_____ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 541.133.1; 53.096

ВЫСОКОТЕМПЕРАТУРНАЯ АНОМАЛИЯ АНИОННОЙ ПРОВОДИМОСТИ В КРИСТАЛЛАХ LaF₃

© 2023 г. Н. И. Сорокин^{1,*}

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: nsorokin1@yandex.ru* Поступила в редакцию 26.08.2022 г. После доработки 01.09.2022 г. Принята к публикации 01.09.2022 г.

Методом импедансной спектроскопии исследована анионная электропроводность $\sigma_{dc}(T)$ монокристалла суперионного проводника LaF₃ в широком интервале температур 312–1073 К. Электрофизические измерения проводились в защитной атмосфере азота. В изученном температурном интервале значения σ_{dc} изменяются от 1.5 × 10⁻⁵ до 7 × 10⁻² См/см (в ~5 × 10³ раз). Обнаружена высокотемпературная аномалия на температурной зависимости $\sigma_{dc}(T)$ при $T_0 \approx 970$ K, которая указывает, повидимому, на начало размытого (фарадеевского) фазового перехода в структуре тисонита LaF₃.

DOI: 10.31857/S0023476123010253, EDN: DQZAOR

ВВЕДЕНИЕ

Трифторид лантана LaF₃ является одним из интереснейших и важнейших соединений во фторидном материаловедении. Он широко применяется в научных и прикладных областях: ионике твердого тела, волоконной оптике, люминесцентных лампах, радиационном оборудовании, производстве фторидных стекол, при получении металлического La и др. Трифторид LaF₃ и твердые растворы на его основе являются фторпроводящими суперионными проводниками, обладающими высокой анионной и низкой электронной проводимостью [1-8]. Монокристаллы, керамики и пленки суперионного проводника LaF₃, слабо растворимого в воде и минеральных кислотах, применяются во фторид-селективных сенсорах для определения фтора в жидкостных и газовых средах [9–11]. Гетеровалентные твердые растворы на основе LaF₃ широко используются как твердые электролиты во фтор-ионных источниках тока нового поколения [12-14].

Фторид лантана получают разными способами: воздействием фтора на металлический лантан, реакцией плавиковой кислоты HF с оксидом, гидроксидом или сульфидом лантана и др. [15]. Монокристаллы LaF₃ выращивают, как правило, из расплава методами направленной кристаллизации Бриджмена или Чохральского [16, 17].

Трифторид лантана является родоначальником структурного типа тисонита (tysonite). С кристаллохимической точки зрения он диморфен и имеет низкотемпературную тригональную (пр. гр. *P*3*c*1) и высокотемпературную гексагональную (пр. гр. *P*6₃/*mmc*) модификации [18–20]. Введение высокой концентрации вакансий фтора путем гетеровалентных замещений стабилизирует гексагональную модификацию тисонита [21, 22].

В [23] методом термического анализа в трифторидах редкоземельных элементов RF_3 (R = La-Nd) обнаружены незадолго до плавления размытые (фарадеевские) фазовые переходы (РФП). В кристаллах LaF₃ и CeF₃ существование РФП подтверждено исследованиями упругих свойств [24] и молекулярной динамики [25].

Ранее РФП были обнаружены и подробно изучены в дифторидах MF_2 (M = Ca, Sr, Ba, Cd, Pb) со структурой флюорита (пр. гр. *Fm*3*m*) [26–29]. В этих исследованиях показано, что РФП занимают некоторый интервал температур и относятся к фазовым переходам второго рода "порядокбеспорядок". Во флюоритовых кристаллах MF₂ существование РФП связывают с разупорядочением анионной подрешетки (степень разупорядочения низкая 1-5% [30]), сопровождающимся образованием дефектов Френкеля – межузельных ионов F'_i и вакансий фтора $V_{\rm F}^{\bullet}$. Существование РФП во флюоритовых структурах проявляется в виде аномалии на температурной зависимости ионной проводимости $\sigma_{dc}(T)$ [26, 27]. В области РФП на графике $\lg \sigma_{dc} T$, 1/T имеет место изгиб в сторону уменьшения энтальпии активации ионного переноса.

Рис. 1. Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ монокристалла LaF₃ в широком интервале температур (участки I–IV): *I* – нагрев, *2* – охлаждение.

Высокотемпературных данных по электропроводности и диффузии фтора в кристаллах LaF₃ получено немного [7, 31-36]. В [32, 37] рассмотрен высокотемпературный анионный (фторный) перенос в кристаллическом и расплавленном состояниях соединения LaF₃. При этом опубликованные кондуктометрические и диффузные данные не воспроизводятся ни при температурном циклировании кристаллов [7, 33], ни в измерениях кристаллов разными научными группами [7, 21, 34-37]. Основными причинами невоспроизводимости экспериментальных данных являются реакция пирогидролиза, присущая всем фторидам при высоких температурах, и разная термическая предыстория исследуемых образцов. Поэтому представляет интерес провести детальное исследование температурной зависимости анионной проводимости кристаллов LaF₃ в области высоких температур.

Целью работы является попытка обнаружить проявление размытого (фарадеевского) фазового перехода в высокотемпературном исследовании анионной проводимости кристаллов тисонита LaF₃. Выбор трифторида лантана обусловлен тем, что он наиболее устойчив к пирогидролизу среди трифторидов РЗЭ [38, 39].

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Попытка проведения высокотемпературных измерений электропроводности LaF₃ была пред-

КРИСТАЛЛОГРАФИЯ том 68 № 1 2023

принята в [31], но кондуктометрические данные при температурах >900 К не воспроизводились из-за сильного пирогидролиза монокристаллического образца. В данной работе использовались специальные меры для минимизации влияния пирогидролиза трифторида лантана на высокотемпературные электрофизические процессы (монокристаллический образец оптического качества, защитная атмосфера сухого инертного газа (азота), импедансная спектроскопия для определения истинного сопротивления кристалла). Монокристалл LaF₃ выращивался из расплава методом направленной кристаллизации Бриджмена по вакуумной технологии (ГОИ, СПб). Методика роста кристаллов приведена в [38].

Статическую электропроводность σ_{dc} (dc - direct current) кристалла определяли из спектров импеданса ($1-1 \times 10^7$ Гц, 30 мВ, прибор Solartron 1260). Толщина образца – 1.4 мм, контакты – Аg, площадь электродов – 25 мм². Измерения ионной проводимости монокристалла LaF₃ проведены вдоль кристаллографической оси *с* пр. гр. $P\overline{3}c1$ в атмосфере азота при температурах 312–1073 К. Пирогидролиз кристалла контролировали в ходе температурных кондуктометрических измерений по спектрам комплексного импеданса.

Объемное сопротивление кристалла R_b находили по пересечению годографа импеданса системы Ag|монокристалл LaF₃|Ag с осью действительных сопротивлений. Величину σ_{dc} рассчитывали по формуле

$$\sigma_{dc} = h/(R_b S). \tag{1}$$

Подробное описание экспериментальной установки дано в [40]. Наличие в спектрах импеданса блокирующего эффекта от инертных (Ag) электродов указывает на преимущественный ионный характер электропроводности. Вкладом электронной и катионной проводимостей в общую электропроводность кристаллов LaF₃ можно пренебречь [41, 42]. Собственная электропроводность кристаллов LaF₃ связана со структурным и динамическим разупорядочением анионной (фторной) подрешетки [7, 33, 36].

Параметры ионного транспорта определяли из температурной зависимости $\sigma_{dc}(T)$ по уравнению Аррениуса—Френкеля:

$$\sigma_{dc}T = \sigma_0 \exp(-\Delta H_{\sigma}/kT), \qquad (2)$$

где σ_0 и ΔH_{σ} — предэкспоненциальный множитель и энтальпия активации ионной проводимости соответственно.

Температурная зависимость ионной проводимости $\sigma_{de}(T)$ кристалла LaF₃ в интервале 312—1073 К в цикле нагрев—охлаждение показана на рис. 1. Кондуктометрические данные хорошо воспроиз-

Таблица 1. Параметры участков температурной зависимости ионной проводимости для кристалла LaF₃ в цикле нагрев—охлаждение

Участок кривой σ _{dc} (<i>T</i>)	Интервал <i>ΔT</i> , К	Множитель σ ₀ , СмК/см	Энтальпия $\Delta H_{\sigma},$ эВ
Ι	312-419	8.6×10^{3}	0.385 ± 0.02
II	419-723	3.2×10^{2}	0.27 ± 0.01
III	723-973	1.4×10^{5}	0.65 ± 0.02
IV	973-1073	6.9×10^{2}	0.205 ± 0.05

водятся в режимах нагрева и охлаждения. Температурную зависимость $\sigma_{dc}(T)$ можно разделить на четыре участка, обозначенные на рис. 1 римскими цифрами I–IV. Параметры уравнения Аррениуса—Френкеля, рассчитанные для каждого участка, приведены в табл. 1.

На рис. 2 более детально показана зависимость $\sigma_{dc}(T)$ кристалла LaF₃ при высоких температурах (участки III и IV). Можно видеть, что при T > 970 К наблюдается отклонение линии вниз от аррениу-совского поведения, при этом величина σ_{dc} до-стигает ~10⁻¹ См/см. Такая ситуация аналогична данным σ_{dc} для флюоритовых кристаллов MF_2 [26–29].

При низких температурах собственные дефекты в структуре тисонита LaF_3 образуются одновременно в анионной и катионной подрешетках по механизму Шоттки [43, 44],

Рис. 2. Высокотемпературная часть зависимости $\sigma_{dc}(T)$ монокристалла LaF₃ (участки III и IV): 1 – на-грев, 2 – охлаждение.

$$LaF_3 \rightarrow 3V_F^{\bullet} + V_{La}^{\prime\prime\prime}, \qquad (3)$$

где $V_{\rm F}^{\bullet}$ – вакансия фтора, $V_{\rm La}^{\prime\prime\prime}$ – вакансия лантана. Но при высоких температурах (>1150 K) доминирующими собственными дефектами становятся уже анионные дефекты Френкеля [32, 45–48]:

$$LaF \to V_F^{\bullet} + F_i', \qquad (4)$$

где антифренкелевская пара дефектов $V_{\rm F}^{\bullet}$ – вакансия фтора и F_i' – межузельный ион фтора. В плотноупакованной тисонитовой структуре однозарядные вакансии $V_{\rm F}^{\bullet}$ более подвижны, чем трехзарядные вакансии $V_{\rm La}^{\bullet}'$ и межузельные дефекты F_i' .

По аналогии с флюоритовыми кристаллами *М*F₂ можно предположить, что высокотемпературная аномалия проводимости в LaF₃ указывает на начало РФП, связанного с образованием дефектов Френкеля. Наблюдаемое (воспроизводимое при высоких температурах T > 900 K) аномальное поведение температурной зависимости проводимости кристалла LaF₃, по-видимому, связано с началом РФП в тисонитовой структуре. Данные термического анализа [23], бриллюэновского рассеяния света (измерение упругих коэффициентов) [24] и метода молекулярной динамики [25] подтверждают существование РФП в трифториде лантана. Предполагают [23], что фазовый переход между тисонитовыми структурными формами является размытым, занимает некоторый интервал температур и относится к фазовым переходам второго рода. РФП в кристаллах LaF₃ начинает проявляться при 1000–1100 К (аномалия на кривой упругих свойств [24], метод молекулярной динамики [25]) и завершается к области температур 1650 ± 25 К (максимум на кривой теплоемкости, расположенный сравнительно недалеко от точки плавления 1773 ± 8 K [23]).

ЗАКЛЮЧЕНИЕ

Методом импедансной спектроскопии проведены исследования высокотемпературной анионной электропроводности $\sigma_{dc}(T)$ монокристалла LaF₃. Получена воспроизводимость электрофизических данных в цикле нагрев—охлаждение. В интервале 312—1073 К проводимость σ_{dc} изменяется в ~5 × 10³ раз, достигает значения 7 × × 10⁻² См/см при 1073 К. Впервые обнаружена высокотемпературная аномалия на температурной зависимости $\sigma_{dc}(T)$ при $T_0 \approx 970$ К, которая связана, по-видимому, с началом РФП в кристаллах тисонита LaF₃.

Автор выражает благодарность О.В. Глумову (СПбУ, Санкт-Петербург) за предоставленный для исследований кристалл LaF₃.

КРИСТАЛЛОГРАФИЯ том 68 № 1 2023

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Yamanaka T., Nakamoto H., Abe T. et al. // ACS Appl. Energy Mater. 2019. V. 2. P. 3092. https://doi.org/10.1021/acsaem.8b02068
- Gulina L.B., Schafer M., Privalov A.F. et al. // J. Chem. Phys. 2015. V. 143. P. 234702. https://doi.org/10.1063/1.4937415
- Wang J., Wang C., Sun X. et al. // J. Mater. Sci. 2015. V. 50. P. 3795. https://doi.org/10.1007/s10853-015-8944-x
- Patro L.N., Kamala Bharathi K., Ravi Chandra Raju N. // AIP Adv. 2014. V. 4. P. 127. https://doi.org/10.1063/1.4904949
- Gaurkhede S.G. // Nanosystems: Phys., Chem., Math. 2014. V. 5. P. 843.
- Kumar D.A., Selvasekarapandian S., Nithya H. et al. // Ionics. 2012. V. 18. P. 461.
- Sinitsyn V.V., Lips O., Privalov A.F. et al. // J. Phys. Chem. Solids. 2003. V. 64. P. 1201. https://doi.org/10.1016/s0022(03)00050-7
- 8. Schoonman J., Oversluizen G., Wapennar K.E.D. // Solid State Ionics. 1980. V. 1. P. 211.
- 9. *Тураева М.С., Кот С.А., Глумов О.В., Мурин И.В. //* Журн. прикл. химии. 2001. Т. 74. № 4. С. 579.
- 10. Fergus J.W. // Sensors and Actuators. 1997. V. 42. P. 119.
- 11. Frant M.S., Ross J.W. // Science. 1966. V. 154. P. 1553.
- Karkera G., Anji Reddy M., Fichtner M. // Power Sources. 2021. V. 481. P. 228877.
- 13. Nowroozi M., Irshad M., Mdaiyan P. et al. // J. Mater. Chem. A. 2021. V. 9. P. 5980.
- 14. *Потанин А.А.* // Рос. хим. журн. 2001. Т. 45. № 5–6. С. 58.
- 15. *Sobolev B.P.* The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of the Rare Earth Trifluorides. Moscow Institute of Crystallography and Institut d'Estudis Catalans. Barcelona: Spain. 2000. 520 p.
- Кривандина Е.А., Жмурова З.И., Соболев Б.П. // Кристаллография. 2001. Т. 46. № 1. С. 756.
- Vasiliev V., Molina P., Nakamura M. et al. // Opt. Mater. 2011. V. 33. P. 1710.
- Mansmann M. // Z. Kristallogr. 1965. B. 122. № 5–6. S. 375.
- 19. Schlyter K. // Arkiv. Kemi. 1952. V. 5. P. 73.
- 20. Болотина Н.Б., Черная Т.С., Верин И.А. и др. // Кристаллография. 2016. Т. 61. № 1. С. 36.
- Болотина Н.Б., Черная Т.С., Калюканов А.И. и др. // Кристаллография. 2015. Т. 60. № 3. С. 391.
- Отрощенко Л.П., Александров Б.П., Максимов Б.А. и др. // Кристаллография. 1985. Т. 30. № 4. С. 658.

КРИСТАЛЛОГРАФИЯ том 68 № 1 2023

- 23. *Greis O., Cader M.S.R.* // Termochim. Acta. 1985. V. 87. P. 145.
- 24. *Ngoepe P.E., Comins J.D.* // J. Less-Common Metals. 1989. V. 148. P. 375.
- Bulatov V.L., Grimes R.W., Harker A.H. http://www.tms.org./pubs/journals/JOM/9704/Bulatov1997
- 26. Eapen J., Annamareddy A. // Ionics. 2017. V. 23. P. 1043.
- 27. Сорокин Н.И. // ФТТ. 2022. Т. 64. № 7. С. 847. https://doi.org/10.21883/FTT.2022.07.52571.328
- Dworkin A.S., Bredig M.A. // J. Phys. Chem. 1968.
 V. 72. P. 1277.
- 29. Чеботин В.Н., Цидильковский В.И. // Электрохимия. 1980. Т. 16. С. 651.
- 30. Chadwick A.V. // Solid State Ionics. 1983. V. 8. P. 209.
- Сорокин Н.И., Соболев Б.П. // ФТТ. 2019. Т. 61. № 1. С. 53. https://doi.org/10.21883/FTT.2019.01.46893.181
- 32. Воронин Б.М., Волков С.В. // Электрохимия. 2004. Т. 40. № 1. С. 54.
- Privalov A.F., Lips O., Fujara F. // J. Phys.: Condens. Matter. 2002. V. 14. P. 4515.
- Roos A., Aalders A.F., Schoonman J. et al. // Solid State Ionics. 1983. V. 9–10. P. 571.
- 35. *Мурин И.В., Глумов О.В., Амелин Ю.В. //* Журн. прикл. химии. 1980. Т. 53. № 7. С. 1474.
- Chadwick A.V., Hope D.S., Jaroszkiewicz G., Strange J.H. // Fast Ion Transport in Solids / Eds. Vashishta P. et al. Amsterdam: Elsevier North Holland, 1979. P. 683.
- 37. Воронов В.М., Волков С.В. // Расплавы. 2001. № 4. С. 38.
- 38. *Sobolev B.P.* The Rare Earth Trifluorides. Part 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Moscow Institute of Crystallography and Institut d'Estudis Catalans. Barcelona: Spain. 2001. 460 p.
- Раков Э.Г., Тесленко В.В. Пирогидролиз неорганических фторидов. М.: Энергоатомиздат, 1987. 152 с.
- 40. Sorokin N.I., Breiter M.W. // Solid State Ionics. 1997. V. 99. P. 241.
- 41. *Roos A., Schoonman J.* // Solid State Ionics. 1984. V. 13. P. 205.
- 42. Wiemhofer H.D., Harke S., Vohrer U. // Solid State Ionics. 1990. V. 40–41. P. 433.
- 43. Sher A., Solomon R., Lee K., Muller M.W. // Phys. Rev. 1966. V. 144. P. 593.
- 44. *Roos A., van de Pol F.C.M., Keim R. et al.* // Solid State Ionics 1984. V. 13. P. 191.
- 45. Jordan W.M., Catlow C.R.A. // Cryst. Latt. Def. Amorph. Mater. 1987. V. 15. P. 81.
- 46. Ngoepe P.E., Jordan W.M., Catlow C.R.A., Comins J.D. // Phys. Rev. B. 1990. V. 41. P. 3815.
- 47. *Криворотов В.Ф., Хабибуллаев П.К., Шарипов Х.Т. //* Неорган. материалы. 2010. Т. 46. № 6. С. 745.
- 48. Gotlib I.Yu., Piotrovskaya E.M., Murin I.V. // Comput. Mater. Sci. 2006. V. 36. P. 73.