СРАВНЕНИЕ МЕТОДОВ АППРОКСИМАЦИИ ГРАДИЕНТОВ В СХЕМАХ, ОРИЕНТИРОВАННЫХ НА ВИХРЕРАЗРЕШАЮЩИЕ РАСЧЕТЫ

© 2019 г. С. Бахнэ¹, С.М. Босняков^{1,2}, С.В. Михайлов^{1,2}, А.И. Трошин^{1,2}

¹Московский физико-технический институт ²Центральный аэрогидродинамический институт bakhne@phystech.edu

Работа выполнена при поддержке гранта РФФИ № 18-08-01436 А.

DOI: 10.1134/S0234087919100010

Рассмотрены различные способы аппроксимации градиентов повышенной точности, входящих в диффузионные потоки. Исследовались линейные комбинации разностных схем второго порядка для неравномерной сетки, переходящие в схемы четвёртого порядка в равномерном случае. Также рассматривались схемы третьего и четвёртого порядка аппроксимации градиентов на неравномерной сетке в нормальном и касательном направлении к грани ячейки соответственно, построенные на основе полиномов Лагранжа. Первоначальное тестирование схем было проведено на одномерных функциях: гладкой функции Гаусса и кусочно-линейной функции-зубце. Далее схемы были применены в прямом численном моделировании вихря Тейлора-Грина.

Ключевые слова: порядок аппроксимации, диффузионные потоки, градиенты.

COMPARISON OF GRADIENT APPROXIMATION METHODS IN SCHEMES DESIGNED FOR SCALE-RESOLVING SIMULATIONS

S. Bakhne¹, S.M. Bosniakov^{1,2}, S.V. Mikhailov^{1,2}, A.I. Troshin^{1,2}

¹Moscow Institute of Physics and Technology ²Central Aerohydrodynamic Institute

Various methods for improved accuracy approximation of the gradients entering the diffusion fluxes are considered. Linear combinations of 2nd order difference schemes for a non-uniform grid that transform into 4th order schemes in the uniform case were investigated. We also considered 3rd and 4th order schemes for approximating gradients on a non-uniform grid in the normal and tangent directions to the cell face, respectively, based on Lagrange polynomials. The initial testing was carried out on one-dimensional functions: a smooth Gauss function and a piecewise linear function. Next, the schemes were applied in direct numerical simulation of the Taylor-Green vortex.

Key words: approximation order, diffusion fluxes, gradients.

1. Введение

В настоящее время для решения актуальных задач вычислительной аэродинамики начинают применяться гибридные вихреразрешающие методы, которые в пристенной части пограничного слоя используют RANS-модели [1,2]. За счет этого сокращается количество ячеек расчётной сетки по сравнению с подходом «LES вплоть до стенки». Известно, что стандартные TVD-схемы малопригодны для вихреразрешающих расчетов из-за их высокой численной вязкости [3]. Один из путей уменьшения численной вязкости – аппроксимация конвективного оператора схемами повышенного порядка точности [4–6]. В указанных работах используется расширенный шаблон (обычно 7–11 ячеек), состоящий из нескольких более простых. При этом для расчёта диффузионных и источниковых членов чаще всего применяются центральные разности второго порядка точности.

В [7] рассмотрены расчёты вихря Тейлора-Грина при числах Рейнольдса выше 10³, т.е. в ситуации, когда шаг сетки существенно превышает масштаб Колмогорова. Показано, что недооценка скорости диссипации тем меньше, чем выше порядок центральных разностей, применяемых для расчёта, в том числе и диффузионных членов. Поэтому уточнение центральноразностных схем целесообразно для гибридных RANS-LES-расчётов. В [8] предлагается использовать скошенные формулы 4-го порядка для аппроксимации производных так, чтобы конечный шаблон состоял из 5 точек. Такой подход обладает хорошими спектральными свойствами. Также популярен метод наименьших квадратов [9].

Данная работа продолжает анализ способов снижения ошибки при вычислении диффузионных членов в конечно-объемных методах. В качестве отправной точки взят подход, описанный в [10]. Суть заключается в разделении исходной задачи на аппроксимацию трех типов градиентов: в центре ячейки, на грани ячейки в нормальном к ней направлении и в касательном. Основой для получения аппроксимаций градиентов 3-го и 4-го порядков в данной работе служит теория полиномов Лагранжа [11].

Структура данной статьи следующая. В разделе 2 представлены аппроксимации различных типов градиентов. В разделе 3 проводится их тестирование на модельных задачах о дифференцировании заданных функций. Раздел 4 посвящен тестированию аппроксимаций в задаче о вихре Тейлора-Грина при Re = 1600, в разделе 5 делаются выводы из работы.

2. Аппроксимации различных типов градиентов

2.1. Вычисление градиентов в центре ячейки. Рассмотрим фрагмент четырехугольной расчетной сетки (рис.1). Пренебрегая искривлением сеточных линий на масштабах шаблона схемы, рассмотрим методы нахождения производной функции *u*, заданной в центрах ячеек, в направлении какой-либо сеточной линии.

Пусть u_j , h_j , x_j – значение функции в *j*-й ячейке расчетной сетки, размер ячейки и координата центра соответственно. Обозначим искомую производную функции в центре ячейки u'_j , а расстояние между центрами соседних ячеек – Δ_{LL} , Δ_L , Δ_R , Δ_{RR} (рис.1).

Рис.1. Фрагмент расчётной области.

В общем случае на неравномерной сетке, используя трёхточечный шаблон, можно получить второй порядок аппроксимации производной:

$$u'_{j} = \frac{(u_{j} - u_{j-1})\Delta_{R}^{2} + (u_{j+1} - u_{j})\cdot\Delta_{L}^{2}}{\Delta_{L}\Delta_{R}^{2} + \Delta_{R}\Delta_{L}^{2}} + O(h^{2}).$$
(1)

Можно предложить следующую идею повышения точности метода. Рассмотрим формулу 4-го порядка аппроксимации на пятиточечном шаблоне в случае равномерной сетки [12]:

$$u'_{j} = \frac{u_{j-2} - 8u_{j-1} + 8u_{j+1} - u_{j+2}}{12h} + O(h^{4}).$$

Её можно переписать как комбинацию двух центральных разностей – на узком и широком шаблонах:

$$u'_{j} = \frac{4u'_{\pm 1} - u'_{\pm 2}}{3} + O(h^{4}), \quad \text{где} \quad u'_{\pm 1} = \frac{u_{j+1} - u_{j-1}}{2h}, \quad u'_{\pm 2} = \frac{u_{j+2} - u_{j-2}}{4h}.$$
 (2)

Формально заменим эти центральные разности трехточечными аппроксимациями (1) на шаблонах $\{j-1, j, j+1\}$ и $\{j-2, j, j+2\}$. Полученная схема будет иметь 4-го порядок точности на равномерной сетке. На неравномерной сетке порядок такого подхода будет снижаться до 2-го, но все равно можно ожидать уточнения по сравнению с исходным методом (1).

С другой стороны, используя 5-точечный шаблон, можно построить и более точную аппроксимацию производной. Следуя [11], запишем интерполяционную формулу Лагранжа для производной в общем виде

$$u'_{j} \approx \sum_{\substack{i=-N/2\\i\neq 0}}^{N/2} \frac{u_{j+i} - u_{j}}{x_{j+i} - x_{j}} \cdot \prod_{\substack{k=-N/2\\k\neq 0, i}}^{N/2} \frac{x_{j} - x_{j+k}}{x_{j+i} - x_{j+k}}.$$
(3)

Легко убедиться, что при N = 2 формула (3) совпадает с (1). При N = 4 получим аппроксимацию производной, использующую значение функции в 5 точках и сохраняющую 4-й порядок на неравномерной сетке.

2.2. Вычисление касательных градиентов на грани ячейки. Вторая задача состоит в интерполяции ранее вычисленных производных u'_{j-1} , u'_j , u'_{j+1} , u'_{j+2} , из центров ячеек на грань. Интерполированное значение далее будем обозначать $u'_{j+1/2}$ (рис.2).

Рис.2. Интерполяция производных из центров ячеек на грань.

В качестве базового подхода возьмем линейную интерполяцию по 2 ближайшим ячейкам. Она имеет второй порядок аппроксимации:

$$u'_{j+1/2} = \frac{u'_j \cdot \Delta_R + u'_{j+1} \cdot \Delta_L}{\Delta_L + \Delta_R} + O(h^2), \qquad (4)$$

где $\Delta_L = x_{j+1/2} - x_j = 0.5 h_j$, $\Delta_R = x_{j+1} - x_{j+1/2} = 0.5 h_{j+1}$.

Идея повышения точности аналогична предыдущей задаче. Возьмем формулу 4-точечной интерполяции

$$u'_{j+1/2} = \frac{-u'_{j-1} + 9u'_j + 9u'_{j+1} - u'_{j+2}}{16} + O(h^4),$$

имеющую 4-й порядок точности на равномерном шаблоне [12], и представим ее как комбинацию полусумм производных на узком и широком шаблонах:

Сравнение методов аппроксимации градиентов ...

$$u'_{j+1/2} = \frac{9u'_{\pm 1/2} - u'_{\pm 3/2}}{8} + O(h^4),$$

rge $u'_{\pm 1/2} = \frac{u'_{j+1} + u'_j}{2}, \ u'_{\pm 3/2} = \frac{u'_{j+2} + u'_{j-1}}{2}.$ (5)

Формально заменим полусуммы на линейные интерполяции (4) и снова получим метод, обладающий 4-м порядком точности на равномерной сетке и 2 – на неравномерной.

Дальнейшее уточнение можно сделать, выписав интерполяционную формулу Лагранжа, которая будет обладать 4-м порядком точности на неравномерном шаблоне при N = 4:

$$u'_{j+1/2} \approx \sum_{i=-N/2+1}^{N/2} u'_{j+i} \cdot \prod_{\substack{k=-N/2+1\\k \neq i}}^{N/2} \frac{x_{j+1/2} - x_{j+k}}{x_{j+i} - x_{j+k}}.$$
(6)

2.3. Вычисление нормальных градиентов на грани ячейки. Третья задача: имея значения функции и ее производных в центрах ячеек, необходимо восстановить значение производной $(u'_{j+1/2})$ на грани в направлении нормали к ней (рис.3).

Рис.3. Аппроксимация производной на грани в нормальном направлении.

Интерполяция, используемая для касательных градиентов, имеет низкое качество, так как приводит к потере взаимодействия между четными и нечетными слоями ячеек [10]. Вместо этого в [10] предлагается вычислять производную на грани по двум ближайшим точкам, а затем в случае неравномерной сетки корректировать ее с помощью производных из этих же двух точек:

$$u'_{j+1/2} = \frac{u_{j+1} - u_j}{\Delta_L + \Delta_R} - \frac{(\Delta_R - \Delta_L) \cdot (u'_{j+1} - u'_j)}{\Delta_L + \Delta_R} + O(h^2).$$
(7)

Этот подход обеспечивает второй порядок точности на неравномерных сетках. Будем считать данную аппроксимацию базовой.

Точность аппроксимации можно повысить, взяв производные (7) на узком и широком шаблонах

$$u'_{\pm 1/2} = \frac{u_{j+1} - u_j}{\Delta_L + \Delta_R} - \frac{(\Delta_R - \Delta_L) \cdot (u'_{j+1} - u'_j)}{\Delta_L + \Delta_R} + O(h^2),$$
$$u'_{\pm 3/2} = \frac{u_{j+2} - u_{j-1} - (\Delta_{RR} + \Delta_R - \Delta_L - \Delta_{LL}) \cdot (u'_{j+2} - u'_{j-1})}{\Delta_L + \Delta_R + \Delta_{LL} + \Delta_{RR}} + O(h^2)$$

и подставив их в выражение

$$u'_{j+1/2} = \frac{9u'_{\pm 1/2} - u'_{\pm 3/2}}{8} + O(h^4).$$
(8)

Полученный метод снова будет обладать 4-м порядком точности на равномерной сетке и 2-м – на неравномерной.

Продифференцировав интерполяционную формулу Лагранжа, можно выразить производную на грани через значения функции в центрах ячеек:

$$u'_{j+1/2} \approx \sum_{i=-N/2+1}^{N/2} u_{j+i} \cdot \frac{\sum_{\substack{k=-N/2+1\\k\neq i}}^{N/2} \prod_{\substack{q=-N/2+1\\q\neq i,k}}^{N/2} (x_{j+1/2} - x_{j+q})}{\prod_{\substack{k=-N/2+1\\k\neq i}}^{N/2} (x_{j+i} - x_{j+k})}.$$
(9)

Приняв *N* = 4, получим формулу 4-го порядка точности на равномерной сетке и 3-го – на неравномерной.

3. Тестирование аппроксимаций на модельных задачах

3.1. Описание тестовых задач. Рассмотрим функцию одной переменной u(x). Возьмем один из рассмотренных конечно-разностных шаблонов и будем перемещаться вдоль графика функции, вычисляя с его помощью приближенные значения производной. Рассмотрим два распределения точек в шаблоне: равномерное с шагом h = 0.2 и неравномерное с изменением шага по геометрической прогрессии со знаменателем q = 2. Второй случай воспроизводит «агрессивный» вариант роспуска сетки в пограничном слое.

В качестве u(x) возьмём гладкую функцию Гаусса (рис.4, слева):

$$u(x) = \frac{1}{\sqrt{0.4\pi}} \exp\left(-\frac{x^2}{0.4}\right)$$

и кусочно-линейную функцию-зубец (рис.4, справа):

Рис.4. Функция Гаусса (слева) и кусочно-линейная функция-зубец (справа).

3.2. Анализ точности вычисления градиентов в центре ячейки. Поскольку в случае функции Гаусса графики приближенных значений производной u'_j качественно похожи для всех трёх методов, будем рассматривать их разницу с точным значением $u'_{exact} = du(x) / dx$ (рис.5).

Для выбранных параметров теста оказалось, что на равномерном шаблоне методы повышенной точности (2) и (3) дают ошибку примерно на порядок меньшую, чем базовый метод (1), совпадая между собой, а на неравномерном шаблоне повышенную точность сохраняет только схема (3), построенная по интерполяционной формуле Лагранжа. «Комбинированная» схема (2) снижает точность до уровня базового метода (табл.1).

Рис.5. Точность аппроксимаций производной в центре ячейки в случае равномерной (слева) и неравномерной (справа) сетки для функции Гаусса. Аппроксимации: 1 – базовая (1), 2 – уточненная (2), 3 – высокого порядка точности (3)

	Функция Гаусса				Кусочно-линейная функция				
Схема	Равномер. сетка		Геом. прогрессия		Равномер. сетка		Геом. прогрессия		
Норма ошибки	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2	
Базовая (1)	0.088	0.078	0.098	0.087	1.00	0.447	1.333	0.452	
Уточненная (2)	0.013	0.011	0.066	0.052	1.00	0.425	1.215	0.430	
Лагранжа (3)	0.013	0.011	0.017	0.014	1.00	0.425	1.594	0.437	

Таблица 1. Ошибки аппроксимаций производной в центре ячейки.

Аналогичные данные для кусочно-линейной функции представлены на рис.6 и в табл.1. В этот раз все методы дали примерно одинаковый уровень ошибки (разброс между ними порядка 10%) как на равномерной сетке, так и на неравномерной. При этом уточенные методы, в отличие от базовой схемы 2-го порядка, порождают забросы производной.

Также для функции Гаусса была проведена серия тестов на неравномерном шаблоне, в котором от 1 до 2.4 варьировалось значение q. Зависимость ошибки по норме L_2 от q изображена на рис.7, где

$$\left\|u'_{j} - u'_{\text{exact}}\right\|_{L_{2}} = \sqrt{\int_{-2}^{2} (u'_{j} - u'_{\text{exact}})^{2} dx}$$

Видно, что при использовании метода 4-го порядка величина ошибки меньше, чем при использовании базового метода, а у комбинированного подхода точность совпадает с методом 4-го порядка на равномерной сетке и уменьшается по мере роста *q*, приближаясь к ошибке базового метода.

Рис.6. Точность аппроксимаций производной в центре ячейки в случае равномерной (слева) и неравномерной (справа) сетки для кусочно-линейной функции. Аппроксимации: 1 – базовая (1), 2 – уточненная (2), 3 – высокого порядка точности (3).

Рис.7. Точность аппроксимаций производной в центре ячейки в зависимости от знаменателя геометрической прогрессии. Аппроксимации: 1 – базовая (1), 2 – уточненная (2), 3 – высокого порядка точности (3).

3.3. Анализ точности вычисления касательных градиентов на грани ячейки. Для аппроксимаций (4)–(6) была проведена такая же серия тестов, как и в случае градиентов в центрах ячеек. Для функции Гаусса на равномерном шаблоне методы повышенной точности снова дают улучшение по сравнению с базовой линейной интерполяцией примерно на порядок (рис.8, слева), а при переходе к неравномерному шаблону с геометрической прогрессией повышенную точность сохраняет только метод, использующий формулу Лагранжа (рис. 8, справа). Числовые данные собраны в табл. 2.

Рис.8. Точность аппроксимаций касательных градиентов на грани ячейки в случае равномерной (слева) и неравномерной (справа) сетки для функции Гаусса. Аппроксимации: 1 – базовая (4), 2 – уточненная (5), 3 – высокого порядка точности (6).

При аппроксимации производной кусочно-линейной функции (рис.9), как и в прошлый раз, методы повышенной точности теряют свои преимущества и порождают забросы. Интересно, что самый точный на гладких решениях метод дает в этом тесте наихудший результат (табл.2).

	Функция Гаусса				Кусочно-линейная функция			
Схема	Равномер. сетка		Геом. прогрессия		Равномер. сетка		Геом. прогрессия	
Норма ошибки	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2
Базовая (4)	0.0677	0.06	0.0669	0.059	1.00	0.548	1.6	0.498
Уточненная (5)	0.0098	0.008	0.0508	0.04	1.00	0.559	1.567	0.505
Лагранжа (6)	0.0098	0.008	0.0094	0.008	1.00	0.559	1.798	0.568

Таблица 2. Ошибки аппроксимаций касательных градиентов на грани ячейки.

Результаты тестов с разными значениями *q* представлены на рис.10. Наблюдается такое же поведение величины ошибки, как и в тесте с градиентами в центре ячейки.

Рис.9. Точность аппроксимаций касательных градиентов на грани ячейки в случае равномерной (слева) и неравномерной (справа) сетки для кусочно-линейной функции. Аппроксимации: 1 – базовая (4), 2 – уточненная (5), 3 – высокого порядка точности (6).

Рис.10. Точность аппроксимаций касательных градиентов на грани ячейки в зависимости от знаменателя геометрической прогрессии. Аппроксимации: 1 – базовая (4), 2 – уточненная (5), 3 – высокого порядка точности (6).

3.4. Анализ точности вычисления нормальных градиентов на грани ячейки. С функцией Гаусса на равномерном шаблоне методы повышенной точности, как и раньше, продемонстрировали улучшение по сравнению с базовой формулой (рис.11, слева). В противоположность этому, на неравномерной сетке наилучший результат получился при использовании базового метода (рис.11, справа), причём ошибка оказалась меньше, чем на равномерной сетке (табл.3).

В случае кусочно-линейной функции базовая аппроксимация снова демонстрирует самый точный результат (рис.12, табл.3), однако по порядку величины все схемы дают почти одинаковый уровень ошибки.

Рис.11. Точность аппроксимаций нормальных градиентов на грани ячейки в случае равномерной (слева) и неравномерной (справа) сетки для функции Гаусса. Аппроксимации: 1 – базовая (7), 2 – уточненная (8), 3 – высокого порядка точности (9).

Рис.12. Точность аппроксимаций нормальных градиентов на грани ячейки в случае равномерной (слева) и неравномерной (справа) сетки для кусочно-линейной функции. Аппроксимации: 1 – базовая (7), 2 – уточненная (8), 3 – высокого порядка точности (9).

	Функция Гаусса				Кусочно-линейная функция				
Схема	Равномер. сетка		Геом. прогрессия		Равномер. сетка		Геом. прогрессия		
Норма ошибки	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2	
Базовая (7)	0.023	0.02	0.0087	0.007	1.00	0.316	1.00	0.355	
Уточненная (8)	0.002	0.002	0.0386	0.033	1.00	0.306	1.005	0.369	
Лагранжа (9)	0.002	0.002	0.0490	0.038	1.00	0.306	0.9965	0.413	

Таблица 3. Ошибки аппроксимаций нормальных градиентов на грани ячейки.

В тесте с зависимостью ошибок от величины q (рис.13) оказалось, что метод, использующий формулу Лагранжа, при $q \in (1,2)$ имеет бо́льшие ошибки, чем комбинированный метод (8). С другой стороны, метод (8) уступает базовой аппроксимации при q > 1.7. В связи с этим предлагается гибридная схема. Вводится переходная функция $f_{mesh}(q)$, позволяющая переключаться между комбинированной и базовой аппроксимацией:

$$f_{\text{mesh}}(q) = \begin{cases} 1, & q \le 1.3, \\ 0.5 \cdot (1 + \sin(\pi(2.5q - 2.75))), & q \in (1.3; 1.7), \\ 0, & q \ge 1.7. \end{cases}$$

С ее помощью вычисляется комбинация двух аппроксимаций $u'_{j+1/2}$:

$$u'_{j+1/2} = f_{\text{mesh}}(q) \, u'_{j+1/2}^{(8)} + (1 - f_{\text{mesh}}(q)) \, u'_{j+1/2}^{(7)}.$$
(10)

Точность этой аппроксимации также изображена на рис.13.

Рис.13. Точность аппроксимаций нормальных градиентов на грани ячейки в зависимости от знаменателя геометрической прогрессии. Аппроксимации: 1 – базовая (7), 2 – уточненная (8), 3 – высокого порядка точности (9), 4 – гибридная (10).

4. Тестирование аппроксимаций в задаче о вихре Тейлора-Грина

Описание задачи представлено в [13]. В кубической расчетной области с периодическими границами задано начальное поле в виде нескольких крупных вихрей. В процессе расчета вихри разрушаются, порождая квазиизотропную турбулентность. Число Рейнольдса 1600 позволяет проводить прямое численное моделирование этого течения. Описанные выше методы были включены в расчётный модуль ZEUS [14] пакета EWT-ЦАГИ [15] и использовались в этом тесте. Расчеты проводились конечно-объёмным методом по явной схеме с WENO-реконструкцией [16] на 9-точечном шаблоне в каждом сеточном направлении. Исследовалась зависимость энстрофии (среднего квадрата завихренности) $\varepsilon = \int \rho \, \boldsymbol{\omega} \cdot \boldsymbol{\omega} \, d\Omega / (2\rho_0 \Omega)$ от времени, где Ω – объём расчётной области, ω – вектор завихренности, ρ_0 – средняя плотность газа.

Рис.14. Сходимость расчетов вихря Тейлора–Грина. Сверху – зависимость ε(*t*) на сетках различной густоты, снизу – зависимость пикового значения ε от густоты сетки.

На рис.14 сверху представлены решения, полученные на сетках с $N_{cell} = 64-384$ ячейками в каждом направлении, и эталонные данные спектрального метода на сетке с $N_{cell} = 512$ [13]. С измельчением сетки решения приближаются к эталонным данным, причем переход от базовой аппроксимации градиентов к уточненной приблизительно соответствует 1.5-кратному измельчению сетки в каждом направлении. На рис.14 снизу изображена зависимость пикового значения энстрофии ε^* от густоты сетки, где виден этот же эффект. Полученное уточнение можно оценить как экономию в $1.5^4 \approx 5$ раз по времени счета. Все значения энстрофии обезразмерены на ε_{max} – ее пиковое значение в эталонном расчете.

Выводы

Исследована точность различных способов аппроксимации градиентов функций. Полученные результаты позволяют сделать следующие выводы.

Методы повышенного порядка точности позволяют уточнить аппроксимацию производных гладких функций в центрах ячеек и в касательном направлении на гранях. Градиенты в нормальном к грани направлении наиболее точно аппроксимируются «комбинированной» формулой, если неравномерность сетки не слишком велика (q < 1.7), и базовой формулой второго порядка точности, если качество сетки неприемлемо низкое ($q \ge 1.7$). В связи с этим предложена гибридная схема, которая переключается между этими двумя аппроксимациями в зависимости от параметра q.

Аппроксимация производных негладких функций не может быть уточнена с помощью схем повышенного порядка. Более того, эти схемы приводят к появлению забросов значений производной, чего не наблюдается с базовыми аппроксимациями 2-го порядка точности.

В прямом численном моделировании вихря Тейлора-Грина схемы повышенного порядка позволили снизить уровень ошибки по сравнению с базовыми методами. Уточнение приблизительно соответствует измельчению сетки в 1.5 раза в каждом направлении. Это приводит к экономии времени расчета в 1.5⁴ ≈ 5 раз.

СПИСОК ЛИТЕРАТУРЫ

- P.R. Spalart, S.Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A.Travin. A new version of detached-eddy simulation, resistant to ambiguous grid densities // Theor. Comput. Fluid Dyn., 2006, v.20, p.181-195.
- M.S. Gritskevich, A.V. Garbaruk, J. Schütze, F.R. Menter. Development of DDES and IDDES formulations for the k-ω shear stress transport model // Flow Turb. Combust., 2012, v.88, №3, p.431–449.
- 3. A. Travin, M. Shur, M. Strelets, P.R. Spalart. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows // Fluid Mech. Appl., 2004, v.65, p.239-254.

- 4. L. Fu, X.Y. Hu, N.A. Adams. A family of high-order targeted ENO scheme for compressible-fluid simulations // J. Comput. Phys., 2015, v.305, p.333-359.
- 5. L. Fu. A low-dissipation finite-volume method based on a new TENO shock-capturing scheme // Comp. Phys. Comm., 2019, v.235, p.25-39.
- H. Yee, B. Sjögreen. Recent developments in accuracy and stability improvement of nonlinear filter methods for DNS and LES of compressible flows // Comput. Fluids, 2018, v.169, p.331-348.
- F.S. Schranner, J.A. Domaradzki, S. Hickel, N.A. Adam. Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows // Comput. Fluids, 2015, v.114, p.84-97.
- А.Н. Кудрявцев, Т.В. Поплавская, Д.В. Хотяновский. Применение схем высокого порядка точности при моделировании нестационарных сверхзвуковых течений // Мат. моделирование, 2007, т.19, №7, с.39-55; A.N. Kudriavtsev, T.V. Poplavskaia, D.V. Khotianovskii, Primenenie skhem vysokogo po-

A.N. Kudriavtsev, T.V. Poplavskaia, D.V. Khotianovskii. Primenenie skhem vysokogo poriadka tocnnosti pri modelirovanii nestatsionarnykh sverkhzvukovyh techenii // Mat. modelirovanie, 2007, t.19, №7, s.39-55.

- 9. *Н.Б. Петровская.* Выбор весовых коэффициентов в задаче аппроксимации градиента методом наименьших квадратов // Мат. моделирование, 2004, т.16, №5, с.83-93; *N.B. Petrovskaia.* Vybor vesovykh koeffitsientov v zadache approksimatsii gradienta metodom naimenshikh kvadratov // Mat. modelirovanie, 2004, t.16, №5, s.83-93.
- 10. S. Bosnyakov, I. Kursakov, A. Lysenkov, S. Matyash, S. Mikhailov, V. Vlasenko, J. Quest. Computational tools for supporting the testing of civil aircraft configurations in wind tunnels // Progress in Aerospace Sciences, 2008, v.44, №2, p.67-120.
- М.Е. Ильин. Аппроксимация и интерполяция. Методы и приложения: учеб. пособие. – Рязань: Изд-во РГРТА, 2003, 56 с. *М.Е. Ilin.* Approksimatsiia i interpoliatsiia. Metody i prilozheniia: ucheb. posobie. – Ri-azan: Izd-vo RGRTA, 2003, 56 s.
- 12. *B. Fornberg.* Generation of finite difference formulas on arbitrarily spaced grids // Math. Computation, 1988, v.51, №184, p.699-706.
- W.M. Rees, A. Leonard, D.I. Pullin, P. Koumoutsakos. A comparison of vortex and pseudospectral methods for the simulation of periodic vortical flows at high Reynolds number // J. Comput. Physics, 2011, v.230, p.2794-2805.
- 14. С.В. Михайлов, В.В. Власенко. Программа ZEUS для расчёта нестационарных течений в рамках подходов RANS и LES // Материалы XX школы-семинара "Аэродинамика летательных аппаратов", пос. Володарского, 2009. S.V. Mikhaylov, V.V. Vlasenko. Programma ZEUS dlia rascheta nestatsionarnykh techenii v ramkah podhodov RANS i LES // Materialy XX shkoly-seminara "Aerodinamika letatel-nykh apparatov", pos. Volodarskogo, 2009.
- С.М. Босняков. Концепция программного продукта ЕWT-ЦАГИ и основные этапы её развития // Труды ЦАГИ, 2007, №2671, с.3-19;
 S.M. Bosniakov. Kontseptsiia programmnogo produkta EWT-TsAGI i osnovnye etapy ee razvitiia // Trudy TsAGI, 2007, №2671, s.3-19.
- 16. *R. Zhang, M. Zhang, C.W. Shu.* On the order of accuracy and numerical performance of two classes of finite volume WENO schemes // Comm. Comput. Physics, 2011, v.9, №3, p.807-827.

Поступила в редакцию 04.03.2019 После доработки 08.04.2019 Принята к публикации 20.05.2019