_____ СТРУКТУРА ОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

УДК 548.736:546.94

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА ОСТРОВНОГО ЧЕТЫРЕХЪЯДЕРНОГО КОМПЛЕКСА ДИОКСОМОЛИБДЕНА (VI) [M0O₂(L¹)]₄ (H₂L¹ = ИЗОНИКОТИНОИЛГИДРАЗОН АЦЕТИЛАЦЕТОНА) С БОЛЬШИМИ ВНУТРИ- И МЕЖМОЛЕКУЛЯРНЫМИ КАНАЛАМИ

© 2023 г. В. С. Сергиенко^{1,*}, В. Л. Абраменко², А. В. Чураков¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Луганский государственный университет им. Владимира Даля, Луганск, Россия * E-mail: sergienko@igic.ras.ru Поступила в редакцию 28.06.2022 г. После доработки 06.09.2022 г. Принята к публикации 08.09.2022 г.

Проведены синтез и исследование строения методом рентгеноструктурного анализа сольватокомплекса $[MoO_2(L^1)]_4$ диметилформамид (I). Основа структуры – лежащая на кристаллографической оси 2 четырехъядерная комплексная молекула $[MoO_2(L^1)]_4$ (Ia). Каждый из двух независимых атомов молибдена имеет искаженную октаэдрическую координацию с двумя лигандами *цис*-O(оксо), двумя атомами N(L^1) двух молекул Ia в *транс*-позициях к O(оксо) и двумя атомами O(L^1) одной комплексной молекулы в *цис*-положениях к O(оксо) и в *транс*-позициях друг к другу. Каждый лиганд (L^1)^{2–} координирует два атома Мо тетрадентатным тридентатно-хелатным (2O, N) мостиковым (N) способом. Средние длины связей в Ia: Mo–O(оксо) 1.701, Mo–N(L^1) 2.460 (м) и 2.214 (х), Mo–O(L^1) 1.980 Å, валентный угол O(оксо)–MoO–(оксо) 105.6°. Упорядоченная молекула диметилформамида помещается в узком канале структуры. Сильно неупорядоченные (не локализованные) молекулы растворителей (метанол/диметилформамид/вода) заполняют широкие каналы структуры I.

DOI: 10.31857/S0023476123020157, EDN: BSNZIJ

ВВЕДЕНИЕ

Ацилгидразоны альдегидов и кетонов представляют интерес в координационной химии как амбидентные лигандные системы, существующие в растворах органических растворителей и в кристаллическом состоянии в виде прототропных таутомеров [1-3], что позволяет получать на их основе с кислотами Льюиса комплексы различного типа и строения [4-12].

Ранее были получены моноядерные комплексы диоксомолибдена (VI) с рядом ацилгидразонов β -дикарбонильных соединений общего состава [MoO₂(*L*)]*Solv*. Их строение определено методами рентгеноструктурного анализа (PCA) и ИК-спектроскопии [13, 14]. Показано, что образование комплексов сопровождается депротонированием лигандов с замыканием пяти- и шестичленных металлоциклов. Молекулы комплексов в кристаллах объединены межмолекулярными водородными связями и образуют зигзагообразные цепочки.

Продолжая синтез и исследование строения комплексных соединений диоксомолибдена (VI)

с ацилгидразонами β -дикарбонильных соединений ($\mathbf{H}_2 L^n$), получили в среде метанол—диметилформамид (ДМФА) (5:1) сольватированный комплекс, имеющий по данным РСА состав [$MoO_2(L^1)$]₄ ДМФА (I) ($\mathbf{H}_2 L$ = изоникотиноилгидразон ацетилацетона) (схема 1). Не локализованные в процессе РСА сильно неупорядоченные молекулы растворителей (*Solv*) (ДМФА, метанола и, возможно, воды), вероятно, входят в структуру в неучтенном количестве. Выдерживание комплекса при 150°С в вакууме в течение 2 ч приводит к его полной десольватации.

Схема 1. Строение изоникотиноилгидразона ацетилацетона.

Брутто-формула	$C_{50}H_{58}Mo_4N_{14}O_{18}$		
M	1526.86		
<i>Т</i> , К	150		
Размер кристалла, мм	$0.20 \times 0.20 \times 0.10$		
Сингония, пр. гр., Z	Моноклинная, С2/с, 4		
<i>a</i> , <i>b</i> , <i>c</i> , Å	38.710(2), 8.3739(3),		
	25.638(1)		
β, град	125.169(1)		
<i>V</i> , Å ³	6793.6(5)		
$ ho_{\rm выч}$, г/см ³	1.493		
μ , mm ⁻¹	0.793		
Дифрактометр	Bruker D8 Venture		
Тип излучения; λ, Å	$MoK_{\alpha}; 0.7107$		
Тип сканирования	ω		
<i>F</i> (000)	3072		
θ_{\min} — θ_{\max} , град	2.15-29.99		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-54 \le h \le 54, -11 \le k \le 11,$		
	$-36 \le l \le 36$		
Общее число отраже-	36092/0.0294/9886		
ний/ $R_{\rm int}$ /число независи-			
мых отражений ($I > 2\sigma(I)$)			
Количество переменных	394		
R_1/wR_1	0.0431/0.0957		
S	1.154		
$\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $\Im / Å^3$	-0.814/1.096		

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры кристалла I

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез H_2L^1 осуществляли конденсацией ацетилацетона и гидразида изоникотиновой кислоты в спирте [13].

Соединение І синтезировали методом лигандного обмена между ацетилацетонатом молибденила и $H_{2}L^{1}$ в спиртовой среде. К кипящему раствору 0.326 г (0.001 моль) MoO₂(Acac)₂ в 10 мл MeOH добавляли при перемешивании горячий раствор 0.219 г (0.001 моль) $H_2 L^1$ в том же растворителе и 2 мл диметилформамида. Смесь кипятили с частичным упариванием в течение 10 мин и оставляли при комнатной температуре для кристаллизации. Из образовавшегося темно-красного раствора выпадали хорошо сформированные кристаллы I, которые отделяли на фильтре и сушили в токе аргона. При нагревании в вакууме при 150°С комплекс І десольватируется (с образованием несольватированной комплексной молекулы Ia) и плавится с разложением выше 300°С. Найдено: Mo 25.23, N 11.09, C 34.55, H 2.97 мас. %.

Для десольватированного I $C_{44}H_{44}Mo_4N_{12}O_{16}$ вычислено: Mo 25.13, N 11.01, C 34.61, H 2.90 мас. %.

Элементный анализ проводили с помощью С, H, N-анализатора Carlo-Erba 1106. Содержание молибдена в комплексе определяли прокаливанием навески до массовой формы MoO₃ [13].

РСА соединения I выполнен на монокристальном автоматическом дифрактометре Bruker D8 Venture при температуре 150 К (Мо K_{α} -излучение, графитовый монохроматор). Поправка на поглошение введена на основании измерений интенсивностей эквивалентных отражений [15]. Структура расшифрована прямым методом. Все атомы, кроме атомов водорода, уточнены полноматричным анизотропным MHK по F^2 (SHELXTL [16]). в том числе одна упорядоченная молекула диметилформамида в узком канале (рис. 3). Все атомы водорода помещены в рассчитанные позиции и уточнены с использованием схемы "наездника". В структуре имеются также широкие внутримолекулярные каналы, заполненные сильно неупорядоченными молекулами растворителей (ДМФА/метанол/вода), которые были удалены из окончательной модели уточнения с помощью процедуры SOUEEZE [17]. Установлено, что в ячейке кристалла ($V = 1149.2 \text{ Å}^3$) имеется свободное пространство (16.9% объема кристалла), разбитое на четыре области по 287 Å³ вокруг осей 2. Кристаллографические характеристики. данные эксперимента и результаты уточнения приведены в табл. 1. Структурные характеристики I депонированы в Кембриджский банк структурных данных (ССDС № 2181231).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным РСА основа структуры I – расположенная на кристаллографической поворотной двойной оси четырехъядерная комплексная молекула $[MoO_2(L^1)]_4$ (Ia) (рис. 1). Независимая часть комплексной молекулы — $[MoO_2(L^1)]_2$ – показана на рис. 2. Каждый из двух независимых атомов молибдена имеет искаженную октаэдрическую координацию с двумя лигандами цис-O(оксо), двумя атомами $N(L^1)$ двух молекул Ia в транс-позициях к О(оксо) и двумя атомами $O(L^1)$ одной комплексной молекулы в *цис*-положениях к О(оксо) и в *транс*-позициях друг к другу. Каждый лиганд $(L^1)^{2-}$ координирует два атома Мо тетрадентатным тридентатно-хелатным {О(енол)₂, N(азометин)} мостиковым [N(изоникотинил)] способом. При координации лиганда L^1 с каждым из двух атомов молибдена замыкаются два сочлененных связью М-N металлоцикла: шестичленный MoOC₃N и пятичленный MoN₂CO. Средние длины связей в Іа: Мо-О(оксо) 1.701, $Mo-N(L^1)$ 2.338, $Mo-O(L^1)$ 1.980 Å, валентный

Рис. 1. Строение четырехъядерной молекулы комплекса $[MoO_2(L^1)]_4$ (Ia). Атомы водорода не показаны.

угол О(оксо)-Мо-О(оксо) 105.6°. Сильно неупорядоченные (не локализованные в ходе РСА) молекулы растворителей (метанол/ДМФА/вода) заполняют широкие каналы в структуре I. Локализованная упорядоченная молекула ДМФА занимает узкий канал (рис. 3). Отметим неравноценность длин двух пар связей $Mo-N(L^1)$: мостиковые (м) Мо(1)-N(23A) 2.450(2) и Мо(2)-N(13) 2.469(2) Å в среднем на 0.246 Å длиннее хелатных (x) Mo(1)-N(11) 2.209(2) и Mo(2)-N(21) 2.219(2) Å. Более длинные связи Mo-N находятся в *транс*-положениях по отношению к более коротким связям Mo=O(оксо) 1.690(2) и 1.696(2) Å, а более короткие Мо-N-в транс-позициях по отношению к более длинным Mo=O(оксо) 1.708(2) и 1.709(2) Å. Также различаются длиной, хотя и в существенно меньшей степени, чем две пары связей Мо–N(м), Mo-N(x), две связи $Mo-O(L^1)$ в обоих полиэдрах МоО₄N₂ в зависимости от заместителей при атомах O(енол): Mo-O(a)(C(Me)) (Mo(1)-O(13)1.950(2) и Мо(2)-О(23) 1.941(2) Å) в среднем на 0.068 Å короче, чем Мо-О(б)(С(Ру) (Мо(1)-O(14) 2.013(2) и Mo(2)–O(24) 2.015(2) Å).

Аналогичным с молекулой **Ia** способом построены тетраядерные комплексные молекулы в структуpe $[MoO_2(L^2)]_4 \cdot 0.5 MeCN$ (II) [18], $[MoO_2(L^2)]_4 \cdot 0.5 MeCN$ ·5СH₂Cl₂ (III) [19], [МоО₂(L²)]₄ (IV) [20] (комплексы II, III – в центрах инверсии, IV – на четверной оси); $H_2L^2 = 2$ -оксидометоксибензальдегидизоникотингидразон, С₁₄Н₁₃N₃O₃. Лиганд $(L^{2})^{2-}$ в молекулах [MoO₂(L^{2})]₄ структур II-IV выполняет такую же, как в комплексе Іа, тетрадентатную тридентатно-хелатную (20, N) мостиковую (N) функцию. В структурах II–IV, так же как и в Ia, неравноценны две пары связей Mo-N: мостиковые существенно длиннее хелатных. Две связи $Mo-O(L^1)$ в каждом из двух полиэдров MoO_4N_2 тоже различаются длиной, хотя и в значительно меньшей степени. Геометрические параметры комплексов I-IV приведены в табл. 2. Интервал средних расстояний в структуре I-IV: Mo=O(okco) 1.686-1.703, Mo-N(L^n) 2.431-2.2.528 (м) и 2.214-2.238 (х), Мо-О(Lⁿ) 1.909-1.945 (O(a)) и 2.005–2.014 Å (O(б)).

Известна также кристаллическая структура семи соединений (V–XI), содержащих четырехъядерные комплексные анионы $[MoO_2(L^n)]_4^-$ (n = = 3, 4) иного строения, чем комплексы $[MoO_2(L^n)]_4$ (n = 1, 2) (I–IV). В двух соединениях

Рис. 2. Независимая часть комплексной молекулы $[MoO_2(L^1)]_2$ (**Ia**). Атомы водорода не показаны.

 $(XPPh_4)_4^+[MoO_2(L^3)]_4$ 7-*m*H₂O · *m*C₃OH (*X* = P, *m* = = 4 (**V**) и *X* = As, *m* = 3 (**VI**) [21]), как и в пяти соединениях Kar₄⁺[MoO₂(L⁴)]₄ · *m*CH₃O · *n*H₂O [22], лиганды L^n (n = 3, 4) выполняют тетрадентатную (4O) бис(хелатно)-мостиковую (2O, 2O) функцию, замыкая по два пятичленных металлоцикла MoOC₂O. *Цис*-диоксолиганды дополняют иска-

Таблица 2. Средние геометрические параметры (Å) в тетраядерных комплексах соединений $[MoO_2(L^n)]_4$ Solv (n = 1, 2; Solv = ДМФА, CH₃OH, MeCN, CH₂Cl₂)

Соединение	Мо=О(оксо)	Mo $-O(L^n)_{\mu\mu c}$	$Mo-N(L^n)_{Tpahc}$	Литература
$[MoO_2(L^1)]_4:xDMFA:yH_2O(I)$	1.701	1.945 (фенол) 2.014 (енол)	2.460 (м) 2.214 (х)	Настоящая работа
$[MoO_2(L^2)]_4 \cdot 0.5 MeCN$ (II)	1.696	1.932 (фенол) 2.007 (енол)	2.528 (м) 2.237 (х)	[18]
$[\text{MoO}_2(L^2)]_4 \cdot 5\text{CH}_2\text{Cl}_2 \text{ (III)}$	1.703	1.990 (фенол 2.009 (енол)	2.439 (м) 2.237 (х)	[19]
$[\text{MoO}_2(L^2)]_4 (\mathbf{IV})$	1.686	1.909 (фенол) 2.005 (енол)	2.431 (м) 2.238 (х)	[20]

Примечание. H_2L^1 = изоникотиноилгидразон ацетилацетон, $C_{11}H_{13}N_3O_2$; H_2L^2 = оксиметокси бензальдегидизоникотиноилгидразон, $C_{14}H_{13}N_3O_2$; м – мостиковый; х – хелатный.

КРИСТАЛЛОГРАФИЯ том 68 № 2 2023

Рис. 3. Упаковка структурных единиц – четырехъядерных молекул комплексов $[MoO_2(L^1)]_4$ (**Ia**) – в кристалле **I**. Атомы водорода не показаны.

женную октаэдическую координацию атома металла MoO_6 . Расстояния $Mo-O(L^n)$ в соединениях **V**-**XI** разбиваются на две группы: более короткие в *цис*-позициях к O(оксо) (*транс* друг к другу) и более длинные в *транс*-положениях к O(оксо). Средние длины связей в структурах **V**-**XI**: Mo=O(оксо) 1.703–1.722, $Mo-O(L^n)$ 1.988–2.015 Å (*цис* к O(оксо)) и 2.000–2.206 Å (*транс* к O(оксо)).

Дискретные комплексные анионы $[MoO_2(L^n)]_4^-$ (n = 3, 4) в структурах V–XI, как и аналогичные комплексные молекулы в I–IV, – примерно квадратные металлоциклы [4 + 4]. Расстояния Mo...Mo близки к 12.8 Å соединений вольфрама (Va, VIa), сходных с составом V, VI. Лиганд (L^{3})³– 2,7-диоксо-3-оксо-3H-ксантен-6-олат ($C_{13}H_5O_5$) отличается от лиганда (L^4)^{3–}–2,7-диоксо-3-оксо-9-фенил-3H-ксантен-6-олат ($C_{19}H_9O_5$) только замещением одного атома водорода (в позиции 9) фенильной группой. Кристаллы VII изоструктурны двум кристаллам соединений вольфрама близкого состава (VIIa, VIIb). Также изоструктурны друг другу кристаллы соединений молибдена VIII—Х и близкие к ним по составу кристаллы трех комплексов вольфрама (VIIIa—Ха).

Интересно сопоставить строение и основные геометрические параметры исследованного в работе четырехъядерного соединения $[MoO_2(L^1)]_4$ и одноядерного комплекса $[MoO_2(L^1)]CH_3OH,$ определенного при комнатной температуре (XIIa [23]) и 150 К (ХПб) [24]. Гидразоновое основание Шиффа – лиганд $(L^1)^{2-}$ – в структуре моноядерного комплекса выполняет тридентатнохелатную функцию (O_2N), замыкая, как и в исследованном тетраядерном комплексе, два сочлененных связью Мо-N металлоцикла – шестичленный MoOC₃N и пятичленный MoN₂CO. Аналогичные с комплексом Іа связи металл-лиганд L^1 в молекуле XII сопоставимы по длине: Mo-N 2.214 (Ia), 2.219 (XIIa), 2.216 (XIIb); MoO(a) 1.946, 1.959, 1.960; Mo-O(6) 2.014, 2.016, 2.009 Å. В структуре XII, как и в Іа, связи Мо-O(a) заметно короче (на 0.057, 0.049 Å в XIIa и **XII6** cootBettctBetho), vem Mo-O(6).

ЗАКЛЮЧЕНИЕ

Строение одноядерного фрагмента четырехъядерной молекулы Іа сопоставимо по длинам связей металл-лиганд с моноядерной молекулой XII и отличается от последней функцией лиганда (L¹)²⁻ – тетрадентатной трис(хелатно)-мостиковой (O_2N_2) в $[MoO_2(L^1)]_4$ и тридентатной трис(хелатно)-мостиковой (O_2N) в [$MoO_2(L^1)$]. Отметим также, что замена двухзарядного лиганда – основания Шиффа L^1 на L^2 – не меняет строения четырехъядерной комплексной молекулы $[MoO_2(L^n)]_4$ (n = 1, 2) и основных межатомных расстояний.

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kargar H., Kia R., Froozandeh F. et al. // Acta Cryst. E. 2011. V. 67. P. o209. https://doi.org/org/10.1107/S160053681005275X
- 2. Kargar H., Kia R., Moghadamm M., Tahir M.N. // Acta Cryst. E. 2011. V. 67. P. o367. https://doi.org/org/10.1107/S1600536811000948
- 3. Paciorek P., Szklarzewicz J., Trzewik B. et al. // J. Org. Chem. 2021. V. 86. P. 1649. https://doi.org/10.1021/acs.joc.0c02451
- 4. Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. Комплексы переходных металлов с гидразонами. Физико-химические свойства и строение. М.: Наука, 1990. 112 с.
- 5. Гарновский А.Д., Васильченко И.С., Гарновский Д.А. Современные аспекты синтеза металлокомплексов. Основные лиганды и методы. Ростов-на-Дону: ЛаПО, 2000. 355 с.
- 6. Banße W., Ludwig E., Shilde U., Uhlemann E. // Z. Anorg. Allg. Chem. 1995. B. 621. № 8. S. 1275.
- 7. Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. P. 63. https://doi.org/org/10.1016/j.poly.2014.12.017

- 8. Bikas R., Darvishvand M., Kuncser V. et al. // Polyhedron. 2020. V. 190. P. 114751. https://doi.org/10.1016/j.poly.2020.114751
- 9. Hosseini-Monfared H., Bikas R., Sanchiz J. et al. // Polyhedron. 2013. V. 61. P. 45. https://doi.org/10.1016/j.poly.2013.05.033
- 10. Goorchibeygi S., Bikas R., Soleimani M. // J. Mol. Struct. 2022. V. 1250. Pt 1. P. 131774. https://doi.org/10.1016/j.molstruc.2021.131774
- 11. *Бурлов А.С., Власенко В.Г., Чальцев Б.В. и др.* // Ко-ординац. химия. 2021. Т. 47. № 7. С. 391. https://doi.org/10.31857/S0132344X2107001X
- 12. *Hossain S.M., Lakma A., Pradhan R.N.* // Dalton Trans. 2017. V. 46. № 37. P. 12612. https://doi.org/10.1039/c7dt02433a
- 13. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66. № 12. C. 1732. https://doi.org/10.31857/S0044457X21120151
- 14. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. общ. химии. 2022. Т. 92. № 6. C. 954. https://doi.org/10.31857/S0044460X22060142
- 15. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- 16. Sheldrick G.M. // Acta. Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 17. Spek A.T. // Acta Cryst. C. 2015. V. 71. P. 9.
- 18. Vrdoliak V., Mandaric M., Hrenar T. et al. // Crvst. Growth Design. 2019. V. 19. P. 3000. https://doi.org/10.1021./acs.cgd.9b00231
- 19. Vrdoliak V., Prugovecki B., Malkovic-Calogovic D. et al. // Crvst. Growth Design. 2013. V. 13. P. 3773. https://doi.org/10.1921/cg400782c
- 20. Vrdoliak V., Prugovecli B., Malkovic-Calogovic D. et al. // Cryst. Growth Design. 2010. V. 10. P.1373. https://doi.org/10.1021/cg901382h
- 21. Sutton A., Abrahams B.F., Hudson T.A., Robson R. // New. J. Chem. 2020. V. 44. P. 11437. https://doi.org/10.1039/d0nj02413a
- 22. McCormick L.J., Abrahams B.F., Boughton B.A. // Inorg. Chem. 2014. V. 53. P. 1721. https://doi.org/10.1021/ic402860r
- 23. Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. P. 63.
- 24. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66. № 12. C. 1732. https://doi.org/10.31857/S0044457X21120151