УДК 546:027(42)+551.7(8)

ИЗОТОПНЫЙ СОСТАВ Sr В ИЗВЕСТНЯКАХ ДАЛЬНЕТАЙГИНСКОЙ СЕРИИ ПАТОМСКОГО БАССЕЙНА: ОПОРНЫЙ РАЗРЕЗ ВЕНДА СИБИРИ

© 2020 г. С. В. Рудько^{*a*, *b*, *, А. Б. Кузнецов^{*a*}, П. Ю. Петров^{*b*}}

^а Институт геологии и геохронологии докембрия РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ^bГеологический институт РАН, Пыжевский пер., 7, Москва, 119017 Россия *e-mail: svrudko@gmail.com Поступила в редакцию 13.05.2019 г. После доработки 21.10.2019 г. Принята к публикации 30.10.2019 г.

Представлены новые данные о вариациях отношения 87 Sr/ 86 Sr в карбонатных отложениях дальнетайгинской серии опорного разреза венда Средней Сибири на Уринском поднятии. Вариации отношения 87 Sr/ 86 Sr увязаны с секвенс-стратиграфической схемой, отражающей эволюцию палеобассейна; с вариациями δ^{13} C в карбонатных породах и уровнями палеонтологических находок. Для реконструкции вековых вариаций отношения 87 Sr/ 86 Sr использовались известняки с высокой (>1050 мкг/г) концентрацией стронция, которые не несут признаков нарушения Sr-изотопной системы. Во время накопления карбонатных осадков дальнетайгинской серии установлен рост величины отношения 87 Sr/ 86 Sr в морской воде от 0.70755 до 0.70823, осложненный флуктуациями подчиненного порядка. Длительность формирования постледниковой последовательности отложений дальнетайгинской серии оценена не менее чем в 14–15 млн лет. Вековые вариации отношения 87 Sr/ 86 Sr, измеренные известняках дальнетайгинской серии, близки к вариации отношения, происходившим вслед за гляциопериодом Марино. Sr- и С-изотопные корреляции позволяют предполагать длительный перерыв между накоплением осадков дальнетайгинской и жуинской серий.

Ключевые слова: изотопы стронция, хемостратиграфия, вековые вариации, венд, Сибирь. **DOI:** 10.31857/S0024497X20030052

Изучение вековых вариаций изотопного состава Sr в неопротерозойском океане имеет большое значение для глобальной корреляции отложений этого времени, периодизации истории изменений природной среды и реконструкции эволюции биосферы. Источником геохимической информации являются карбонатные породы, способные фиксировать изотопно-химические характеристики среды седиментации, но при этом ключевую роль играет проблема сохранности изотопных меток, связанная с постседиментационными преобразованиями осадков и пород [Veizer et al., 1999; Кузнецов и др., 2014, 2018]. Другого рода проблемы сопряжены с определением временного интервала, к которому относятся выявленные значения изотопного отношения ⁸⁷Sr/⁸⁶Sr, поскольку породы не всегда удается достаточно точно датировать [Halverson et al., 2007; Melezhik et al., 2015]. В этом случае наиболее предпочтительным является изучение пород в разрезах, охарактеризованных комплексом геологических, палеоклиматических биостратиграфических и изотопно-геохимических данных, составляющих стратиграфический каркас неопротерозоя [Семихатов и др., 2003, 2004; Покровский и др., 2006; Sawaki et al., 2010; Narbonne et al., 2012].

С этой точки зрения дальнетайгинская и жуинская серии Уринского поднятия (рис. 1) Средней Сибири представляют собой уникальный объект для изучения вековых вариаций изотопного состава Sr в вендское время. Разрез начинается с ледниковых отложений большепатомской свиты, которые традиционно сопоставляются с гляциопериодом Марино [Чумаков и др., 2013], завершившимся 635 млн лет назад [Condon et al., 2005; Calver et al., 2013; Prave et al., 2016]. Горизонт "венчающих доломитов" в основании залегаю-

Рис. 1. Географическое положение Патомского бассейна (ПБ), схематическая геологическая карта центральной части Уринского поднятия (УП) и сводная стратиграфическая последовательность отложений. Стратиграфическое деление в соответствии со статьей [Чумаков и др., 2013].

1 — диамиктиты большепатомской свиты; 2 — баракунская свита, карбонаты, песчаники, аргиллиты; 3 — уринская свита, алевролиты и аргиллиты; 4 — каланчевская свита, карбонаты и мергели; 5 — жуинская серия, карбонаты и мергели; 6 — трехверстная серия, песчаники, карбонаты; 7 — горизонт венчающих доломитов; 8 — стратиграфические перерывы.

щей выше баракунской свиты по своим литологическим и изотопным характеристикам [Покровский и др., 2010] является аналогом доломитовых слоев формации Нуккалиина (Южная Австралия), по подошве которых определена нижняя граница эдиакарского периода [Knoll et al., 2006], а также доломитов, залегающих в кровле ледниковых отложений формации Смальфиорд (Норвегия) лапландского (варангерского) гляциогоризонта, в основании венда [Семихатов и др., 2015]. Вышележащие карбонатные породы дальнетайгинской серии характеризуются положительной аномалией углерода (δ¹³C до +10‰) [Покровский и др., 2006; Рудько и др., 2017], выявленной во многих постледниковых отложениях раннего эдиакария, а перекрывающие отложения жуинской серии — отрицательной аномалией (δ^{13} С до -8% $_{o}$) Шурам-Вонока [Покровский и др., 2006; Melezhik et al., 2009], продолжавшейся около 10 млн лет в интервале от 570 до 550 млн лет [Williams, Shmidt, 2018]. Аналогичные вариации δ^{13} С, от высоких положительных до аномальных отрицательных значений, обнаружены в разрезе карбонатных отложений нижней части юдомской серии (от +8 до -7.8% $_{o}$ PDB), соответствующей нижнему венду на востоке Сибирской платформы [Семихатов и др., 2004].

В нижней части баракунской свиты имеется находка вендских ископаемых проблематик Beltanelloides [Леонов, Рудько, 2012], для которых, однако, сейчас предполагается цианобактерильная природа [Bobrovskiy et al., 2018]. В верхней части уринской свиты дальнетайгинской серии обнаружен комплекс ранневендской палинофлоры [Голубкова и др., 2010; Sergeev et al., 2011; Moczvdlowska, Nagovitsin, 2012], который коррелируется [Sergeev et al., 2011] со второй комплексной зоной акантоморфной палинофлоры (ЕСАР) Южной Австралии [Grey, 2005]. Сходные ассоциации акантоморфид известны также в отложениях второй палинозоны формации Доушаньто Южного Китая [Xiao et al., 2014; Liu et al., 2014]. Эти ассоциации характерны для верхних горизонтов нижнего эдиакария с возрастом моложе 580 млн лет.

Проблемы глобальной корреляции вендских отложений Уринского поднятия связаны с отсутствием прямых изотопных датировок нижней части разреза и неопределенной продолжительностью преджуинского перерыва [Чумаков и др., 2013]. В этой связи корреляция ледниковых отложений большепатомской свиты с гляциопериодом Марино не является несомненной, и можно допустить корреляцию докембрийских ледниковых отложений на юге Сибири с более молодым гляциопериодом Гаскье [Рудько и др., 2017; Петров, 2018а] середины эдиакария (около 580 млн лет назад), с таким вариантом корреляции согласуются и биостратиграфические данные.

В статье представлены результаты изучения изотопного состава Sr в карбонатных породах дальнетайгинской серии, увязанные с секвенсстратиграфической схемой [Петров, 20186], кривой вариаций изотопного состава углерода [Рудько и др., 2017] и находками фоссилий [Sergeev et al., 2011; Леонов, Рудько, 2012]. В свете полученных данных обсуждается эволюция изотопного состава Sr в венде (эдиакарии) и глобальная корреляция отложений Уринского поднятия.

ПАЛЕОГЕОГРАФИЧЕСКАЯ РЕКОНСТРУКЦИЯ ДАЛЬНЕТАЙГИНСКОГО ПАЛЕОБАССЕЙНА

Возможность реконструкции глобальных вариаций изотопного состава Sr определяется существованием водной циркуляции между акваторией, в пределах которой формировались исследованные отложения и Мировым океаном. Отложения дальнетайгинской серии находятся на границе Сибирской платформы и Патомского сегмента Центрально-Азиатского складчатого пояса, в пределах которого они являются крупным стратиграфическим элементом осадочной последовательности Патомского бассейна [Чумаков и др., 2007]. Развитие Патомского бассейна происходило на фоне байкальской складчатости. вызванной аккрецией чужеродных террейнов (например, Байкало-Муйского террейна) к южной, в современных координатах, окраине Сибирской платформы [Powerman et al., 2015]. Отсутствие следов магматической активности моложе 1.8 млрд лет в источниках сноса осадков дальнетайгинской серии, указывает на формирование отложений на пассивной окраине [Чумаков и др., 2011а, 2011б; Powerman et al., 2015], в пределах свободно сообщавшегося с океаном окраинного моря. Смена источника сноса платформенного типа "внешним" источником зафиксирована на границе дальнетайгинской и жуинской серий и произошла не ранее 610 млн лет назад [Чумаков и др., 2011; Powerman et al., 2015]. Эти данные являются независимым свидетельством в пользу того, что акватория Патомского бассейна могла быть частично или полностью отделена сиалическими блоками Центрально-Азиатского складчатого пояса от Мирового океана лишь после завершения формирования дальнетайгинской серии. Главным аргументом в пользу отсутствия затрудненной водной циркуляции между "Патомским" окраинным морем и Мировым океаном является присутствие в отложениях дальнетайгинской серии фоссилий, имеющих глобальное распространение [Sergeev et al., 2011], и сходство характера вариаций δ^{13} С в отложениях дальнетайгинской серии с таковыми в постледниковых последовательностях эдиакария на других палеоконтинентах [Покровский и др., 2006; Рудько и др., 2017].

МАТЕРИАЛЫ И МЕТОДИКА ИССЛЕДОВАНИЙ

Породы баракунской, уринской и каланчевской свит в составе дальнетайгинской серии изучены нами в многочисленных обнажениях: в долине р. Ура, на западном и восточном крыльях Уринской антиклинали. Фациальная характеристика этих разрезов, реконструкции обстановок седиментации и внутрибассейновые корреляции были рассмотрены ранее [Петров, 20186].

Для изучения изотопного состава Sr использована представительная коллекция образцов карбонатных пород, отобранных со 151 стратиграфических уровней дальнетайгинской серии, предварительно прошедшая петрографическое и

Рис. 2. Вариации величины отношения ⁸⁷Sr/⁸⁶Sr в отложениях дальнетайгинской серии западного и восточного крыльев Уринской антиклинали и корреляция этих осадочных последовательностей с использованием секвенс-стратиграфической схемы [Петров, 20186].

1–8 – состав отложений: 1 – диамиктиты, 2 – песчаники, алевролиты, аргиллиты, 3 – алевро-аргиллиты, 4 – карбонаты, глинистые карбонаты, мергели, 5 – горизонт венчающих доломитов, 6 – интракластиты, 7 – оползневая брекчия, 8 – оолиты; 9 – стратиграфический перерыв; 10 – стратиграфическое положение изученных разрезов; 11, 12 – значения отношения ⁸⁷Sr/⁸⁶Sr в породах дальнетайгинской серии: 11 – с геохимическими признаками нарушения изотопной Rb-Sr системы, 12 – без геохимических признаков нарушения Rb–Sr-изотопной системы.

Секвенс-стратиграфия: S – границы секвенций; mf – границы максимального подъема уровня моря; TS – трансгрессивный тракт; HS – тракт высокого положения уровня моря. Свиты: bp – большепатомская, br – баракунская, ur – уринская, kl – каланчёвская; Zhu – жуинская серия. геохимическое изучение. Эта же коллекция была использована ранее для изучения вариаций δ^{13} С и δ^{18} О [Рудько и др., 2017]. На основании геохимических и петрографических данных о степени вторичного преобразования пород и по принципу наиболее равномерного распределения опробованных уровней в разрезе из упомянутой коллекции было выбрано 59 образцов для изучения изотопного состава Sr: 36 образцов — из сводного разреза западного крыла Уринской антиклинали и 23 образца — из разреза ее восточного крыла (рис. 2).

Образцы карбонатных пород были отшлифованы и обработаны 1 N HCl для удаления поверхностных загрязнений. Для изотопных исследований из участков образцов, в которых отсутствуют вторичные образования, были выбурены микропробы диаметром 3 мм (0.5 г) Для изучения химического состава основных элементов и элементов-примесей были использованы оставшиеся валовые пробы (около 10 г), растертые до состояния пудры. Содержание Са и Мд в них определялось весовым методом после растворения части пробы в 1 N HCl, а концентрации Mn и Fe – атомно-абсорбционным методом в лаборатории химико-аналитических исследований ГИН РАН. Содержание Sr измерено методом рентгенофлуоресцентного анализа.

Изучение изотопного состава Sr образцов проводилось в обогащенных стронцием карбонатных фракциях, выделенных путем ступенчатого растворения. Процедура включала предварительную обработку образца 0.01 N раствором HCl при комнатной 20–25°С и последующее растворение в 1 N соляной кислоте [Кузнецов и др., 2008]. Измерение изотопного состава Sr проводилось на многоколлекторном масс-спектрометре Triton TI. Средние значения ⁸⁷Sr/⁸⁶Sr в стандартных образцах NIST SRM 987 и EN-1 составляли в период работы соответственно 0.710289 ± 0.000005 ($2\sigma_{средн}$, n = 28) и 0.709213 ± 0.00008 ($2\sigma_{средн}$, n = 7). Поправка на возраст измеренного отношения ⁸⁷Sr/⁸⁶Sr в образцах была менее 0.00001.

РЕЗУЛЬТАТЫ

Изотопный состав Sr и химические критерии сохранности пород

При диагенетических преобразованиях карбонатного осадка и взаимодействии карбонатных минеральных фаз с внешним флюидом может происходить нарушение изотопной системы ⁸⁷Sr/⁸⁶Sr исходного осадка. Признаками таких процессов являются: возрастание в карбонатных породах концентраций малых элементов Fe, Mn, Mg; понижение концентраций Sr и значений δ^{13} C, δ^{18} O [Юдович и др., 1980; Veizer et al., 1999; Kuznetsov et al., 2013, 2017]. Анализ вариаций 87 Sr/ 86 Sr по разрезу, а также анализ зависимости между величиной отношения 87 Sr/ 86 Sr и содержанием примесных элементов в карбонатных породах дальнетайгинской серии показывают, что в части из них Rb–Sr-изотопная система была нарушена, тогда как другая часть не имеет признаков нарушения.

Результаты изотопных и химических анализов приведены в табл. 1. Измеренные величины отношения ⁸⁷Sr/⁸⁶Sr в карбонатных породах дальнетайгинской серии заметно варьируют, изменяясь от значений свойственных вендскому океану (0.70755–0.70850) вплоть до значений (0.71064), совершенно не характерных для хемо-биогенных морских осадков. Большой разброс значений при этом наблюдается даже в пределах небольших стратиграфических интервалов (от первых метров до первых десятков метров) нижней и верхней частей баракунской свиты, а также в верхней части каланчевской свиты на западном крыле Уринской антиклинали (см. рис. 2).

Самые высокие значения отношения ⁸⁷Sr/⁸⁶Sr наблюдаются в породах, обогащенных Mg, Mn, Fe, обедненных Sr и с резко пониженной величиной δ^{18} O (рис. 3). Такая зависимость свидетельствует о постседиментационном нарушении Sr-изотопной системы и ее обогащении радиогенным ⁸⁷Sr. Следовательно, минимальные отношения ⁸⁷Sr/⁸⁶Sr, измеренные для соответствующих стратиграфических интервалов, наиболее близки к исходным показателям среды седиментации.

Практика изучения древних карбонатных пород показывает, что благодаря большому объему "Sr-буфера" известняки с высокой концентрацией Sr эффективно сохраняют исходное отношение ⁸⁷Sr/⁸⁶Sr морских осадков [Veizer et al., 1999; Melezhik et al., 2009, 2015; Kuznetsov et al., 2013, 2017; Рудько и др., 2014]. Среди карбонатных пород баракунской и каланчевской свит встречаются известняки с высокими и очень высокими концентрациями Sr (вплоть до 3398 мкг/г), они же среди прочих пород имеют минимальные концентрации Mg, Fe и Mn. Карбонатные породы с явными признаками нарушения Sr-изотопной системы не встречаются среди известняков с содержанием Sr более 1050 мкг/г. Именно такие известняки демонстрируют минимальные значения отношения ⁸⁷Sr/⁸⁶Sr для соответствующих стратиграфических интервалов (см. табл. 1).

РУДЬКО и др.

Таблица 1. Изотопные и геохимические характеристики карбонатных пород дальнетайгинской серии

	Свита	Номер	Уровень, м*	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{13}C$	$\delta^{18}O$	Sr (mkt/t)	MHO (%)	Fe (%)	Mn (%)	Mg/Ca	Fe/Sr	Mn/Sr
		0004 5	2570	0 70818	3 5	83	(MRI/1) 680	6.61	0.084	0.004	0.012	1.24	0.06
крыла ли	Каланчевская	0904-3 0904-4	2507	0.70812	3.3 4 7	-6.9	1500	2.55	0.084	0.004	0.012 0.007	0.54	0.00
		0904-3	2505	0.70807	6.7	-6.7	1830	4.76	0.123	0.014	0.036	0.67	0.08
		0904-2	2503	0.70833	6.1	-7.9	960	0.96	0.024	0.003	0.006	0.25	0.03
		0904-1	2500.2	0.70815	5.9	-7.5	730	2.04	0.035	0.003	0.015	0.48	0.04
		15079	2297	0.70827	5.2	-7.1	1071	3.04	0.036	0.003	0.004	0.34	0.03
		15077	2270	0.70823	4.1	-8.1	810	2.91	0.061	0.004	0.05/	0.76	0.05
НО		15070	2204	0.70822	4 3 9	-0.7 -5.8	1237	2.11	0.043	0.003	0.037	0.39	0.05
но		0017 0	2175 7	0.70828	9.7	0.0	057	37.75	1 760	0.007	0.578	18 30	0.03
ост ИК	Уринская	0917-11	2175.7	0.70828	9. 4 7	-0.9 -9.3	2749	15.93	1.730	0.062	0.035	6.29	0.24
Сводный разрез в Уринской ант		0917-4	2120	0.70792	4.5	-9.0	1477	2.51	1.390	0.056	0.004	9.41	0.38
	Баракунская	0902-1	1188	0.70799	7.9	-8.1	3089	7.23	0.630	0.008	0.002	2.04	0.02
		0920-5	1182	0.70804	7.7	-8.7	1717	1.39	0.320	0.004	0.006	1.86	0.02
		0901-1	1178	0.70799	7.6	-7.8	2683	4.36	0.060	0.002	0.004	0.22	0.01
		0920-4	1173	0.71005	2.9	-8.1	873	3.03	0.006	0.001	0.008	0.06	0.01
		0922-2	973	0.70839	8.6	-9.3	633	19.72	0.130	0.005	0.010	2.05	0.08
		0922-4	972	0.70801	9 87	-3.3	701 765	8.12 10.03	0.018	0.001	0.017	0.24	0.01
		15095	575	0.70832	7.2	-10.0	1338	15.05	0.000	0.001	0.007	2.69	0.01 0.07
		15097	483	0.70762	3.4	-4.4	2240	3.79	0.025	0.005	0.036	0.11	0.02
		15096	481	0.70755	2.9	-4.8	2701	4.01	0.740	0.110	0.024	2.74	0.41
		15090	440	0.70755	4.3	-3.4	1902	3.82	0.021	0.002	0.024	0.11	0.01
	Каланчевская	15206	2000.5	0.70811	5.2	-9.2	1551	5.25	0.540	0.025	0.010	3.48	0.16
		0942-3	2000.0	0.70860	5.15	-4.9	301	13.53	0.210	0.007	0.230	6.99	0.24
		15202	1990	0.71045	3.2	-5.9	37	2.21	0.099	0.011	0.601	26.76	2.97
		15194	1972.3	0.70831	3./	-8.9	255	0.92	0.043	0.008	0.141	1.68	0.31
		15192	1964 5	0.70839	3.2	-9.8 -10.2	229	0.03	0.033	0.009	0.127	0.39	0.39
		15190	1962.6	0.70824	3.4	-9.4	382	1.25	0.012	0.004	0.043	0.31	0.11
		15189	1961	0.70877	2.5	-8.8	261	1.00	0.034	0.010	0.086	1.31	0.39
		15180	1950	0.70859	2.8	-7.4	71	15.37	0.191	0.009	0.526	26.86	1.20
		15230	1926	0.70853	4.4	-5.1	99	2.13	0.235	0.013	0.576	23.74	1.27
		15225	1887.5	0.70825	6.2	-7.5	628	2.78	0.032	0.001	0.069	0.51	0.02
- H		15223	1881	0.70834	6	-1.8	335	3.08	0.0/3	0.003	0.090	2.1/	0.09
Сводный разрез западного крыла Уринской антиклина		15221	1700	0.70828	5.5	-8.3 -7.2	2034	3.11	0.042	0.002 0.004	0.022	0.08	0.03
		15170	1635	0.70829	5.2	-8.3	1371	10.08	0.250	0.004	0.028	1.82	0.02
	3.7	0940-8	1582.4	0.70807	4.2	-9.8	2166	6.10	0.470	0.140	0.010	2.17	0.65
	Уринская	0940-13	1575	0.70828	3.7	-11.4	627	60.70	0.670	0.120	0.051	10.68	1.91
	-	15126	646	0.71005	3.3	-7.3	996	1.76	0.001	0.001	0.070	0.01	0.01
	Баракунская	15124	638.5	0.70802	7.8	-7.7	2570	1.47	0.021	0.001	0.003	0.08	0.00
		15116	625	0.70801	7.9	-8.4	2666	2.21	0.081	0.008	0.023	0.30	0.03
		15115	618	0.70806	7.7	-8.3	2850	3.96	0.036	0.001	0.002	0.13	0.00
		15114	616	0.70801	8.6	-/.4	3398	1.43	0.020	0.000	0.004	0.06	0.00
		15112	605	0.70848	0.5	-0.1	958	2.02	0.023	0.001	0.022	0.24	0.01
		0937-8	596.5	0.71064	6	-9.3	826	2.00	0.023	0.001	0.283	0.28	0.01
		0937-9	596	0.70838	6	-7.4	714	5.01	0.006	0.001	0.016	0.08	0.02
		0937-11	589	0.70819	8.8	-8.2	1478	4.10	0.014	0.001	0.020	0.09	0.01
		15106	294	0.70790	0.7	-9.9	1382	4.08	0.065	0.004	0.010	0.47	0.03
		0935-9	285.6	0.70785	0.2	-7.0	2031	3.48	0.023	0.003	0.004	0.12	0.01
		0935-7	281.3	0.70807	0.2	-10.1	1331	5.49	0.049	0.004	0.011	0.37	0.03
		0933-0	280.3	0.70818	0.4	-8.4	1205	2.38 114	0.041	0.004	0.006	0.32	0.03
		0935-3	276.3	0.70782	_03	-9.4 -7.2	1234	1.58	0.036	0.004	0.020	0.29	0.03
		15105	275.5	0.70782	0.1	-10.6	860	1.25	0.056	0.005	0.006	0.66	0.05
		0935-1	275.4	0.70928	-0.3	-10.2	783	4.08	0.130	0.006	0.016	1.66	0.07
		0935-2	275.2	0.71060	-0.5	-10.1	958	1.72	0.040	0.004	0.005	0.41	0.05

Примечание. *Уровень определялся относительно подошвы горизонта венчающих доломитов. Курсивом обозначены образцы, выбранные для реконструкции вековых вариаций отношения ⁸⁷Sr/⁸⁶Sr.

Рис. 3. Зависимости между отношением 87 Sr/ 86 Sr концентрацией Sr и показателями Mn/Sr, Fe/Sr, Mg/Ca в породах дальнетйгинской серии.

1 — все породы; 2—4 — породы сводного разреза западного крыла Уринской антиклинали на различных стратиграфических интервалах: 2 — интервал 275—295 м, 3 — интервал 589—646 м, 4 — интервал 1876—2005 м; пунктирная линия проведена на отметке Sr = 1050, серые стрелки показывают направление диагенеза, серый квадрат — породы с "ненарушенной" Rb—Sr-системой.

Нарушение изотопных систем C и Sr почти всегда приводит к понижению значения δ^{13} C и повышению отношения ⁸⁷Sr/⁸⁶Sr в карбонатных породах. Поэтому хорошим подтверждением сохранности изотопных меток в обогащенных Sr известняках дальнетайгинской серии является наблюдающееся в них на отдельных интервалах разреза комплементарное повышение величины отношения ⁸⁷Sr/⁸⁶Sr на фоне возрастания значений δ^{13} C (см. табл. 1, рис. 3). Для реконструкции вековых вариаций отношения ⁸⁷Sr/⁸⁶Sr в вендском океане мы используем известняки с концентрацией Sr > 1050 мкг/г. Эти же образцы отвечают геохимическим критериям выбора "неизмененных пород" (Mn/Sr < 0.2, Fe/Sr < 5 и Mg/Ca < 0.024), которые обычно используются при ре-

конструкции вековых вариаций изотопного состава Sr в докембрийском океане [Кузнецов и др., 2008, 2014]. Если выбранные таким образом значения отношения ⁸⁷Sr/⁸⁶Sr в субсинхронно формировавшихся слоях карбонатных пород показывали дисперсию больше погрешности определения, то из таких значений были выбраны наиболее низкие.

Вековые вариации отношения ⁸⁷Sr/⁸⁶Sr в палеобассейне

Выбранные на основании геохимических критериев сохранности образцы известняков с различных стратиграфических уровней разреза дальнетайгинской серии, позволяют реконструировать вековые вариации отношения ⁸⁷Sr/⁸⁶Sr среды осадконакопления. Значения отношений ⁸⁷Sr/⁸⁶Sr, определенные в субсинхронных отложениях западной и восточной фациальных зон дальнетайгинской серии Уринского поднятия, хорошо согласуются (см. рис. 2).

С раннебаракунской трансгрессией связано формирование нижней, преимущественно терригенной пачки баракунской свиты и отрицательный (до -8 % PDB) экскурс δ^{13} C в карбонатах. В вышележащих, преимущественно карбонатных отложениях фиксируется постепенный рост δ^{13} C, а минимальное отношение ⁸⁷Sr/⁸⁶Sr составляет 0.70782. Позднее, с развитием трансгрессии, показатель δ^{13} C достигает в карбонатных осадках значений близких к 0% PDB, а отношение ⁸⁷Sr/⁸⁶Sr в них понижается до 0.70755. Затем, во время максимального затопления, отмеченного поверхностью mfl (см. рис. 2), величина отношения ⁸⁷Sr/⁸⁶Sr в карбонатах возрастает до 0.70790. На этапе позднебаракунского высокого стояния уровня моря отмечается рост значений отношения ⁸⁷Sr/⁸⁶Sr до 0.70806. После того как рост значения δ^{13} С достигает своего максимума (+10‰), происходит постепенное понижение величины отношения ⁸⁷Sr/⁸⁶Sr от 0.70819 до 0.70799. С началом раннеуринской трансгрессии широко распространились и существенно преобладали обстановки терригенной седиментации, и этот достаточно продолжительный этап развития бассейна не охарактеризован С-О-Sr-изотопными данными.

Образованные на ранней стадии проградации каланчевской карбонатной платформы оползневые карбонатные брекчии с величиной отношения ⁸⁷Sr/⁸⁶Sr равной 0.70792, характеризуют позднеуринское—раннекаланчевское время. По мере роста каланчевской карбонатной платформы, в отложениях происходит рост значений δ^{13} C от +2 до +8‰ и ⁸⁷Sr/⁸⁶Sr от 0.70807 до 0.70827, а в позднекаланчевское время на фоне прогрессивного обмеления в них фиксируется постепенное снижение величины δ^{13} C до околонулевых значений. На заключительной стадии регрессии минимальное значение отношения ⁸⁷Sr/⁸⁶Sr карбонатных осадков составило 0.70807 (см. рис. 2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Значения отношения ⁸⁷Sr/⁸⁶Sr, измеренные в известняках дальнетайгинской серии (0.70755-0.70827) с высокой концентрацией Sr (>1050 мкг/г), лежат внутри диапазона значений, полученных ранее [Виноградов и др., 1996; Покровский и др., 2006], оставаясь при этом в пределах значений, характерных для нормально морских осадков фанерозоя (0.7068-0.7092) [Veizer et al., 1999]. В целом, в разрезе постледниковых отложений дальнетайгинской серии отношение ⁸⁷Sr/86Sr возрастает от 0.70755 до 0.70806 в баракунское время и от 0.70792 до 0.70827 в каланчевское (рис. 4). В известняках жуинской серии, залегающей со следами стратиграфического несогласия на породах дальнетайгинской серии, рост отношения ⁸⁷Sr/⁸⁶Sr продолжается: от 0.70802 до 0.70862 [Melezhik et al., 2009]. Таким образом, в пределах всего интервала, начиная от ледниковых отложений большепатомской свиты и до подошвы кембрия (немакыт-далдынского яруса позднего венда), на южной окраине Сибири происходил постепенный рост отношения 87 Sr/ 86 Sr в морской воде.

В целом, на протяжении всего криогений-эдиакарского отрезка геологической истории регистрируется прогрессивный рост отношения ⁸⁷Sr/⁸⁶Sr в морской воде [Halverson et al., 2007; Sawaki et al., 2010; Кузнецов и др., 2014; Bold et al., 2016], что хорошо согласуется с нашими данными. Наблюдающиеся при этом флуктуации величины ⁸⁷Sr/⁸⁶Sr в карбонатных осадках, возможно, отражают более сложную структуру вековых вариаций отношения ⁸⁷Sr/⁸⁶Sr в морской воде, обусловленную палеогеографическими изменениями. Так, в базальных слоях баракунской свиты, которые формировались во время дегляциации или сразу вслед за ней [Петров, 2018а], установлено значение 87 Sr/ 86 Sr = 0.70782, что выше значений отношения 87 Sr/ 86 Sr = 0.70755, определенного в карбонатных породах со следующего стратиграфического уровня в разрезе. Вероятно, богатые радиогенным ⁸⁷Sr продукты выветривания континентальной коры, накопленные во время ледниковья, поступавшие с освобождавшихся ото льда

Рис. 4. Sr-хемостратиграфическая корреляция ледниковых отложений большепатомской свиты дальнетайгинской серии, ледниковых отложений гляциопериода Марино и отложений, предваряющих изотопную аномалию Шурам-Вонока.

1 – ледниковые отложения; 2 – венчающие доломиты; 3 – комплекс микрфоссилий ECAP; 4 – вендские проблематики Beltanelloides; 5 – значения δ^{13} C; 6 – значения ⁸⁷Sr/⁸⁶Sr по литературным данным; 7 – значения ⁸⁷Sr/⁸⁶Sr, полученные в настоящей работе. В скобках даны литературные источники: а – [Melezhik et al., 2009], 6 – [Рудько и др., 2017], в – [Sawaki et al., 2010], г – [Halverson et al., 2007], д – [Burns et al., 1994], е – [Prave et al., 2016], ж – [Zhou et al., 2019]. обширных зандровых равнин, взаимодействовали с пресной и морской водой, что обусловило быстрый рост отношения 87 Sr/ 86 Sr в Мировом океане в течение сравнительно небольшого отрезка времени. С отступанием ледников и развитием трансгрессии, циркуляция вод окраинных морей улучшилась, а резервуар богатых 87 Sr продуктов выветривания континентальной коры частично исчерпался. Таким образом, влияние терригенного сноса на общий баланс изотопного состава Sr в Мировом океане уменьшилось, и это отразилось в понижении отношения 87 Sr/ 86 Sr в морской воде до 0.70755. В дальнейшем в Мировом океане наблюдался рост отношения 87 Sr/ 86 Sr до 0.70804—0.70819.

Наблюдаемые эпизоды понижения отношения ⁸⁷Sr/⁸⁶Sr совпадают с этапами обмеления моря на завершающих стадиях формирования баракунской и уринско-каланчевской секвенций. Поскольку усиление влияния метеорного диагенеза или терригенного сноса при обмелении бассейна должны приводить, скорее, к росту отношения ⁸⁷Sr/⁸⁶Sr, мы рассматриваем эти эпизоды как отражение вековых вариаций отношения ⁸⁷Sr/⁸⁶Sr в морской воде Патомского бассейна.

Вековые вариации ⁸⁷Sr/⁸⁶Sr в отложениях дальнетайгинской серии охватывают, очевидно, весьма продолжительный период времени, в течение которого были образованы две секвенции дальнетайгинского цикла седиментации, каждая из которых была связана со последовательной сменой этапов масштабного (более 1000 м осадков) прогибания дна бассейна и его компенсации. Временные интервалы, в течение которых могут происходить подобные процессы, составляют миллионы или десятки миллионов лет, что зависит от конкретной тектонической обстановки [Einsele, 1992]. Зная, что отношение ⁸⁷Sr/⁸⁶Sr возрастало в отложениях дальнетайгинской серии от 0.70755 до 0.70827, и что скорость изменения отношения ⁸⁷Sr/⁸⁶Sr в кайнозое и мезозое не превышала 0.00005/млн лет [McArthur et al., 2001; Wierzbowski et al., 2017], можно оценить минимальную длительность накопления постгляциальных отложений дальнетайгинской серии в 14 млн лет.

Данные о вариациях отношения 87 Sr/ 86 Sr в постгляциальных отложениях дальнетайгискинской серии Уринского поднятия вместе с полученными ранее δ^{13} С данными могут служить основой для хемостратиграфической корреляции изученного разреза с типовыми разрезами эдиакария. Ниже мы рассмотрим два варианта корреляции разреза Уринского поднятия, которые по разному определяют возраст ледниковых отложений большепатомской свиты и продолжительность преджуинского перерыва.

Корреляция большепатомской свиты с гляциопериодом Марино

Надежно датированные горизонты ледниковых отложений, соответствующих гляциопериоду Марино, известны в Намибии, Китае и Канаде. В согласно перекрывающих эти отложения карбонатных породах установлены значения 87 Sr/ 86 Sr. близкие к таковым в наименее измененных породах баракунской свиты дальнетайгинской серии. Ледниковая формация Гауб в Намибии датирована по горизонтам пеплов в нижней и верхней ее частях, около 639 и 635 млн лет соответственно [Prave et al., 2016], и согласно перекрывается карбонатами формации Майберг, в которой величина отношения ⁸⁷Sr/⁸⁶Sr возрастает снизу вверх по разрезу от 0.70717 до 0.70805 [Halverson et al., 2007] (см. рис. 4). Ледниковые отложения формации Наньто в Южном Китае с возрастом 654-635 млн лет [Zhou et al., 2019] согласно перекрывают карбонатные отложения формации Доушаньто, в которых на фоне положительного экскурса δ^{13} С отношение ⁸⁷Sr/⁸⁶Sr варьирует от 0.7077 до 0.7085. Величины отношения ⁸⁷Sr/⁸⁶Sr от 0.70753 до 0.70766 наблюдаются в известняках формации Хайхук (Канада), которые перекрывают гляциогоризонт Стелфокс, датированный 632 млн лет [Rooney et al., 2015]. Таким образом, перечисленные данные по разрезам Намибии, Китая и Канады согласуются с традиционным представлением о принадлежности ледниковых отложений большепатомской свиты к гляциопериоду Марино. Данные δ^{13} С в разрезах Намибии [Halverson et al., 2007] и Китая [Tahata et al., 2013] также не противоречат такой схеме корреляции.

Корреляция большепатомской свиты с гляциопериодом Гаскье

Гляциопериод Гаскье, длившийся всего 340 тыс. лет, в стратотипе восточного Ньюфаундленда (Канада) датирован с максимальной точностью: от 579.63 ± 0.15 и 579.24 ± 0.17 млн лет [Ри et al., 2016]. Однако положение этого события на кривой вековых вариаций отношения ⁸⁷Sr/⁸⁶Sr не известно, поскольку разрезы, в которых ледниковые отложения с возрастом около 580 млн лет имеют ясные соотношения с карбонатными толщами, не известны. Для реконструкции вариаций ⁸⁷Sr/⁸⁶Sr после ледникового события Гаскье, Ф. Мак-Дональд с соавторами [McDonald et al., 2013] использовали данные, полученные из карбонатных слоев формации Кхуфай в Омане [Burns et al., 1994] и из нижней части третьей пачки формации Доушаньто в Китае [Sawaki et al., 2010] (см. рис. 4). Эти слои отмечены положительным экскурсом δ¹³С и предшествуют слоям с отрицательной аномалией δ¹³С Шурам-Вонока, несогласия между ними не наблюдается. Величина отношения ⁸⁷Sr/⁸⁶Sr в отложениях формации Кхуфай снизу вверх постепенно возрастает от 0.70825 до 0.70855, а в ранее упомянутых слоях формации Доушаньто - от 0.70771 до 0.70878. Несмотря на то, что эти значения отношения ⁸⁷Sr/⁸⁶Sr получены из доломитов с очень низкими концентрациями Sr (29-150 мкг/г) и, таким образом, уступают по качеству всем рассмотренным выше данным, они частично совпадают со значениями отношения ⁸⁷Sr/⁸⁶Sr, которые получены нами для верхней части дальнетайгинской серии.

Таким образом, имеюшиеся глобальные С-и Sr-хемостратиграфические данные как будто не исключают корреляцию большепатомских диамиктитов с гляциопериодом Гаскье. Однако при отсутствии надежных данных о вариациях отношения ⁸⁷Sr/⁸⁶Sr в морской воде в период между оледенением Гаскье и событием Шурам-Вонока, такая корреляция является лишь предполагаемой. Контраргументом являются существующие представления об исключительной принадлежности кэп-доломитов со специфическими литологическими и изотопными характеристиками (δ¹³С около −4 ‰, ⁸⁷Sr/⁸⁶Sr > 0.7150) [Покровский и др., 2010], известных в основании баракунской свиты [Покровский и др., 2010; Чумаков и др., 2013], к завершающей стадии гляциопериода Марино [Hoffman et al., 1998; Knoll et al., 2006]. В этом случае традиционный вариант сопоставления отложений большепатомской свиты с гляциопериодом Марино представляется предпочтительным.

Традиционная корреляция ставит вопрос о положении интервала, соответствующего ледниковому событию Гаскье, в разрезе венда Сибири. Отсутствие отрицательного экскурса δ^{13} С в разрезе дальнетайгинской серии, известного в средней части формации Доушаньто (см. рис. 3) [Покровский и др., 2006; Рудько и др., 2017], а также отсутствие признаков высокоамплитудных эвстатических колебаний уровня моря в Патомском бассейне в дальнетайгинское время [Петров, 20186], позволяют предположить крупное стратиграфическое несогласие на границе между дальнетайгинской и жуинской сериями. Длительный перерыв, соответствующий этому несогласию, мог поглотить следы оледенения Гаскье. Такая точка

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 3 2020

зрения подкрепляется произошедшей во время преджуинского перерыва масштабной перестройкой конфигурации Патомского бассейна и сменой источников сноса терригенного материала [Чумаков и др., 2011а, 20116; Powerman et al., 2015].

ЗАКЛЮЧЕНИЕ

Карбонатные отложения дальнетайгинской серии включают несколько горизонтов известняков, которые значительно (от 1050 до 3400 мкг/г) обогащены стронцием. Эти известняки регистрируют рост отношения ⁸⁷Sr/⁸⁶Sr в морской воде в течение венда, осложненный флуктуациями подчиненного порядка. Изученные карбонатные отложения дальнетайгинской серии накапливалась в течение продолжительного (не менее 14–15 млн лет) интервала времени, между одним из позднепротерозойских ледниковых эпизодов и периодом, соответствующим углеродной аномалии Шурам-Вонока.

Присутствие карбонатных последовательностей, надстраивающих ледниковые отложения, датированные около 635 млн лет, со значениями ⁸⁷Sr/⁸⁶Sr, практически идентичными таковым в баракунской свите, делает предпочтительным сопоставление большепатомской свиты дальнетайгинской серии с гляциопериодом Марино. Специфический горизонт венчающих доломитов, залегающий в основании баракунской свиты, остается в таком случае уникальной характеристикой границы криогения и эдиакария, а перерыв между накоплением дальнетайгинской и вышележащей жуинской сериями составляет десятки миллионов лет. Если геохронологическими методами будет доказано соответствие отложений большепатомской свиты средневендскому гляциопериоду Гаскье, то Sr-изотопные данные, полученные для дальнетайгинской серии, могут стать основой для реконструкции вековых вариаций отношения ⁸⁷Sr/⁸⁶Sr в интервале 580-560 млн лет.

БЛАГОДАРНОСТИ

Мы признательны А.В. Шацилло, Б.Г. Покровскому и Н.М. Чумакову за дискуссии, вдохновлявшие нас в этой работе, и благодарим анонимных рецензентов за ценные замечания.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Изотопные и геохимические исследования, а также подготовка статьи выполнены при поддержке РНФ (проект № 18-77-00059). Экспедиционные работы по

сбору полевых материалов проводились при поддержке РФФИ (проекты № 17-05-00021 и 19-05-00155).

СПИСОК ЛИТЕРАТУРЫ

Виноградов В.И., Пичугин Н.П., Быховер В.Н. и др. Изотопные признаки и время эпигенетических преобразований верхнедокембрийских отложений Уринского поднятия // Литология и полез. ископаемые. 1996. № 1. С. 68–78.

Голубкова Е.Ю., Раевская Е.Г., Кузнецов А.Б. Нижневендские комплексы микрофоссилий Восточной Сибири в р ешении стратиграфических проблем региона // Стратиграфия. Геол. корреляция. 2010. Т. 18. № 4. С. 3–27.

Кузнецов А.Б., Овчинникова Г.В., Семихатов М.А. и др. Sr изотопная характеристика и Pb-Pb возраст карбонатных пород саткинской свиты, нижнерифейская бурзянская серия Южного Урала // Стратиграфия. Геол. корреляция. 2008. Т. 16. № 2. С. 16–34.

Кузнецов А.Б., Семихатов М.А., Горохов И.М. Возможности стронциевой изотопной хемостратиграфии в решении проблем стратиграфии верхнего протерозоя (рифея и венда) // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 6. С. 3–25.

Кузнецов А.Б., Семихатов М.А., Горохов И.М. Стронциевая изотопная хемостратиграфия: основы метода и его современное состояние // Стратиграфия. Геол. корреляция. 2018. Т. 26. № 4. С. 3–23.

Леонов М.В., Рудько С.В. Находка вендских фоссилий в отложениях дальнетайгинской серии Патомского на-горья // Стратиграфия. Геол. корреляция. 2012. Т. 20. № 5. С. 96–99.

Петров П.Ю. Постледниковые отложения дальнетайгинской серии: ранний венд Уринского поднятия Сибири. Сообщение 1. Баракунская свита // Литология и полез. ископаемые. 2018а. № 5. С. 459–472.

Петров П.Ю. Постледниковые отложения дальнетайгинской серии: ранний венд Уринского поднятия Сибири. Сообщение 2. Уринская и каланчевская свиты и история бассейна // Литология и полез. ископаемые. 20186. № 6. С. 521–538.

Покровский Б.Г., Мележик В.А., Буякайте М.И. Изотопный состав С, О, Sr и S в позднедокембрийских отложениях патомского комплекса, Центральная Сибирь. Сообщение 1. Результаты, изотопная стратиграфия и проблемы датирования // Литология и полез. ископаемые. 2006. № 5. С. 505–530.

Покровский Б.Г., Чумаков Н.М., Мележик В.А., Буякайте М.И. Геохимические особенности и проблемы генезиса неопротерозойских "венчающих доломитов" Патомского палеобассейна // Литология и полез. ископаемые. 2010. № 6. С. 644–661.

Рудько С.В., Кузнецов А.Б., Пискунов В.К. Стронциевая изотопная хемостратиграфия верхнеюрских карбонатных отложений плато Демерджи (Горный Крым) // Стратиграфия. Геол. корреляция. 2014. Т. 22. № 5. С. 52–65.

Рудько С.В., Петров П.Ю., Кузнецов А.Б. и др. Уточненный тренд δ¹³С в дальнетайгинской серии Уринского поднятия (венд, юг Средней Сибири) // ДАН. 2017. Т. 477. № 5. С. 590–594.

Семихатов М.А., Овчинникова Г.В., Горохов И.М. и др. Рb-Pb изохронный возраст и Sr-изотопная характеристика верхне-юдомских карбонатных отложений (венд Юдомо-Майского прогиба, Восточная Сибирь) // ДАН. 2003. Т. 393. № 1. С. 83–87.

Семихатов М.А., Кузнецов А.Б., Подковыров В.Н. и др. Юдомский комплекс стратотипической местности: С-изотопные хемостратиграфические корреляции и соотношение с вендом // Стратиграфия. Геол. корреляция. 2004. Т. 12. № 5. С. 3–29.

Семихатов М.А., Кузнецов А.Б., Чумаков Н.М. Изотопный возраст границ общих стратиграфических подразделений верхнего протерозоя (рифея и венда) России: эволюция взглядов и современная оценка // Стратиграфия. Геол. корреляция. 2015. Т. 23. № 6. С. 16–27.

Чумаков Н.М., Покровский Б.Г., Мележик В.А. Геологическая история патомского комплекса, поздний докембрий, Средняя Сибирь // ДАН. 2007. Т. 413. № 3. С. 379–383.

Чумаков Н.М., Капитонов И.Н., Семихатов М.А. и др. Вендский возраст верхней части патомского комплекса средней сибири: U-Pb LA-ICPMS датировки обломочных цирконов никольской и жербинской свит // Стратиграфия. Геол. корреляция. 2011а. Т. 19. № 2. С. 115–119.

Чумаков Н.М., Линнеманн У., Хофманн М., Покровский Б.Г. Неопротерозойские ледниковые покровы Сибирской платформы: U–Pb–LA–ICP–MS датировка обломочных цирконов большепатомской свиты и геотектоническое положение источников сноса // Стратиграфия. Геол. корреляция. 2011б. Т. 19. № 6. С. 105–112.

Чумаков Н.М., Семихатов М.А., Сергеев В.Н. Опорный разрез вендских отложений юга Средней Сибири // Стратиграфия. Геол. корреляция. 2013. Т. 21. № 4. С. 26–51.

Юдович Я.Э., Майдаль Т.В., Иванова Т.И. Геохимия стронция в карбонатных отложениях. Л.: Наука, 1980. 152 с.

Bobrovskiy I., Hope J., Krasnova A. et al. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis // Nature Ecology & Evolution. 2018. V. 2. № 3. P. 437–440.

Bold U., Smith E.F., Rooney A.D. et al. Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: The backbone for Cryogenian and early Ediacaran chemostratigraphic records // Am. J. Sci. 2016. V. 316. № 1. P. 1–63.

Burns S. J., Haudenschild U., Matter A. The strontium isotopic composition of carbonates from the late Precambrian (560–540 Ma) Huqf Group of Oman // Chem. Geol. 1994. V. 111. P. 269–282.

Calver C.R., Crowley J.L., Wingate M.T.D. et al. Globally synchronous Marinoan deglaciation indicated by U–Pb geochronology of the Cottons Breccia, Tasmania, Australia // Geology. 2013. V. 41. № 10. P. 1127–1130. *Condon D., Zhu M., Bowring S. et al.* U–Pb Ages from the Neoproterozoic Doushantuo Formation, China // Science. 2005. V. 308. P. 95–98.

Grey K. Ediacaran palynology of Australia // Mem. Assoc. Australas. Palaeontologists. 2005. № 31. P. 1–439.

Einsele G. Sedimentary basins: evolution, facies, and sediment budget. Berlin, Heidelberg: Springer-Verlag. 1992. 792 p.

Halverson G.P., Dudás F.Ö., Maloof A.C., Bowring S.A. Evolution of the 87 Sr/ 86 Sr composition of Neoproterozoic seawater // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007. V. 256. No 3–4. P. 103–129.

Hoffman P.F., Kaufman A.J., Halverson G.P., Schrag D.P. A Neoproterozoic snowball earth // Science. 1998. V. 28. № 5381. P. 1342–1346.

Knoll A., Walter M., Narbonne G., Christie Blick N. The Ediacaran Period: a new addition to the geologic time scale // Lethaia. 2006. V. 39. № 1. P. 13–30.

Kuznetsov A.B., Ovchinnikova G.V., Gorokhov I.M. et al. Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb-Pb dating of carbonates from the Baikal type section, southeastern Siberia // J. Asian Earth Sci. 2013. V. 62. P. 51–66.

Kuznetsov A.B., Bekker A., Ovchinnikova G.V. et al., Unradiogenic strontium and moderate-amplitude carbon isotope variations in early Tonian seawater after the assembly of Rodinia and before the Bitter Springs Excursion // Precambrian Res. 2017. V. 298. P. 157–173.

Liu P., Xiao S., Yin C. et al. Ediacaran acanthomorphic acritarchs and other microfossils from cherts nodules of the Upper Doushantuo Formation in the Yangtze Gorges area, south China // Paleontol. Mem. 2014. V. 72. P. 1-139.

Macdonald F.A., Strauss J.V., Sperling E.A. et al. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada // Chem. Geol. 2013. V. 362. P. 250–272.

McArthur J.M., Howarth R.J., Bailey T.R. Strontium isotope stratigraphy LOWESS Version 3. Best-fit line to the marine Sr isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age // J. Geol. 2001. V. 109. № 2. P. 155–169.

Melezhik V.A., Pokrovsky B.G., Fallick A.E. et al. Constraints on ⁸⁷Sr/⁸⁶Sr of Late Ediacaran seawater: insight from Siberian high-Sr limestones // J. Geol. Soc. London. 2009. V. 166. P. 183–191.

Melezhik V.A., Ihlen P.M., Kuznetsov A.B. et al. Pre-Sturtian (800–730 Ma) depositional age of carbonates in sedimentary sequences hosting stratiform iron ores in the Uppermost Allochthon of the Norwegian Caledonides: a chemostratigraphic approach // Precambrian Res. 2015. V. 261. P. 272–299.

Moczydlowska M., Nagovitsin K. Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia // Precambrian Res. 2012. V. 198–199. P. 1–24.

Narbonne G.M., Xiao S., Shields G.A. The Ediacaran Period // The geologic time scale / Eds F.M. Gradstein et al. Oxford: Elsevier, 2012. P. 413–435.

Powerman V., Shatsillo A., Chumakov N. et al. Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia // Precambrian Res. 2015. V. 267. P. 39–71.

Prave A.R., Condon D.J., Hoffmann K.H. et al. Duration and nature of the end-Cryogenian (Marinoan) glaciation // Geology. 2016. V. 44. № 8. P. 631–634.

Pu J.P., Bowring S.A., Ramezani J. et al. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota // Geology. 2016. V. 44. N_{2} 11. P. 955–958.

Rooney A.D. Strauss J.V., Brandon A.D., Macdonald F.A. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations // Geology. 2015. V. 43. № 5. P. 459–462.

Sawaki Y., Ohno T., Tahata M. et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the three Gorges area, South China // Precambrian Res. 2010. V. 176(1–4). P. 46–64.

Sergeev V.N., Knoll A.H., Vorob'eva N.G. Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance // J. Paleontol. 2011. V. 85(5). P. 987–1011.

Tahata M., Ueno Y., Ishikawa T. et al. Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: decoding temperature and environmental changes through the Ediacaran // Gondwana Res. 2013. V. 23(1). P. 333–353.

Veizer J., Ala D., Azmy K. et al. 87 Sr/ 86 Sr, δ^{13} C and δ^{18} O evolution of Phanerozoic seawater // Chem. Geol. 1999. V. 161. \mathbb{N} 1–3. P. 59–88.

Wierzbowski H., Anczkiewicz R., Pawlak J. et al. Revised Middle–Upper Jurassic strontium isotope stratigraphy // Chem. Geol. 2017. V. 466. P. 239–255.

Williams G.E., Schmidt P.W. Shuram–Wonoka carbon isotope excursion: Ediacaran revolution in the world ocean's meridional overturning circulation // Geoscience Frontiers. 2018. V. 9(2). P. 391–402.

Xiao S., Zhou C., Liu P. et al. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation // J. Paleontol. 2014. V. 88(1). P. 1–67.

Zhou C., Huyskens M.H., Lang X. et al. Calibrating the terminations of Cryogenian global glaciations // Geology. 2019. V. 47(3). P. 251–254.

Sr-isotope Composition in Limestones of the Dal'Nyaya Taiga Group of the Patom Basin: Vendian Reference Section of Southern Siberia

S. V. Rud'ko^{1, 2, #}, A. B. Kuznetsov¹, P. Yu. Petrov²

¹Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Makarova emb., 2, St. Petersburg, 199034 Russia ²Geological Institute, Russian Academy of Sciences, Pyzhevsky lane, 7, Moscow 119017 Russia [#]e-mail: svrudko@gmail.com

New data on the 87 Sr/ 86 Sr ratio variations in carbonate sediments of the Dalnayay Taiga Group of the Middle Siberia reference section at the Ura uplift are presented. Variations of the 87 Sr/ 86 Sr ratio are shown against the background of the sequences-stratigraphic scheme reflecting the evolution of the paleobasin as well as the δ^{13} C variations and paleontological data. Limestone with a high (>1050 µg/g) strontium concentration which does not show any signs of alteration of the Sr-isotope system was used for the reconstruction of secular 87 Sr/ 86 Sr ratio variations. An increase in the 87 Sr/ 86 Sr ratio from 0.70755 to 0.70823 complicated by fluctuations of the subordinate order was established in seawater during the accumulation of the Dalnyaya Taiga Group carbonate sediments. Duration of post-glacial deposition of the Dalnyaya Taiga Group is estimated as short as 14-15 million years. Secular variations of the 87 Sr/ 86 Sr ratio measured in the Dalnyaya Taiga Group limestones, are similar to the variations of this ratio that followed the Marinoan glacial period. Sr- and Cisotope correlations allow to assume a long hiatus between the the Dalnyaya Taiga and Zhuya Group.

Keywords: strontium isotopes, chemostratigraphy, secular variations, Vendian, Siberia.