}Cd_{0.33})_{1-x} Mn_xF₂ при 295 К.

Уменьшение анионной проводимости кристалла $Pb_{0.67}Cd_{0.33}F_2$ при легировании одновалентными катионами (Li⁺, Na⁺ [8]) и абсолютная величина энтальпии активации анионного переноса (0.39 эВ [7]) указывают, что межузельный механизм движения ионов фтора более вероятен. Локальные сдвиги катионов Cd^{2+} из положений флюоритовой решетки увеличивают объем, доступный для ионов F^- , способствуя тем самым их быстрому прыжковому переносу в ближайшем окружении кластеров.

На рис. 3 показана зависимость электропроводности σ_{dc} от состава (x) для кристаллов (Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF₂ при 295 К. Она является немонотонной и имеет максимум $\sigma_{dc} = 5.5 \times 10^{-4}$ См/см при x = 0.03. Максимальная величина проводимости твердого раствора σ_{dc} (x = 0.03) превышает проводимость матрицы σ_{dc} (x = 0.03) превышает проводимость матрицы σ_{dc} (x = 0.03) в 2.7 раза. В образцах при $0.07 < x \le 0.1$ с помощью РФА зафиксирована примесная фаза (рис. 1), ухудшающая их электрофизические свойства.

На рис. 4 приведена температурная зависимость ионной проводимости для наиболее проводящего кристалла ($Pb_{0.67}Cd_{0.33}$)_{0.97}Mn_{0.03}F₂ в температурном интервале 298–437 К. Изменение величины электропроводности от 298 до 437 К составляет ~40 раз. Кондуктометрические дан-

Рис. 4. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ монокристалла (Pb_{0.67}Cd_{0.33})_{0.97}Mn_{0.03}F₂ при 298–437 К.

ные обрабатывали в соответствии с уравнением Аррениуса–Френкеля:

$$\sigma_{dc}T = \sigma_0 \exp(-H_{\sigma}/kT),$$

где σ_0 – предэкспоненциальный множитель электропроводности, H_{σ} – энтальпия активации электропереноса. На кривых $\sigma_{dc}(T)$ никаких аномалий не обнаружено. Параметры уравнения Френкеля–Аррениуса равны $\sigma_0 = 8.6 \times 10^4$ СмК/см и $H_{\sigma} = 0.34$ эВ.

Полученное значение энтальпии активации ионной проводимости для кристалла $(Pb_{0.67}Cd_{0.33})_{0.97}Mn_{0.03}F_2$ ниже, чем соответствующая величина для $Pb_{0.67}Cd_{0.33}F_2$ ($H_{\sigma} = 0.36 - 0.39$ эВ [4, 7, 8]). Понижение потенциального барьера для миграции ионов фтора (величины H_{σ}) является причиной роста ионной проводимости при введении катионов Mn²⁺ во флюоритовую структуру Pb_{0.67}Cd_{0.33}F₂. В свою очередь понижение энтальпии активации Н_о вызвано сильным отличием кристаллохимических характеристик примеси компонента со структурой рутила MnF2 от флюоритовых матричных компонентов PbF₂ и CdF₂.

Принимая во внимание размеры катионов $PbF_2 - 1.29$, $CdF_2 - 1.10$ и $MnF_2 - 0.67$ Å, примесные катионы Mn^{2+} , по-видимому, замещают матричные катионы Cd^{2+} , формируя марганецсодержащие кластеры. В [19] выявлено, что однофазная область флюоритового твердого раствора

 $(Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF_2$ при его кристаллизации из расплава с последующим медленным охлаждением существует до x = 0.05. С увеличением концентрации катионов Mn^{2+} выше этого предела при охлаждении происходит распад насыщенного марганцем твердого раствора, который выглядит как тонкодисперные включения в кристаллах твердого раствора. Снижение величины анионной проводимости в кристаллах ($Pb_{0.67}Cd_{0.33}$)_{1-x} Mn_xF_2 при 0.07 < $x \le 0.1$ обусловлено замедлением ионного переноса через межфазную границу в образцах.

ЗАКЛЮЧЕНИЕ

Полученные результаты подтвердили, что на концентрационной зависимости $\sigma_{dc}(x)$ для флюоритовой фазы $Pb_{1-x}Cd_xF_2$ ($0 \le x \le 1$) максимум проводимости совпадает с составом стехиометрии Pb_2CdF_6 и минимумом на кривых плавкости. Твердый раствор состава $Pb_{0.67}Cd_{0.33}F_2$ является перспективной матрицей для получения новых фторпроводящих твердых электролитов с улучшенными свойствами.

В матрицу $Pb_{0.67}Cd_{0.33}F_2$ введена примесь MnF₂ со структурой рутила (тип TiO₂), для которой кристаллохимические характеристики сильно отличаются от флюоритовых матричных компонентов PbF₂ и CdF₂ (тип CaF₂). Обнаружено, что концентрационная зависимость $\sigma_{dc}(x)$ кристаллов (Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF₂ является немонотонной. Максимум проводимости $\sigma_{dc}(x) =$ = 5.5 × 10⁻⁴ Cм/см для состава x = 0.03 превышает проводимость исходной матрицы (x = 0) в 2.7 раза. При 0.07 < $x \le 0.1$ присутствие примесной фазы ухудшает электрофизические свойства образцов (Pb_{0.67}Cd_{0.33})_{1-x}Mn_xF₂.

Проводимость кристаллов ($Pb_{0.67}Cd_{0.33}$)_{0.97} $Mn_{0.03}F_2$ при комнатной температуре существенно выше электропроводности флюоритовых твердых растворов $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba, R - редкозе-мельные элементы) [28–32], что позволяет рассматривать их как фторпроводящие твердые электролиты для низкотемпературных исследований.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН. Рентгенодифракционные исследования выполнены с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника".

СПИСОК ЛИТЕРАТУРЫ

1. Бучинская И.И., Федоров П.П. // Успехи химии. 2004. Т. 73. № 4. С. 404. https://doi.org/10.1070/RC2004v073n04ABEH000811

- 2. Кавун В.Я., Слободюк А.В., Гончарук В.К., Лукиянчук Г.Д. // Вестник ДВО РАН. 2009. № 2. С. 117.
- 3. *Мурин И.В., Чернов С.В.* // Изв. АН СССР. Неорган. материалы. 1982. Т. 18. № 1. С. 168.
- Сорокин Н.И., Бучинская И.И., Соболев Б.П. // Журн. неорган. химии. 1992. Т. 37. № 12. С. 2653.
- Сорокин Н.И., Бучинская И.И., Соболев Б.П. // Журн. неорган. химии. 1998. Т. 43. № 11. С. 1773.
- Kosacki I., Dynowska E. // J. Cryst. Growth. 1980. V. 50. P. 575.
- 7. Сорокин Н.И. // ФТТ. 2015. Т. 57. № 7. С. 1325.
- Trnovcova V., Fedorov P.P., Ozvoldova M. et al. // J. Optoelectron. Adv. Mater. 2003. V. 5. P. 627.
- 9. Готлиб И.Ю., Мурин И.В., Пиотровская И.В., Бродская Е.А. // Неорган. материалы. 2002. Т. 38. С. 358.
- Бузник В.М., Суховской А.А., Вопилов В.А. и др. // Журн. неорган. химии. 1997. Т. 42. С. 2092.
- 11. Попов П.А., Матовников А.В., Моисеев Н.В. и др. // Кристаллография. 2015. Т. 60. № 1. С. 111.
- 12. Сорокин Н.И., Каримов Д.Н., Бучинская И.И. // Кристаллография. 2015. Т. 60. № 4. С. 586.
- Мацулев А.И., Иванов Ю.Н., Лившиц А.И. и др. // Журн. неорган. химии. 2000. Т. 45. С. 296.
- Anji Reddy M., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059.
- 15. Karkera G., Anji Reddy M., Fichtner M. // J. Power Sources. 2021. V. 481. P. 228877.
- 16. Trnovcova V., Fedorov P.P., Buchinskaya I.I. et al. // Solid State Ionics. 1999. V. 119. P. 181.
- 17. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
- El Omari Malika, El Omari Mohamed, Reau J.M., Senegas J. // J. Fluor. Chem. 2002. V. 113. P. 185.
- Бучинская И.И., Батыгов С.Х., Иванова А.Г. // Кристаллография. 2020. Т. 65. № 4. С. 624. https://doi.org/10.31857/S0023476120040074
- 20. *Boultifand A., Louer D.* // J. Appl. Cryst. 2004. V. 37. P. 724. https://doi.org/10.1107/S0021889804014876
- 21. Le Bail A. // Powder Diffr. 2005. V. 20. № 4. P. 316.
- 22. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. B. 229. № 5. S. 345.
- Петров А.В., Саламатов М.С., Иванов-Шиц А.К., Мурин И.В. // Кристаллография. 2019. Т. 64. № 6. С. 925. https://doi.org/10.1134/S0023476119050175
- 24. Sylyanova E.A., Karimov D.N., Sobolev B.P. // Crystals. 2021. V. 11. P. 447. https://doi.org/10.3390/cryst11040447
- 25. Голубев А.М., Отрощенко Л.П., Молчанов В.Н. и др. // Кристаллография. 2009. Т. 54. № 3. С. 456.
- Сульянова Е.А., Верин И.А., Соболев Б.П. // Кристаллография. 2012. Т. 57. № 1. С. 79.
- 27. *Lidiard A.B.* // Crystal with the fluorite structure. Ed. *W. Hayes.* Oxford: Clarendon Press. 1974. P. 101.
- Sorokin N.I., Breiter M.W. // Solid State Ionics. 1997. V. 99. P. 241.
- Sorokin N.I., Breiter M.W. // Solid State Ionics. 1997.
 V. 104. P. 325.
- Sorokin N.I., Breiter M.W. // Solid State Ionics. 1999.
 V. 116. P. 157.
- Сорокин Н.И., Каримов Д.Н. // ФТТ. 2021. Т. 63. № 10. С. 1485.
 - https://doi.org/10.21883/FTT.2021.10.51477.096
- 32. Сорокин Н.И., Каримов Д.Н., Кривандина Е.А. и др. // Кристаллография. 2008. Т. 53. № 2. С. 297.

КРИСТАЛЛОГРАФИЯ том 67 № 6 2022