УДК 630*114

РАСПРЕДЕЛЕНИЕ ДИОКСИДА УГЛЕРОДА И МЕТАНА В ТОРФЯНОЙ ЗАЛЕЖИ ОЛИГОТРОФНОГО ЛЕСНОГО БОЛОТА И ИХ ЭМИССИЯ В ЗАПАДНОЙ СИБИРИ

© 2023 г. Л. И. Инишева^{*a*, *}, М. А. Сергеева^{*a*}, А. В. Головченко^{*b*}, Б. В. Бабиков^{*c*}

^аТомский государственный педагогический университет, ул. Киевская, д. 60, Томск, 634061 Россия ^bМосковский государственный университет им. М.В. Ломоносова, Ленинские горы, д. 1, Москва, 19991 Россия

^сСанкт-Петербургский государственный лесотехнический университет,

Институтский переулок, д. 5, Санкт-Петербург, 194021 Россия

**E-mail: inisheva@mail.ru* Поступила в редакцию 12.06.2021 г. После доработки 08.01.2022 г. Принята к публикации 06.04.2022 г.

Болотные и заболоченные территории лесопокрытых площадей и открытых болот принимают совместное участие в глобальном цикле углерода. Им принадлежит важная роль в депонировании парниковых газов. В этой статье проанализирована многолетняя динамика концентрации парниковых газов CO₂ и CH₄ в торфяной залежи и их эмиссия на естественном и мелиорируемом олиготрофном болоте в южнотаежной зоне Западной Сибири. Показано, что значительная роль в динамике концентрации СО₂ и СН₄ в торфяной залежи принадлежит погодным условиям каждого месяца теплого периода, ботаническому составу, активности биохимических процессов, структуре и физико-механическим свойствам торфяной залежи. Выявлена внутризалежная, пространственная и временная динамика показателей концентрации парниковых газов. Доказано, что существуют многокомпонентные зависимости концентрации СО₂ и СН₄ от параметров внешних и внутризалежных условий. Определены параметры концентрации в торфяной залежи олиготрофного болота на малом заболоченном водосборе реки Ключ: экстремальные концентрации СО₂ составили 0.002–3.64 ммоль/дм³, $CH_4 - 0.003 - 2.03$ ммоль/дм³; значения удельных потоков варьировали по CO₂ в пределах от /-22.2/ до 157.8 мг С/(M^2 ч), удельные потоки CH₄ были равны в экстремальных величинах /-3.0/-5.3 мг С/(M^2 ч), потоки за теплый период по CO₂ составили 20–110 г C/(м² год), по CH₄ – 0.8–3.7 C/(м² год). На объекте лесомелиорации выявлено незначительное увеличение активности удельных потоков СО₂ по сравнению с естественным болотом при близких концентрациях парниковых газов в торфяной залежи. Показано, что в условиях отсутствия эксплуатации осушительной системы наблюдается процесс повторного заболачивания. Из-за огромных площадей болот на Западно-Сибирской равнине и агрессивного характера процесса заболачивания предполагается проведение на территории ее таежной зоны умеренной и выборочной лесомелиорации.

Ключевые слова: Западная Сибирь, олиготрофное болото, торфяная залежь, лесомелиорация, мониторинг, парниковые газы, заболачивание.

DOI: 10.31857/S0024114823010060, EDN: NHLQDM

Лесное хозяйство является основным фондодержателем болотных и заболоченных земель. К категории болото в лесном хозяйстве относят естественные участки с поверхностным слоем торфа мощностью не менее 30 и 20 см — на осушенных участках при отсутствии на ней древесной растительности или при наличии ее с полнотой 0.3 и менее для молодняков и 0.2 — для других групп древесной растительности. Открытые болота относятся к категории нелесных земель, выделяемых отдельной строкой в материалах лесоустройства (Инструкция по ..., 1995). Около 22% лесного фонда страны заболочено. При оценке степени и типа заболоченности во внимание берется не болото, а условия местопроизрастания и тип леса. Отраслевой характер учета площади болот, разная терминология приводят к неодинаковой оценке их площади (Торфяные болота ..., 2001). Вместе с тем выявление болотных и заболоченных участков лесопокрытых площадей и открытых болот предполагает их совместное участие в глобальном цикле углерода, т. к. только дополнительное поглощение углерода из атмосферы растениями и последующее его депонирование в виде торфяной залежи и произрастающих на ней деревьев может компенсировать выбросы СО₂ и тем

Рис. 1. Расположение объектов исследования.

самым оказать положительное влияние на климат. Этим вопросам ученые уделяют много внимания (Вомперский и др., 1999; Наумов, 2002; Карелин и др., 2014; Cardinael et al., 2017; Leroy et al., 2017; Cardinael et al., 2018; De Stefano, Jacobson, 2018; Бобрик и др., 2020; Кузнецова и др., 2020; Wiesmeier et al., 2020). По данным ученых (Romanovskaya et al., 2020), динамика нетто-поглощения и выбросов парниковых газов от управляемых экосистем на 60% в 1990 г. и на 80% в 2018 г. определялась углеродным бюджетом в лесах. Участники научных дебатов "Оценка поглощения парниковых газов лесами: мифы и реальность", состоявшихся в марте 2021 г., отметили, что особое внимание должно быть уделено оценке динамики почвенного пула углерода, вклад которого в общие запасы углерода в лесах России составляет больше 50%, но к настоящему времени учтен явно недостаточно. Важно было бы увязать получаемые результаты ученых по экосистемам, независимо от их отраслевой разобщенности между собой, в рамках целостного описания углеродного функционирования экосистем России.

ЛЕСОВЕДЕНИЕ № 1 2023

Целью данной работы было изучение концентрации парниковых газов в торфяной залежи естественного олиготрофного болота и формирование потоков углерода за теплый период в многолетнем цикле погодных условий.

ОБЪЕКТЫ И МЕТОДИКА

Исследования проводили в северо-восточной части Васюганского болота, располагающейся на территории южнотаежной зоны Западной Сибири (рис. 1). Наблюдения велись на 2-х участках: на естественном болоте в пределах малого заболоченного водосбора реки Ключ с олиготрофным типом торфяной залежи (**T3**) (координаты пункта наблюдения 56°58'23.02" с.ш., 82°36'43.78" в.д.) и олиготрофном болоте – "5 участок Васюганского болота", расположенном южнее естественного болота и частично освоенном под лесомелиорацию (координаты пункта наблюдения 56°50'49.33" с.ш., 82°53'41.91" в.д.).

Глубина, см	Малый водосбо	р реки Клк	ЭЧ	5 участок Васюганского болота			
	вид торфа	R/А ^с мас. %	рН солевой	вид торфа	R/А ^с мас. %	рН солевой	
0-50	Фускум, В	0/3	3.5	Фускум, В	5/5	3.6	
50-75	Фускум, В	5/2	3.5	Фускум, В	5/5	3.4	
75-100	Медиум, В	5/2	4.0	Фускум, В	5/2	4.4	
100-150	Медиум, В	10/2	4.2	Фускум, В	15/5	4.6	
150-200	Сосново-пушицевый, П	50/6	6.0	Пушицево-сфагновый,П	25/9	5.6	
200-250	Осоковый, Н	50/4	6.0	Древесно-пушицевый, П	30/12	6.3	
250-300	Травяной, Н	55/5	6.0	Травяной, Н	50/13	6.3	

Таблица 1. Характеристика торфяных залежей объектов исследования

Примечание. В – верховой тип торфа; П – переходный тип торфа; Н – низинный тип торфа; R – степень разложения, %; A^c – зольность, %.

Климат южнотаежной зоны Западной Сибири характеризуется холодной зимой, со значительным снежным покровом и довольно влажным, коротким, но теплым, а иногда и жарким летом (Коженкова, Рутковская, 1974). Среднемесячная температура воздуха января и июля служат показателем общих термических ресурсов территории, которая отличается сравнительно низким уровнем теплообеспеченности. По сравнению с аналогичной широтой европейской части России ресурсы тепла в Запалной Сибири на 10-12% ниже. За теплый период выпадает более половины годовых осадков (329-412 мм). Для зимнего периода характерна холодная продолжительная зима. По нашим данным (Инишева, 2020), промерзание ТЗ на исследуемой территории зависит от микрорельефа. Так, на повышенных элементах глубина промерзания на верховом болоте может достигать 50 см, на пониженных – 35 см.

Растительность олиготрофного болота, располагающегося на заболоченном водосборе реки Ключ, относится к кустарничково-травяно-сфагновой ассоциации. Угнетенный древесный ярус представлен сосной обыкновенной (Pinus silvestris L. f. Litwinowii). Кустарничковый ярус развит обильно на микроповышениях и сложен багульником болотным (Ledum palustre L.), хамедафне прицветничковой (Chamaedaphne calyculata L.), подбелом обыкновенным (Andromeda polifolia L.) и голубикой обыкновенной (Vaccinium uliginosum L.). На вершинах кочек растет клюква мелкоплодная (Oxycoccus microcarpus). Травяной ярус представлен куртинками пушицы влагалищной (Eriophorum vaginatum L.), морошки (Rubus chamaemorus L.) и росянки круглолистной (Drosera rotundifolia L.). В моховом покрове на повышениях доминирует сфагнум бурый (Sphagnum fuscum Klinggr. (95%)), на межкочковых понижениях встречаются сфагнум узколистный (Sph. Angustifolium) и сфагнум божественный (Sph. Magellanicum). Торфяная залежь достигает мощности 3 м и с поверхности представлена фускум- и медиум-торфом мощностью 1.5 м. Далее идет слой сосново-пушицевого торфа переходного типа 0.4 м, который сменяется осоковым низинным торфом высокой степени разложения (50%) и мощностью 30 см (табл. 1). Возраст ТЗ на этой территории равен 5200 ± 180 14С лет ВР (СО РАН 8041).

Объект "5 участок Васюганского болота" занимает площадь 18000 га. На территории в 4 тыс. га построена осушительная сеть под лесомелиорацию. Расстояние между каналами - 150 м, проектная норма осушения – 0.6 м. Фитоценоз аналогичен болоту на водосборе реки Ключ. Торфяная залежь мощностью 3.0 м представлена фускум-торфом до глубины 150 см. Далее следует сосновопушицевый переходный слой торфа, который сменяется древесно-пушицевым и травяным низинным торфом. До глубины 1.0 м степень разложения постоянная – в пределах 5%, а далее она увеличивается до 50% на глубине 2.5 м. Возраст T3 – 5465 ± 140 14С лет (СО РАН–7646). Подстилающие породы на обоих объектах – глины с содержанием раковин пресноводных моллюсков, реакция среды от сильно кислой – в верховой залежи, до слабо кислой – в низинной.

На исследуемых объектах проводили наблюдения за стоком на оборудованном гидрометрическом посту, изучали уровни болотных вод (**УБВ**) каждую декаду месяца (Наставления ..., 1978). За нулевую отметку принимали условную отметку средней поверхности болотного ландшафта, за среднюю поверхность болота – поверхность, соответствующую отметке средней высоты элементов микрорельефа (Методические указания ..., 2011), положение уровня определяли как разность отметок репера и зеркала болотных вод. Для изучения водного режима отбирали пробы торфа до глубины УБВ еженедельно. Влажность, ботанический состав, степень разложения и рН солевой вытяжки анализировали по книге "Технический анализ торфа" (1992). Датирование ТЗ выполнено на радиоуглеродной установке QUANTULUS-1220 (бензольно-сцинтилляционный вариант) в лаборатории геологии и палеоклиматологии кайнозоя Института геологии и минералогии СО РАН. Метеоусловия рассчитывали по данным, опубликованным на сайтах, — http://meteocenter.net/ (2008–2012 гг.) и http://aisori-m.meteo.ru/ (2013– 2015 гг.).

Полевые исследования проводились 1-2 раза в месяц с мая по сентябрь. Концентрацию парниковых газов в ТЗ изучали "peepers"-методом. Прибор для определения концентрации диоксида углерода и метана в ТЗ был предоставлен Институтом геологии университета Невшателя (Steinmann, Shotyk, 1996). В качестве пробоотборников использовали камеры из оргстекла размером 30×40 мм, объемом 30 мл. Мембранный сульфоновый фильтр накладывали на боковую стенку камеры и фиксировали винтами. Камеру заполняли дистиллированной водой и закрывали мембранным сульфоновым фильтром со второй стороны. Соединенные между собой полыми пластиковыми трубками камеры опускали на всю глубину ТЗ с учетом ее стратиграфии. После 30 дней, необходимых для уравновешивания газовой фазы ТЗ и камеры, их вынимали из ТЗ и из каждой камеры шприцом на 10 мл через полисульфоновый мембранный фильтр производили забор жидкости, которую переносили в равном объеме (5 мл) в 3 вакутейнера. В них же для прекращения микробиологической активности добавляли 2-3 капли HgCl, вакутейнеры помещали в коробку пробками вниз и доставляли в лабораторию. После дегазации отобранный из пробирок газ анализировали на газовом хроматографе "Кристалл 5000.1".

Для измерения удельных потоков CO₂ и CH₄ первоначально использовали метод И.Н. Шаркова (Шарков, 2005), а в последующем – метод статических замкнутых камер. Экспозиционную камеру из оргстекла объемом 60.8 литра на время измерения устанавливали на стальное нержавеющее основание размером 37 × 37 см, которое предварительно заглубляли в торф на 10 см. Герметизация системы достигалась с помощью гидрозатвора. Циркуляцию воздуха в камере осуществляли с помощью встроенного вентилятора (Naumov, Smolentseva, 2013). Вентилятор был постоянно подключен к аккумулятору. Во время экспозиции камеры накрывали теплоизоляцией с ламинированной отражающей фольгой. После проветривания камеры приступали к измерению. Сразу же после установки камер отбирали первую пробу в шприц, вставленный в трубку пробоотборника – газообразные трубки длиной 0.5 м (предварительно шприцем прокачивали воздух 3-5 раз за 6-10 с). Отбор газовых проб производили шприцем (объем 20 мл). Время экспозиции

ЛЕСОВЕДЕНИЕ № 1 2023

составляет 30-60 мин с отбором контрольных проб через 10-15 мин. Через 30 мин последовательно отбирали пробы во второй и третий вакутейнеры. Пробы анализировали в лаборатории на газовом хроматографе "Кристалл-5000.1". Потоки углерода рассчитывали за теплый период с мая по сентябрь. Все лабораторные исследования проводили в аккредитованной лаборатории Томского государственного педагогического университета (РОСС RU.0001.516054) и в ЦКП ТГУ "Аналитический центр геохимии природных систем". Данные анализировали при помощи пакета программ Microsoft Excel.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Болото на малом заболоченном водосборе реки Ключ. Исследования на олиготрофном болоте малого водосбора выполняли в летние периоды 2004-2013 гг. При характеристике погодных условий использовали комплексный показатель - гидротермический коэффициент (ГТК) по Г.Т. Селянинову, представляющий отношение суммы осадков за период с температурой выше 10°С к испаряемости. выраженной суммой температур за этот же период, уменьшенной в 10 раз. Репрезентативность этого показателя хорошо обоснована в работах М.И. Будыко (1974). За восьмилетний период исследований 2 года относились к средним годам за теплый период – 2004, 2007 гг., ГТК которых – 1.3–1.6. Два года (2005 и 2011 гг.) с ГТК 1.8-2.1 характеризовались как увлажненные. Экстремально сухих лет за период наблюдений не было отмечено. К относительно сухим годам принадлежали 4 года (2006, 2010, 2012, 2013 гг.) с ГТК 0.8-1.2. Пределы колебаний УБВ относительно средней поверхности болота за период исследований были равны 13 см при среднем квадратическом отклонении 4 см и коэффициенте вариации 2.47, амплитуда колебаний составила 20-/-30/ см. Влажность верхнего полуметрового слоя ТЗ поддерживалась в пределах 0.8–1.0 полной влагоемкости, в нижних слоях – на уровне полной влагоемкости.

Концентрация парниковых газов в торфяных залежах. Мониторинг концентрации CO_2 и CH_4 в 3-х метровой T3 олиготрофного болота водосбора реки Ключ показал, что, несмотря на разность погодных условий, средние значения концентрации CO_2 в T3 колебались по годам в небольших пределах 0.2–2.6 ммоль/дм³ (при экстремальных значениях 0.002–3.64 ммоль/дм³) и $CH_4 - 0.1-1.5$ ммоль/дм³ (при экстремальных значениях 0.002–3.64 ммоль/дм³) и $CH_4 - 0.1-1.5$ ммоль/дм³). Повышенные концентрации CO_2 в T3 отмечались на протяжении 3 лет (с 2005 по 2007 гг. с ГТК соответственно 1.8–0.9 и 1.3), а высокие значения средних концентраций CH_4 в T3 (до 1.5 ммоль/дм³) – в среднемноголетнем по ГТК 2004 г. Эти данные

ИНИШЕВА и др.

Рис. 2. Динамика концентрации CO₂ в торфяной залежи (а) по годам, в среднем за теплый период; (б) в сухие годы, ммоль/дм³.

свидетельствуют о том, что в разные по гидротермическим условиям теплые периоды концентрации парниковых газов в ТЗ характеризуются небольшим интервалом их значений. Аналогичные результаты были получены и другими исследователями. Так, в работах А.В. Наумова (Наумов, 1994, 2002) было показано, что концентрация СО2 в ТЗ олиготрофного типа на территории южнотаежной зоны Западной Сибири варьировала от 0.12 до 3.16 ммоль/дм³, а другими авторами для этой же территории (Махов и др., 1999) определено, что концентрация СО2 в олиготрофных торфяных болотах изменялась в пределах 0.04-1.98 ммоль/дм³, а СН₄ – в пределах 0.1–3.0 ммоль/дм³. Таким образом, многолетние исследования с разными погодными условиями подтвердили тот же диапазон изменения концентрации парниковых газов в олиготрофной ТЗ, что и в разовых определениях других исследователей, это свидетельствует о пространственной их однородности и, возможно, определяется практически постоянно переувлажненным характером территории.

Представляет интерес рассмотреть динамику концентраций CO_2 по глубине T3 в средних значениях за теплый период исследования (рис. 2а). Интервал значений концентраций CO_2 в T3 был в пределах 0.01–2.5 ммоль/дм³. Увеличение концентрации CO_2 вниз по глубине T3 происходило практически во все годы исследований и в основном на 2-х глубинах. Граничным слоем, где отмечалось увеличение концентраций CO_2 , можно обозначить слой 150–200 см (смена залежи верхового типа на переходную) и также на глубине – 200 см (смена переходной залежи на низинную). И только в 2005 г. (ГТК 1.8) при первоначальном увеличении концентрации СО2 от поверхности ТЗ вниз, с глубины 150-200 см, концентрация СО₂ к подстилающим породам снизилась. Можно объяснить это исключение из обшей закономерности очень влажным летним периодом, но во влажный 2011 год с ГТК 2.1 отмечаемое снижение концентрации по ТЗ к подстилающим породам не повторилось. Возможно, этот факт объясняется неодинаковым распределением ГТК по месяцам этих лет. В 2005 г. наиболее влажным оказался сентябрь (ГТК 4.1), когда отмечалось снижение температуры в ТЗ, а также активности вегетации растений. Это могло послужить причиной чрезмерной увлажненности ТЗ и привести к снижению активности биохимических процессов, продуцирующих СО₂, в то время как в 2011 г. практически аналогичный ГТК (3.9) был в августе, создавая лучшие условия для активности биохимических процессов.

Перейдем к обсуждению динамики CO_2 в T3 за 2 относительно сухих года – 2006 (ГТК 0.9) и 2012 (ГТК 0.8), погодные условия которых довольно редко отмечаются в условиях переувлажненной территории Западной Сибири (рис. 26). В 2012 г. динамика концентрации CO_2 в T3 за май–сентябрь была практически монотонной и в небольших пределах – от 0.1 до 0.5 ммоль/дм³, и только в сентябре отмечалось небольшое увеличение к подстилающим породам. В 2006 г., в мае–июле, в T3 прослеживались синхронные изменения концентрации CO_2 по глубине T3 с изменением направления в сторону ее увеличения в слое

Рис. 3. Зависимость концентрации CO_2 от (а) активности микробной биомассы и (б) активности базального дыхания (БД) в слое 0-50 см торфяной залежи за вегетационный период.

150—200 см. При этом концентрации CO_2 в июле увеличивались до 2.0—2.6 ммоль/дм³, что значительно выше по сравнению с аналогичным по погодным условиям 2012 г. Динамика концентрации CO_2 в сентябре также имела свои особенности. Она менялась, в отличие от мая и июля, дважды: в слое 100—150 см и 200—250 см. Проведенный анализ выявил пульсирующий вид динамики концентрации CO_2 в T3. Аналогичная закономерность отмечалась и в другие годы.

Известно, что ТЗ является сложным объектом по изменчивости свойств. Неравномерное распределение СО₂ по глубине, вероятнее всего, можно объяснить разным строением ТЗ не только на типовом, но и на видовом уровне (см. табл. 1). Так, в придонном слое (250-300 см) преобладает папоротник – 35%, в слое 200–250 см на папоротник приходится только 5%, а превалирующим растением является осока – 35%. Переходный тип торфа в ТЗ представлен сосной – 25% и сфагнумом разного вида – 35%, верховой торф на 90% слагается из сфагнума. Торфяная залежь по составу растений существенно варьирует, и ботанический состав каждого слоя вносит коррективы в формирование ее структуры, определяя динамику газового состава. Заметим, что основу торфа составляют высокомолекулярные продукты распада и растительные остатки твердых высокополимеров целлюлозной природы. Часть растений образует структуры переплетения. Индивидуальные вещества органической и минеральной составляющих создают в торфе надмолекулярные комплексы. В результате в ТЗ образуются структуры разной компактности, проницаемые и трудно проницаемые для молекул воды и ионов, что оказывает влияние на формирование в ТЗ индивидуального газового состава.

Подводя итог, отметим, что разные погодные условия отдельных месяцев теплого периода оказывают влияние на динамику СО₂ в ТЗ. Можно также констатировать, что определяющим фактором является ботанический состав торфов, слагаюших ТЗ. физико-механические свойства ТЗ и активность микробиологических процессов. Так, в процессе корреляционного анализа в слое 0-50 см T3 выявлена зависимость концентрации CO₂ от содержания микробной биомассы, которая аппроксимировалась параболой третьего порядка (коэффициент детерминации R² выше 0.97 при $F = 22.89 > F_{таб}$ 19.16), а также от интенсивности базального (микробного) дыхания. Эта зависимость представлена логарифмическим уравнением регрессии с коэффициентом детерминации $R^2 0.72$, F = 10.36 > F_{таб} 6.26 (рис. 3), что свидетельствует о сложности происходящих процессов в ТЗ и необходимости их изучения. Пока мы только можем констатировать, что эта связь нелинейного порядка.

57

Отмечаемая выше закономерность в динамике концентрации CO_2 в T3 прослеживается и на графиках по CH₄ (рис. 4). Изменение концентрации CH₄ так же, как и в случае с CO₂, происходило на границе смены типа T3 – 100–150 см и 150–200 см. Поверхностные слои T3 характеризовались, как правило, отсутствием CH₄, что отмечается и другими исследователями (Nilsson, Bohlin, 1993; Heyer et al., 2002; Joosten et al., 2016).

Далее рассмотрим динамику CH_4 в T3 за 2 относительно сухих летних периода (рис. 4). В 2006 г. наибольшие значения концентраций CH_4 наблюдались в нижнем слое T3. В 2012 г. концентрация CH_4 в T3 была примерно в 1.5 раза меньше по сравнению с 2006 г., но, начиная с глубины 100– 150 см и до подстилающих пород, происходило

Рис. 4. Динамика концентрации CH₄ в торфяной залежи (а) по годам в среднем за теплый период; (б) в сухие годы, ммоль/дм³.

незначительное синхронное увеличение концентрации СН₄ за рассматриваемые месяцы теплого периода. Возможно, погодные условия на концентрацию CH₄ в T3 также не оказывают решающего влияния, что отмечалось и в динамике СО₂ в ТЗ. Сложность процессов, происходящих в ТЗ болот разного генезиса и разной стратиграфии, далеко не всегда подтверждает выстраиваемые исследователями гипотезы. Например, предполагается образование СО2 в поверхностных аэробных слоях ТЗ, но в наших исследованиях в разные годы CO₂ обнаруживался и в анаэробной части ТЗ. Или образование СН₄ считается облигатно анаэробным процессом, но он присутствовал в отдельных случаях и в поверхностном аэробном слое ТЗ, что наблюдалось и другими авторами (Romanowicz et al., 1995; Eilrich, 2002). Это приняли во внимание и объединили результаты наблюдений парниковых газов по всей глубине ТЗ. В результате подтвердилась линейная зависимость между концентрациями CH4 и CO2 по всей T3 $(R^2 = 0.69)$, в то время как аналогичные зависимости, построенные между слоями по тем же наблюдениям, показывали прямую зависимость до глубины 150 см, ниже – обратную между концентрациями CH_4 и CO_2 в верхних и нижних слоях T3. Это можно объяснить сдвижкой (запаздыванием) по времени образования парниковых газов на более низких глубинах под воздействием, прежде всего, температуры и сопутствующих процессов.

Также отметим тот факт, что на глубине 250– 300 см в ТЗ отмечалась высокая положительная корреляционная связь между CH_4 и температурой до глубины 60 см, а также с УБВ (/-0.5/-/-0.8/). И если корреляция между CH_4 и температурой вполне объясняется влиянием температуры на активность метаногенов, то проявление связи между УБВ у поверхности с активностью метаногенов на такой глубине пока трудно понять, что предполагает дальнейшие исследования.

Эмиссия парниковых газов. В качестве интегральных параметров, характеризующих функциональное состояние процессов в ТЗ, рассмотрим эмиссию парниковых газов за годы исследований. Экстремальные значения удельных потоков CO_2 в ТЗ олиготрофного болота водосбора реки Ключ изменялись от /-22.2/ до 157.8 мг С/(м² ч) (табл. 2). Средние значения были ближе к экстремальному максимуму, за исключением 2011 г., в который весной происходило поглощение CO_2 , а по среднему значению удельные потоки приближались к экстремальному нижнему пределу.

Высокие показатели удельных потоков CO_2 отмечались в разные по тепло- и влагообеспеченности годы 2005—2007 гг. В мае наблюдалась активизация эмиссии CO_2 , и это особенно было заметно в 2006 г. Высокие значения удельных потоков CO_2 регистрировались и в сентябре. В середине теплого периода наступала стабилизация активности эмиссии независимо от ГТК месяца, что совпадает с результатами работ других авторов (Головацкая, 2021).

			CO ₂	CH ₄			
ГТК/Год	Май	Июнь	Июль	Август	Сентябрь	экстремумы	экстремумы
						среднее	среднее
1.6/2004	38.9/4.2	53.5/2.4	68.1/1.2	95.2/2.7	32.9/5.3	32.9-95.2	1.2-5.3
						57.7 ± 11.2	3.1 ± 0.7
1.8/2005	99.0/3.5	51.3/3.4	77.0/2.2	95.3/4.1	110.0/4.1	51.3-110.0	2.2-4.1
						$\overline{86.5 \pm 10.3}$	$\overline{3.5 \pm 0.4}$
0.9/2006	157.8/3.0	100/2.5	49.6/2.1	113.3/2.2	146.0/3.3	49.6-157.8	2.1–3.3
						$\overline{113.4 \pm 19.1}$	$\overline{2.6 \pm 0.2}$
1.3/2007	99.0/3.5	88.0*/2.8*	77.0/2.2	93.5*/3.1*	110.0/4.1	77.0-110.0	2.2-4.1
						$\overline{95.3 \pm 9.7}$	$\overline{3.3 \pm 0.6}$
2.1/2011	-22.2/-3.0	42.7/1.9	31.2/2.1	_	16.3/1.1	-22.2-42.7	-3.0-2.1
						17 ± 14.1	$\overline{0.5\pm0.1}$
0.8/2012	47.4/1.6	_	14.6/3.4	_	10.1/1.3	10.1-47.4	1.3-3.4
						$\overline{24.0 \pm 11.8}$	$\overline{2.1 \pm 0.7}$
1.2/2013	3.9/1.3	_	29.3/2.8	_	31.7/2.1	3.9–31.7	1.3–2.8
						$\overline{21.6 \pm 8.9}$	$\overline{2.1 \pm 0.4}$

Таблица 2. Удельные потоки CO₂, (числитель) и CH₄ (знаменатель), мг C/(м² ч)

Примечание. "-" – не определяли, "±" – доверительный интервал, * – величина эмиссии получена расчетным путем.

Экстремальные пределы значений удельных потоков CH₄ за сезон колебались от /-3.0/ до 5.3 мг С/(м² ч). В мае влажного 2011 г. происходило поглощение метана и отмечались низкие значения эмиссии СН₄. Предполагается, что в условиях высокой влагообеспеченности процесс метаногенеза должен быть активнее, однако это не проявилось в исследованных ТЗ. В целом динамика эмиссии CH₄ на олиготрофном болоте характеризовалась равномерным распределением во все теплые периоды с небольшим снижением в июле, в отличие от четко выраженного сезонного хода эмиссии СН₄, отмечаемого исследователями (Kankaala et al., 2007; Bohn et al., 2007; Дюкарев и др., 2020). Так, в работе Е.Э. Веретенниковой и Е.А. Дюкарева (2019) показано, что сезонная динамика удельных потоков метана характеризуется июльским максимумом.

Есть основания полагать, что невысокие значения эмиссии метана на исследуемой территории определяются постоянно переувлажненным ее состоянием за период исследований с гидротермическими коэффициентами, преобладающе близкими к среднемноголетним значениям. Экстремально влажные и экстремально сухие годы бывают здесь крайне редко, и сложно предположить реакцию образования эмиссионных потоков парниковых газов в условиях, например, повышения температуры в атмосфере. Нельзя не отметить тот факт, что в ТЗ формируется самостоятельная газовая фаза, обусловленная кинетическими особен-

ЛЕСОВЕДЕНИЕ № 1 2023

ностями биохимических процессов. Скорость биогенной газогенерации обычно выше, чем интенсивность потенциальной диффузии в жидкой среде, поэтому создаются условия локального превышения порога растворимости газов и их скопления в виде самостоятельной физической фазы. Поэтому образующиеся внутри ТЗ парниковые газы могут достаточно интенсивно распространяться в ней в различных направлениях, не выходя в атмосферу, что способствует их временной аккумуляции в составе сплошной воздушной фазы, а также в растворенном и адсорбированном виде (Смагин, 2007).

Потоки углерода за теплый период. За все теплые периоды лет исследований потоки CO_2 не превышали 110 г C/(м² год), а минимальное его значение было равно 18 г C/(м² год). Самые высокие значения потоков CO₂ отмечены в 2004–2006 гг., разные по тепло– и влагообеспеченности (соответственно 58, 88, 110, 97 г C/(м² год)). И невысокие значения потоков CO₂, которые не превышали 20 г C/(м² год), были в 2011–2013 гг.

Экстремальные величины потока CH₄ за весь период исследований колебались в пределах 0.8– 3.7 г C/(м² год). Более высокие значения потоков CH₄ за теплый период наблюдались в среднемноголетние годы (2004, 2005, 2007, соответственно 3.2, 3.7, 3.4 г C/(м² год). Во влажный 2011 г. было выделено только 0.8 г C/(м² год), а в относительно сухие 2012 и 2013 гг. – по 2.0 C/(м² год), в то время

Год, ГТК		Потокуглерода				
	Май	Июнь	Июль	Август	Сентябрь	за v-1х, г C/(м ² год)
2001, 1.3	29.3 ± 4.6	25.3 ± 5.9	62.7 ± 8.9	216.7 ± 21.6	36.8 ± 9.0	73.4
2003, 0.8	137.5 ± 25.5	90.4 ± 12.6	84.3 ± 4.8	86.1 ± 13.3	57.4 ± 7.6	89.7
2004, 1.6	41.2 ± 8.4	68.2 ± 8.7	84.7 ± 12.5	71.5 ± 11.8	55.0 ± 8.4	62.6
2005, 1.8	145.2 ± 18.9	154.0 ± 31.1	64.9 ± 11.2	93.5 ± 11.2	45.0 ± 6.9	98.8

Таблица 3. Удельные потоки CO_2 на мелиорируемом болоте, мг $CO_2/(M^2 \, \text{ч})$

как для особо обводненных участков этой территории некоторые авторы указывают годовые значения потоков CH_4 в пределах 10–20 г C/(м² год), из них на зимние периоды приходится не более 3% от общей годовой эмиссии (Nadeshina et al., 2011; Шнырев, 2016).

"5 участок Васюганского болота", освоенный под лесомелиорацию. На мелиорируемом объекте приведем исследования эмиссии CO₂ с 2001 по 2005 гг. как интегрального параметра процессов в ТЗ. Влажность поверхностного слоя 0–30 см колебалась от 0.8 до 0.95 полной влагоемкости. По тепловлагообеспеченности особо выделялся 2003 г., когда ГТК был равен 0.8, УБВ опустились ниже обычного – до /-60/ см и влажность уменышилась по сравнению с естественным олиготрофным болотом до границы 80% полной влагоемкости.

Эмиссия СО2. Значения удельного потока СО2 на участке с лесомелиорацией варьировали в пределах 25.3-216.7 мг C/(м² ч) (табл. 3), что значительно выше, чем на болоте водосбора реки Ключ (от /-22.2/ до 157.8 мг С/(м² ч)). Если сравнить удельные потоки за среднемноголетний год, например 2004 г., то с мая по сентябрь на болоте водосбора они были равны 38.9, 53.5, 68.1, 95.2, 32.9 мг C/(м² ч), что меньше в 1.2 раза по сравнению с мелиорируемым болотом. Например, удельный поток СО₂ во влажный 2005 г. был существенно выше по сравнению с болотом на водосборе, особенно выделялись высокими значениями (145.2 и 154.0 мг CO₂/(м² ч)) май и июнь, которые были выше соответственно в 1.4 и 3.0 раза. В целом в этот год эффект осушения на величину удельного потока СО2, проявлялся в наибольшей степени (в 1.2-2.4 раза был выше) по сравнению с естественным болотом на водосборе. Но и в относительно сухой 2003 г. удельные потоки СО2 в среднем оставались высокими за теплый период.

Отсюда можно сделать вывод, что на объекте лесомелиорации активность эмиссии CO_2 была выше по сравнению с олиготрофным болотом на водоразделе реки Ключ.

Потоки углерода за теплый период. На объекте лесомелиорации величина потока CO₂ за летние периоды 2004 и 2005 гг. была равна 62.6 и 98.8 или в среднем — 80.7 г С/(м² год), что выше лишь в 1.16 раз по сравнению с естественным болотом на водоразделе (табл. 3). Таким образом, в отдельные месяцы на мелиорируемом болоте активность эмиссии CO_2 была выше по сравнению с болотом на водоразделе реки Ключ.

Углеродный баланс на олиготрофном болоте. В этой статье приведем также обобщенные результаты из ранее выполненных нами исследований (Inisheva, Golovatskaya, 2002; Инишева, 2020). Изучение первичной продуктивности (NPP), которая рассчитывалась как сумма надземной и подземной продукции (Титлянова, 1988; Головацкая 2009), эмиссии парниковых газов и выноса углерода болотными водами показало, что общий расход углерода в олиготрофном болоте малого водосбора реки Ключ (169.8 г С/м² год) уступает уровню фотосинтетической нетто-аккумуляции (230.4 г C/м² год (средние значения за весь период наблюдений)). Большая часть потерь углерода обусловлена потоком СО2 (в среднем 69 г С/м² год или около 30% от NPP) и С H_4 , доля которого значительно меньше (в среднем 2.2 г С/м² год или 0.9% NPP). Определенный экспериментально вынос углерода болотными водами, содержащими растворенный углерод, ГК и ФК, составляет 3.0% NPP (6.9 г С/м² год). Итого (230.4 – 69.0 – 2.2 – -6.9 = 152.3 г С/м² год), получаем -152.3 г С/м² год. Известно, что положительный баланс углерода свидетельствует об интенсивно протекающем процессе болотообразования, нулевой – о сбалансированности системы, отрицательный - о разрушении болота. В нашем случае можно сделать вывод о преобладании процесса аккумуляции углерода в T3 и прогрессирующем в настоящее время торфообразовательном процессе на олиготрофном болоте малого водосбора реки Ключ.

На объекте лесомелиорации "5 участок Васюганского болота" чистая первичная продукция (NPP) изменялась в пределах от 123 до 675 и в среднем значении была равна 260 г С/(м² год). Потоки углерода из ТЗ в виде CO₂ достигали в среднем значении 80.7 г С/(м² год), значение потока CH₄ использовали из данных естественного олиготрофного болота $-2.2 \, \Gamma \, C/(M^2 \, \text{год})$, потери углерода с болотными водами не превышали 2.8% NPP, составляя в сумме 7.3 г C/(м² год). Отсюда следует, что в углеродном балансе в T3 мелиорируемого болота преобладает аккумуляция углерода (260.0 – 80.7 – -2.2 - 7.3 = 140.2 г С/(м² год) и, соответственно, на исследуемом мелиорируемом олиготрофном болоте в современный период также отмечается прогрессирующее заболачивание. Таким образом, в условиях южнотаежной зоны Западной Сибири проведение лесомелиорации на олиготрофном болоте 60 лет назад в настоящее время показывает незначительное ее влияние на гидрологический и углеродный режим мелиорируемой территории, который близок к естественному состоянию, что свидетельствует о повторном заболачивании этой территории в условиях отсутствия эксплуатации осушительной системы. Например, к 1980 г. в Томской области были выполнены работы по осушительным мелиорациям открытыми каналами на площади 15 тыс. га. В настоящее время они практически все переувлажнены.

В последние годы отмечается четкая тенденция усиления трансгрессии болот на леса, например, на северо-западе России (Кузьмин, 1993). Современное заболачивание в большой степени обусловлено и разрушением созданных ранее лесоосушительных систем. Согласно В.К. Константинову (2000), лесоосушительные системы на северо-западе России были построены в этом регионе на площади более 4 млн га, однако вторичному заболачиванию к настоящему времени подверглось не менее 1 млн га.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что в торфяной залежи олиготрофного генезиса имеет место пространственная (горизонтальная), внутризалежная и временная вариабельность концентрации CO₂ и CH₄. Разные погодные условия, выраженные в ГТК за теплый период. не являются определяющим показателем для динамики парниковых газов. Надо полагать, что значительная роль в его динамике принадлежит сочетанию погодных условий отдельных месяцев, ботаническому составу, который стимулирует биохимические процессы, физико-механическим свойствам торфяной залежи и другим факторам, что подтверждается, например, статистическим расчетом корреляционных связей между эмиссией парниковых газов, температурой и микробиологическими параметрами. Полученные знания свидетельствуют о сложности происходящих процессов и необходимости дальнейшего изучения факторов, влияющих на углеродный баланс в болотах.

В торфяной залежи олиготрофного болота на малом заболоченном водосборе реки Ключ за многолетний период определены концентрации парниковых газов: экстремальные концентрации CO_2 составили 0.002–3.64 ммоль/дм³, CH_4 – 0.003–2.03 ммоль/дм³; удельные потоки изменялись по CO_2 в пределах от /–22.2/ до 157.8 мг С/(м² ч), по CH_4 были равны в экстремальных величинах /–3.0/ – 5.3 мг С/(м² ч), суммарные потоки углерода за теплый период по CO_2 составили 20– 110 г С/(м² год), по CH_4 – 0.8–3.7 С/(м² год). Расчет углеродного баланса показал наличие прогрессирующего заболачивания олиготрофного болота на современный период.

На олиготрофном болоте, на объекте мелиорации "5 участок Васюганского болота", удельные потоки CO_2 характеризовались значениями от 25.3 до 216.7 мг C/(м² ч) и суммарными потоками за теплый период — от 62.6 до 98.8, при среднем значении 80.7 г C/(м² год).

Расчет углеродного баланса подтвердил тот факт, что в настоящее время на мелиорируемом олиготрофном болоте в условиях отсутствия эксплуатации осушительной системы отмечается повторное заболачивание, приближающее его к естественному состоянию.

Вместе с тем, учитывая огромные площади болот на Западно-Сибирской равнине и агрессивный характер процесса заболачивания, положительным приемом на ее территории, было бы проведение умеренной и выборочной лесомелиорации. Это решило бы две задачи региона: социальную — улучшение условий жизни населения, экологическую — снижение скорости заболачивания и комплексное депонирование органического углерода на территории Западной Сибири, а также регион в перспективе мог бы быть крупным заготовительным районом страны, что планировали ученые в 80—90 е годы (Гольдин, 1976; Ефремов, 1987).

СПИСОК ЛИТЕРАТУРЫ

Бобрик А.А., Гончарова О.Ю., Матышак Г.В., Рыжова И.М., Макаров М.И., Тимофеева М.В. Распределение компонентов углеродного цикла почв лесных экосистем северной, средней и южной тайги Западной Сибири // Почвоведение. 2020. № 11. С. 1328–1340.

Будыко М.И. Изменения климата. Л.: Гидрометеоиздат, 1974. 280 с.

Веретенникова Е.Э., Дюкарев Е.А. Эмиссия метана с поверхности верховых болот Западной Сибири // Тринадцатое Сибирское совещание и школа молодых ученых по климато-экологическому мониторингу. Томск: Аграф – Пресс, 2019. С. 162–163.

Вомперский С.Э., Цыганова О.П., Ковалев А.Г., Глухова Т.В., Валяева Н.А. Заболоченность территории России как фактор связывания атмосферного углерода // Глобальные изменения природной среды и климата. М.: Изд-во РАН, 1999. С. 124–145.

Головацкая Е.А. Биологическая продуктивность олиготрофных и эвтрофных болот южнотаежной подзоны Западной Сибири // Журн. Сибирского федерального университета. Биология. 2009. Т. 2. № 1. С. 38–53.

Головацкая Е.А. Биогеохимические циклы углерода в болотных экосистемах // Материалы 19-й Международной конференции "Современные проблемы дистанционного зондирования Земли из космоса". М.: ИКИ РАН, 2021. С. 431.

Гольдин Д.И. Развитие лесоосушительных работ в Томской области // Теория и практика лесного болотоведения и гидролесомелиорации. Красноярск: Институт леса и древесины им. В.Н. Сукачева СО АН СССР. 1976. С. 113–119.

Дюкарев Е.А., Сабреков А.З., Глаголев М.В., Киселев М.В., Филиппов И.В., Лапшина Е.Д. Оценка эмиссии и поглощения парниковых газов болотными экосистемами Нефтюганского района Ханты-Мансийского автономного округа // Избранные труды Международной конференции и школы молодых ученых по измерениям, моделированию и информационным системам для изучения окружающей среды. Томск, 2020. С. 177–180.

Ефремов С.П. Пионерные древостои осушенных болот. Новосибирск: СО РАН, 1987. 248 с.

Инишева Л.И. Закономерности функционирования болотных экосистем в условиях воздействия природных и антропогенных факторов. Томск: ТГПУ, 2020. 482 с.

Инструкция по проведению лесоустройства в лесном фонде России. Ч. 1. М.: Изд-во ВНИИЦлесресурс ФС ЛХ России, 1995. 174 с.

Карелин Д.В., Почикалов А.В., Замолодчиков Д.Г., Гитарский М.Л. Факторы пространственно-временной изменчивости потоков CO₂ из почв южнотаежного ельника на Валдае // Лесоведение. 2014. № 4. С. 56–66.

Коженкова З.П., Рутковская Н.В. Климат Томской области и его формирование // Вопросы географии Сибири. Томск: Изд-во Томского ун-та, 1974. Т. 6. С. 3–36.

Константинов В.К. Гидролесомелиоративная энциклопедия. СПб.: Гидрометеоиздат, 2000. 275 с.

Кузнецова А.И., Лукина Н.В., Горнов А.В., Горнова М.В., Тихонова Е.В., Смирнов В.Э., Данилова М.А., Тебенькова Д.Н., Браславская Т.Ю., Кузнецов В.А., Ткаченко Ю.Н., Геникова Н.В. Запасы углерода в песчаных почвах сосновых лесов на западе России // Почвоведение. 2020. № 8. С. 959-969.

Кузьмин Г.Ф. Болота и их использование // Сборник научных трудов НИИ торфяной промышленности. СПб, 1993. 140 с.

Махов Г.А., Бажин Н.М., Ефремова Т.Т. Эмиссия метана из болот междуречья рек Оби и Томи // Химия в интересах устойчивого развития. 1999. № 2. С. 619–622.

Методические указания по расчетам стока с неосушенных и осушенных болот // М-во природ. ресурсов и экологии РФ; Федер. Служба по гидрометеорологии и мониторингу окружающей среды. Санкт-Петербург: Петербургский модный базар, 2011. 150 с.

Наставления гидрометеорологическим станциям и постам. Вып. 6. Л.: Гидрометеоиздат, 1978. 384 с.

Наумов А.В. К вопросу об эмиссии углекислого газа и метана из болотных почв южного Васюганья // Сибирский экологический журн. 1994. № 3. С. 269–274.

Наумов А.В. Углекислый газ и метан в почвах и атмосфере болотных экосистем Западной Сибири // Сибирский экологический журн. 2002. № 3. С. 313–318.

Смагин А.В. Абиотическое поглощение газов органогенными почвами // Почвоведение. 2007. № 12. С. 1482–1488.

Технический анализ торфа. М.: Недра, 1992. 358 с.

Титлянова А.А. Продуктивность травяных экосистем // Биологическая продуктивность травяных экосистем. Географические закономерности и экологические особенности. Новосибирск: Наука, 1988. С. 109–127.

Торфяные болота России: к анализу отраслевой информации / Под ред. А.А. Сирина и Т.Ю. Минаевой. М.: ГЕОС, 2001. 190 с.

Шарков И.Н. Абсорбционный метод определения эмиссии СО₂ из почв // Методы исследований органического вещества почв. М.: Россельхозакадемия: ГНУ ВНИПТИОУ, 2005. С. 401–407.

Шнырев Н.А. Режимные наблюдения и оценка газообмена на границе почвы и атмосферы (на примере потоков метана стационара среднетаежной зоны Западной Сибири "Мухрино"): автореф. дис. ... кандидата биологических наук: 06.01.03. М., 2016. 26 с.

Bohn T.J., Lettenmaier D.P., Sathulur K., Bowling L.C., Podest E., McDonald K.C., Friborg T. Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change // Environmental Research Letters. 2007. V. 2. N_{2} 4.

https://doi.org/10.1088/1748-9326/2/4/045015

Cardinael R., Chevallier T., Cambou A., Beral C., Barthes B.G., Dupraz C., Durand C., Kouakoua E., Chenu C. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France // Agric. Ecosyst. Environ. 2017. V. 236. P. 243–255.

Cardinael R., Umulisa V., Toudert A., Olivier A., Bockel L., Bernoux M. Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems // Environ. Res. Lett. 2018. V. 13. № 12. P. 124020.

De Stefano A., Jacobson M.G. Soil carbon sequestration in agroforestry systems: a meta-analysis // Agroforestry Systems. 2018. V. 92. № 2. P. 285–299.

Eilrich B. Formation and transport of CH_4 and CO_2 in deep peatlands: Presentee a la Faculte des Sciences de l'Universite de Neuchatel (Suisse) pour l'obtantien du grade de Docteures es Sciences. 2002. P. 168.

Heyer J., Berger U., Kuzin I.L., Yakovlev O.N. Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period // Tellus B. 2002. V. 54. Issue 3. P. 231–249.

https://doi.org/10.1034/j.1600-0889.2002.01280.x

Inisheva L.I., Golovatskaya E.A. Elements of carbon balance in oligotrophic bogs // Russian J. Ecology. 2002. V. 33. № 4. P. 242–248.

Joosten H., Sirin A., Couwenberg J., Laine J., Smith P. The role of peatlands in climate regulation // Peatland Restoration and Ecosystem Services: Science, Policy and Practice. Cambridge University Press. 2016. P. 66–79.

Kankaala P., Taipale S., Jones R.I., Nykanen H. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake // J. Geophysical Research. 2007. V. 112. № 2.

Leroy F., Gogo S., Guimbaud C., Bernard-Jannin L., Hu Z., Laggoun-Defarge F. Vegetation composition controls temperature sensitivity of CO₂ and CH₄ emissions and DOC concentration in peatland // Soil Biology and Biochemistry. 2017. V. 107. P. 164–167.

Nadeshina E.D., Molkentin E.K., Kiselev A.A., Semioshina A.A., Shkolnic I.M. Investigation of parameterization effect on the methane flux estimation from the regional climate model of the main geophysical observatory for the territory of Russia // Russia Meteorology and Hydrology. 2011. 36. \mathbb{N} 6. P. 371–382.

Naumov A.V., Smolentseva E.N. Estimation of carbon dioxide exchange of cascade geochemically conjugated steppe ecosystems in salinity condition. // Steppe ecosystems: biological diversity, management and restoration. Chapter 7. Nova Science Publishers. N.Y. 2013. P. 153–163.

Nilsson M., Bohlin E. Methane and Carbon Dioxide Concentrations in Bogs and Fens – with Special Reference to the Effects of the Botanical Composition of the Peat // J. Ecology. 1993. V. 81. N_{2} 4. P. 615–625.

Romanovskaya A.A., Korotkov V.N., Polumieva P.D., Trunov A.A., Vertyankina V.Yu., Karaban R.T. Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation // Mitigation and Adaptation Strategies for Global Change. 2020. V. 25. № 4. P. 661.

Romanowicz E.A., Siegel D.I., Chanton J.P., Glaser P.H. Temporal variations in dissolved methane deep in the Lake Agassiz Peatlands, Minnesota // Global Biogeochemical Cycles. 1995. № 9. P. 197–212.

Steinmann Ph., Shotyk W. Sampling anoxic pore water in peatlands using "peepers" for in situ-filtration // Fresenius J. Analytical Chemistry. 1996. V. 354. P. 709–713.

Wiesmeier M., Mayer S., Paul C., Helming K., Don A., Franko U., Steffens M., Kögel-Knabner I. CO₂ certificates for carbon sequestration in soils: methods, management practices and limitations // BonaRes Series. 2020. № 4. P. 1–23. https://doi.org/10.20387/BonaRes-NE0G-CE98

Carbon Dioxide and Methane Distribution in Peat Deposits of an Oligotrophic Forest Swamp in Western Siberia and Their Emission

L. I. Inisheva^{1, *}, M. A. Sergeeva¹, A. V. Golovchenko², and B. V. Babikov³

¹Tomsk State Pedagogical University, Kiyevskaya st. 60, Tomsk, 634061 Russia ²Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia ³Saint-Petersburg Forestry Universit, Institutskiy In., 5, Saint-Petersburg, 194021 Russia *E-mail: inisheva@mail.ru

Swamps and wetlands of forested areas, as well as the non-forest swamps are jointly involved in the global carbon cycle. They play an important role in depositing the greenhouse gases. This article analyses the long-term dynamics of the greenhouse gases (CO_2 and CH_4) concentration in a peat deposit and their emission in a natural and reclaimed oligotrophic bog in the southern taiga zone of Western Siberia. It was found that a significant role in the CO_2 and CH_4 concentration dynamics in the peat deposits belongs to the weather conditions of each month of the warm period, the botanical composition and the activity of biochemical processes, as well as the structure and physical and mechanical properties of a peat deposit. Also identified were the intradeposit, spatial and temporal dynamics of the greenhouse gases concentrations' indicators. It has been proven that there are multicomponent dependences of CO_2 and CH_4 concentrations on the parameters of external and intra-deposit conditions. The concentrations' parameters in the oligotrophic bog's peat deposit from the swampy catch basin of the Klyuch river were determined as follows: extreme concentrations of CO_2 were $0.002-3.64 \text{ mmol/dm}^3$, extreme concentrations of CH₄ were $0.003-2.03 \text{ mmol/dm}^3$; the CO₂ normalised fluxes varied from /-22.2/ to 157.8 mg C/(m² · h), the CH₄ normalised fluxes' extreme values were equal /-3.0/-5.3 mg C/(m² · h), the CO₂ fluxes for the warm period were 20–110 g C/(m² · year), the CH₄ fluxes for the warm period were 0.8-3.7 C/(m² · year). At the forest reclamation site, a slight increase in the CO₂ normalised fluxes activity was revealed compared to a natural swamp, while the greenhouse gases' concentrations in the peat deposit were found to be comparable in both cases. It was shown that in the absence of an operating drainage system, the process of re-bogging occurs. Due to the vast areas of the West Siberian Plain's swamps and the aggressive nature of the bogging process, moderate and selective forest reclamation is suggested for its taiga zone.

Keywords: Western Siberia, oligotrophic swamp, peat deposit, forest reclamation, monitoring, greenhouse gases, bogging.

REFERENCES

Bobrik A.A., Goncharova O.Y., Matyshak G.V., Ryzhova I.M., Makarov M.I., Timofeeva M.V., Spatial distribution of the components of carbon cycle in soils of forest ecosystems of the northern, middle, and southern taiga of Western Siberia, *Eurasian Soil Science*, 2020, Vol. 53, No. 11, pp. 1549–1560.

Bohn T.J., Lettenmaier D.P., Sathulur K., Bowling L.C., Podest E., McDonald K.C., Friborg T., Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change, *Environmental Research Letters*, 2007,

Vol. 2, No. 4.

https://doi.org/10.1088/1748-9326/2/4/045015

Budyko M.I., *Izmeneniya klimata* (Climate change), Leningrad: Gidrometeoizdat, 1974, 280 p.

Cardinael R., Chevallier T., Cambou A., Beral C., Barthes B.G., Dupraz C., Durand C., Kouakoua E., Chenu C., Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France, *Agric. Ecosyst. Environ*, 2017, Vol. 236, pp. 243–255.

Cardinael R., Umulisa V., Toudert A., Olivier A., Bockel L., Bernoux M., Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems, *Environ. Res. Lett*, 2018, Vol. 13, No. 12, pp. 124020.

De Stefano A., Jacobson M.G., Soil carbon sequestration in agroforestry systems: a meta-analysis, *Agroforestry Systems*, 2018, Vol. 92, No. 2, pp. 285–299.

Dyukarev E.A., Sabrekov A.Z., Glagolev M.V., Kiselev M.V., Filippov I.V., Lapshina E.D., Otsenka emissii i pogloshcheniya parnikovykh gazov bolotnymi ekosistemami Neftyuganskogo raiona Khanty-Mansiiskogo avtonomnogo okruga (Estimation of emission and absorption of greenhouse gases by wetland ecosystems of the Neftyugansky district of the Khanty-Mansiysk Autonomous Okrug), In: *Izbrannye trudy Mezhdunarodnoi konferentsii i shkoly molodykh uchenykh po izmereniyam, modelirovaniyu i informatsionnym sistemam dlya izucheniya okruzhayushchei sredy* (Selected abstract of International conference and Early Career Scientists School on Environmental Observations, Modeling and Information System), Tomsk, 2020, pp. 177–180.

Efremov S.P., *Pionernye drevostoi osushennykh bolot* (Pioneer stands of drained swamps), Novosibirsk: SO RAN, 1987, 248 p.

Eilrich B., Formation and transport of CH_4 and CO_2 in deep peatlands: Presentee a la Faculte des Sciences de l'Universite de Neuchatel (Suisse) pour l'obtantien du grade de Docteures es Sciences, 2002, 168 p.

Gol'din D.I., Razvitie lesoosushitel'nykh rabot v Tomskoi oblasti (Development of forest drainage works in the Tomsk region), In: *Teoriya i praktika lesnogo bolotovedeniya i gidrolesomelioratsii* (Theory and practice of forest swamp science and hydroforest reclamation), Krasnoyarsk: Institut lesa i drevesiny im. V.N. Sukacheva SO AN SSSR, 1976, pp. 113–119.

Golovatskaya E.A., Biogeokhimicheskie tsikly ugleroda v bolotnykh ekosistemakh (Biogeochemical cycles of carbon in swamp ecosystems), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa* (Modern problems of remote sensing of the Earth from space), Proc. of 19 International Conf., Moscow: IKI RAN, pp. 431.

Golovatskaya E.A., Biologicheskaya produktivnosť oligotrofnykh i evtrofnykh bolot yuzhnotaezhnoi podzony Zapadnoi Sibiri (Biological productivity of oligotrophic and eutrophic mires in the southern taiga of Western Siberia), *Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Biologiya*, 2009, Vol. 2, No. 1, pp. 38–53.

Heyer J., Berger U., Kuzin I.L., Yakovlev O.N., Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period, *Tellus B*, 2002, Vol. 54, Issue 3, pp. 231–249.

https://doi.org/10.1034/j.1600-0889.2002.01280.x

Inisheva L.I., Golovatskaya E.A., Elements of carbon balance in oligotrophic bogs, *Russian J. Ecology*, 2002, Vol. 33, No. 4, pp. 242–248.

Inisheva L.I., Zakonomernosti funktsionirovaniya bolotnykh ekosistem v usloviyakh vozdeistviya prirodnykh i antropogennykh faktorov (Special features of mire ecosystems functioning under the influence of natural and anthropogenic factors), Tomsk: TGPU, 2020, 482 p.

Instruktsiya po provedeniyu lesoustroistva v lesnom fonde Rossii (Instructions for conducting forest management in the forest fund of Russia), Moscow: Izd-vo VNIITslesresurs FS LKh Rossii, 1995, Part 1, 174 p.

Joosten H., Sirin A., Couwenberg J., Laine J., Smith P., The role of peatlands in climate regulation, In: *Peatland Restoration and Ecosystem Services: Science, Policy and Practice*, Cambridge University Press, 2016, pp. 66–79.

Kankaala P., Taipale S., Jones R.I., Nykanen H., Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake, *J. Geophysical Research*, 2007, Vol. 112, No. 2.

Karelin D.V., Pochikalov A.V., Zamolodchikov D.G., Gitarskii M.L., Factors of spatiotemporal variability of CO₂ fluxes from soils of southern taiga spruce forests of Valdai, *Contemporary Problems of Ecology*, 2014, Vol. 7, No. 7, pp. 743–751.

Konstantinov V.K., *Gidrolesomeliorativnaya entsiklopediya* (Agroforestry reclamation encyclopedia), Saint Petersburg: Gidrometeoizdat, 2000, 275 p.

Kozhenkova Z.P., Rutkovskaya N.V., Klimat Tomskoi oblasti i ego formirovanie (The climate of the Tomsk region and its formation), In: *Voprosy geografii Sibiri* (Issues of the geography of Siberia), Tomsk: Izd-vo Tomskogo un-ta, 1974, Vol. 6, pp. 3–36.

Kuz'min G.F., Bolota i ikh ispol'zovanie (Wetlands and their use), In: *Sbornik nauchnykh trudov NII torfyanoi promyshlennosti* (Collection of scientific papers of the Research Institute of the peat industry), Saint Petersburg, 1993, pp. 140.

Kuznetsova A.I., Lukina N.V., Gornov A.V., Gornova M.V., Tikhonova E.V., Smirnov V.E., Danilova M.A., Teben'kova D.N., Braslavskaya T.Yu., Kuznetsov V.A., Tkachenko Yu.N., Genikova N.V., Carbon stock in sandy soils of pine forests in the West of Russia, *Eurasian Soil Science*, 2020, Vol. 53, No. 8, pp. 1056–1065.

Leroy F., Gogo S., Guimbaud C., Bernard-Jannin L., Hu Z., Laggoun-Defarge F., Vegetation composition controls temperature sensitivity of CO_2 and CH_4 emissions and DOC concentration in peatland, *Soil Biology and Biochemistry*, 2017, Vol. 107, pp. 164–167.

Makhov G.A., Bazhin N.M., Efremova T.T., Emissiya metana iz bolot mezhdurech'ya rek Obi i Tomi (Emission of methane from swamps between the rivers Ob and Tom), *Khimiya v interesakh ustoichivogo razvitiya*, 1999, No. 2, pp. 619–622.

Metodicheskie ukazaniya po raschetam stoka s neosushennykh i osushennykh bolot (Guidelines for calculating runoff from non-drained and drained swamps), Saint Petersburg: Peterburgskii modnyi bazar, 2011, 150 p.

Nadeshina E.D., Molkentin E.K., Kiselev A.A., Semioshina A.A., Shkolnic I.M., Investigation of parameterization effect on the methane flux estimation from the regional climate model of the main geophysical observatory for the territory of Russia, *Russia Meteorology and Hydrology*, 2011, 36, No. 6, pp. 371–382.

Nastavleniya gidrometeorologicheskim stantsiyam i postam, (Instructions for hydrometeorological stations and posts), Leningrad: Gidrometeoizdat, 1972, Vol. 6, 384 p.

Naumov A.V., K voprosu ob emissii uglekislogo gaza i metana iz bolotnykh pochv yuzhnogo Vasyugan'ya (On the Issue of Carbon Dioxide and Methane Emissions from Bog Soils in the Southern Vasyugan Region), *Sibirskii ekologicheskii zhurnal*, 1994, No. 3, pp. 269–274.

Naumov A.V., Smolentseva E.N., Estimation of carbon dioxide exchange of cascade geochemically conjugated steppe ecosystems in salinity condition, In: *Steppe ecosystems: biological diversity, management and restoration.* Chapter 7, Nova Science Publishers, N.Y., 2013, pp. 153–163.

Naumov A.V., Uglekislyi gaz i metan v pochvakh i atmosfere bolotnykh ekosistem Zapadnoi Sibiri (Carbon Dioxide and Methane in Soils and Atmosphere of Wet Ecosystems of Western Siberia), *Sibirskii ekologicheskii zhurnal*, 2002, No. 3, pp. 313–318.

Nilsson M., Bohlin E., Methane and Carbon Dioxide Concentrations in Bogs and Fens – with Special Reference to the Effects of the Botanical Composition of the Peat, *J. Ecology*, 1993, Vol. 81, No. 4, pp. 615–625.

Romanovskaya A.A., Korotkov V.N., Polumieva P.D., Trunov A.A., Vertyankina V.Yu., Karaban R.T., Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation, In: *Mitigation and Adaptation Strategies for Global Change*, 2020, Vol. 25, No. 4. pp. 661– 687.

Romanowicz E.A., Siegel D.I., Chanton J.P., Glaser P.H., Temporal variations in dissolved methane deep in the Lake Agassiz Peatlands, Minnesota, *Global Biogeochemical Cycles*, 1995, No. 9, pp. 197–212.

Sharkov I.N., Absorbtsionnyi metod opredeleniya emissii CO2 (The absorption method of determination of CO2 emission), In: *Metody issledovanii organicheskogo veshchestva pochv* (Methods for the study of soil organic matter), Moscow: Rossel'khozakademiya, GNU VNIPTIOU, 2005, pp. 401–408.

Shnyrev N.A., Rezhimnye nablyudeniya i otsenka gazoobmena na granitse pochvy i atmosfery (na primere potokov metana statsionara srednetaezhnoi zony Zapadnoi Sibiri "Mukhri*no"*). Avtoref. diss. kand. biol. nauk (Regime Observations and Evaluation of Gas Exchange at the Soil-Atmosphere Boundary (by the Example of Methane Fluxes at the Mukhrino Station in the Middle Taiga Zone of Western Siberia)), Moscow, 2016, 26 p.

Smagin A.V., Abiotic uptake of gases by organic soils, *Eurasian Soil Science*, 2007, Vol. 40, No. 12, pp. 1326–1331.

Steinmann Ph., Shotyk W., Sampling anoxic pore water in peatlands using "peepers" for in situ-filtration, *Fresenius J. Analytical Chemistry*, 1996, Vol. 354, pp. 709–713.

Tekhnicheskii analiz torfa (Peat technical analysis), Moscow: Nedra, 1992, 358 p.

Titlyanova A.A., Produktivnosť travyanykh ekosistem (Productivity of grass ecosystems), In: *Biologicheskaya produktivnosť travyanykh ekosistem. Geograficheskie zakonomernosti i ekologicheskie osobennosti* (Biological productivity of grass ecosystems. Geographic patterns and ecological features), Novosibirsk: Nauka, 1988, pp. 109–127.

Torfyanye bolota Rossii: k analizu otraslevoi informatsii (Peatlands of Russia: supplementary information to the sectoral analysis), Moscow: GEOS, 2001, 190 p.

Veretennikova E.E., Dyukarev E.A., Emissiya metana s poverkhnosti verkhovykh bolot Zapadnoi Sibiri (Methane emission from the surface of high bogs in Western Siberia), *Trinadtsatoe Sibirskoe soveshchanie i shkola molodykh uchenykh po klimato-ekologicheskomu monitoringu* (The Thirteenth Siberian Conference and the School of Young Scientists on Climate and Environmental Monitoring), Abstracts of the Russian Conf., Tomsk: Agraf – Press, pp. 162–163.

Vomperskii S.E., Tsyganova O.P., Kovalev A.G., Glukhova T.V., Valyaeva N.A., Zabolochennost' territorii Rossii kak faktor svyazyvaniya atmosfernogo ugleroda (Bogginess of the territory of Russia – the factor of atmospheric carbon fixation), In: *Krugovorot ugleroda na territorii Rossii* (Carbon cycle on the territory of Russia), Moscow: Minnauki Rossii, 1999, pp. 124–144.

Wiesmeier M., Mayer S., Paul C., Helming K., Don A., Franko U., Steffens M., Kögel-Knabner I., CO_2 certificates for carbon sequestration in soils: methods, management practices and limitations, *BonaRes Series*, 2020, No. 4, pp. 1–23.

https://doi.org/10.20387/BonaRes-NE0G-CE98