УДК 539.37

СВОЙСТВА СЕМЕЙСТВА ДИАГРАММ ДЕФОРМИРОВАНИЯ, ПОРОЖДАЕМЫХ НЕЛИНЕЙНЫМ СООТНОШЕНИЕМ РАБОТНОВА ДЛЯ РЕОНОМНЫХ МАТЕРИАЛОВ

© 2019 г. А.В.Хохлов

НИИ механики МГУ им. М.В. Ломоносова, Москва, Россия e-mail: andrey-khokhlov@ya.ru

> Поступила в редакцию 22.12.2016 г. После доработки 23.08.2017 г. Принята к публикации 08.11.2017 г.

Аналитически исследовано нелинейное определяющее соотношение Работнова с двумя произвольными материальными функциями для реономных материалов в одномерном случае. Выведено уравнение семейства теоретических диаграмм деформирования при постоянных скоростях нагружения, аналитически изучены их общие качественные свойства в зависимости от свойств материальных функций: интервалы монотонности и выпуклости диаграмм деформирования, характер их зависимости от скорости нагружения, существование и вид предельных кривых при стремлении скорости нагружения к нулю или бесконечности, условия существования точки перегиба и предельного напряжения (напряжения течения), условия обрыва (моделирования разрушения), формулы для мгновенного и длительного модулей, условия их конечности и отличия от нуля.

На основе сравнения свойств теоретических диаграмм с типичными свойствами экспериментальных диаграмм реономных материалов установлены минимальные ограничения на материальные функции, обеспечивающие адекватное описание основных реологических эффектов, найдены индикаторы применимости определяющего соотношения и те эффекты, которые оно не может описать ни при каких материальных функциях. Выявлены характерные особенности диаграмм деформирования трех основных классов моделей: с регулярной, неограниченной и сингулярной функцией релаксации. Арсенал возможностей определяющего соотношения вязкоупругости (из которого оно получено введением второй материальной функции), указаны дополнительные эффекты, которые нелинейное определяющее соотношение способно описывать по сравнению с линейным за счет второй материальной функции.

Ключевые слова: наследственность, разносопротивляемость, диаграммы деформирования, скоростная чувствительность, мгновенный модуль, длительный модуль, регулярные и сингулярные модели, идентификация

DOI: 10.1134/S0572329919020077

1. Введение. Нелинейное определяющее соотношение (ОС) Работнова [1–19] описывает одномерные изотермические процессы деформирования структурно-стабильных (нестареющих) реономных материалов, связывая истории напряжения $\sigma(t)$ и деформации $\varepsilon(t)$ в данной точке тела:

$$\varphi(\varepsilon(t)) = \int_{0}^{t} \Pi(t-\tau) d\sigma(\tau), \quad \sigma(t) = \int_{0}^{t} R(t-\tau) \varphi'(\varepsilon(\tau)) d\varepsilon(\tau), \quad t \ge 0$$
(1.1)

Здесь П(*t*), *R*(*t*) – функции ползучести и релаксации, а $\varphi(u)$ – дополнительная материальная функция (МФ), введенная Ю.Н. Работновым [1–3]. Входные процессы ($\sigma(t)$ или $\varepsilon(t)$) предполагаются кусочно непрерывными и кусочно-гладкими на любом отрезке. ОС (1.1) обобщает линейное ОС вязкоупругости (получающееся при $\varphi(u) = u$):

$$\varepsilon(t) = \int_{0}^{t} \Pi(t-\tau) d\sigma(\tau), \quad \sigma(t) = \int_{0}^{t} R(t-\tau) d\varepsilon(\tau), \quad t \ge 0$$
(1.2)

Если $\Pi(0+) \neq 0$ (модель регулярна), то $R(0+) < \infty$ и на линеале непрерывных кусочно гладких при $t \ge 0$ функций (взаимно обратные) операторы (1.1) представимы в виде

$$\varphi(\varepsilon(t)) = \Pi(0)\sigma(t) + \int_{0}^{t} \dot{\Pi}(t-\tau)\sigma(\tau)d\tau, \quad \sigma(t) = R(0)\varphi(\varepsilon(t)) + \int_{0}^{t} \dot{R}(t-\tau)\varphi(\varepsilon(\tau))d\tau, \quad (1.3)$$

ОС (1.3) с регулярной ФП было предложено Ю.Н. Работновым еще в 1948 г. [1]. В [1– 3] ОС (1.3) называлось "соотношением наследственной теории ползучести" и "пластичности", в [4] было дано название "нелинейная теория наследственности". В англоязычных публикациях ОС (1.1) называется уравнением квазилинейной вязкоупругости ("QLV") [20–37], а его автором считается Ү.С. Fung со ссылками на его работы 1970–1990-х годов [20, 25]. В [1–19] ОС (1.1) прилагались к описанию поведения металлов и сплавов, стеклопластиков, графита, а в [20–37] – связок, сухожилий и др. биологических тканей. В работах [1–19] авторы рассматривали случай малых деформаций (и номинальных напряжений), выбирали ядро ползучести степенным или дробно-экспоненциальным ядром Работнова, его параметры (3–4 штуки) находили по кривым ползучести в линейной области (где $\varphi(u) = u$), а затем МФ $\varphi(u)$ определяли численно в отдельных точках по экспериментальным кривым ползучести и деформирования – без использования аналитических представлений для φ (за исключением

полинома четвертого порядка в [5, 9] и степенной функции $\varphi(u) = cu^{0.75}$ в [17]), "при помощи программ Maple и Excel" [17]. Тщательное аналитическое изучение общих свойств основных квазистатических кривых (кривых ползучести и релаксации с произвольной начальной стадией нагружения до заданного уровня, ползучести при ступенчатых нагружениях, диаграмм деформирования при постоянных и кусочно постоянных скоростях нагружения, при циклическом нагружении и др.), порождаемых ОС (1.1) с произвольными МФ П(*t*) и $\varphi(u)$, систематическое исследование комплекса моделируемых (и не моделируемых) эффектов в зависимости от характеристик МФ и необходимых феноменологических ограничений на МФ φ не проводились в [1–37]; границы области применимости ОС (1.1) и их маркёры (за исключением требования подобия изохронных кривых ползучести в [1–9] и подобия кривых релаксации в [31– 33]) выявлены не были. Аналитическое исследование этих свойств в общем виде (даже при малых деформациях в одноосном случае) или хотя бы краткий перечень отсутствуют в литературе по вязкоупругости, вязкопластичности, ползучести и механике полимеров, в частности, в монографиях [3, 9, 32, 38–48]).

Цель данной статьи (и всего цикла работ [49–52], посвященных анализу OC (1.1)) – восполнить указанные пробелы, выявить возможности и преимущества OC (1.1) (как по сравнению с линейным OC (1.2), так и с более сложными нелинейными OC) и способствовать расширению и уточнению сферы его обоснованного применения в моделировании поведения реономных материалов с выраженной нелинейной наследственностью и скоростной чувствительностью (полимеров, композитов, пен, керамик, асфальтобетонов, твердых топлив, алюминиевых и титановых сплавов, нержавеющих сталей, связок, сухожилий, стенок сосудов и других биологических тканей). Задача данной статьи – изучение общих свойств диаграмм деформирования (ДД) при постоянных скоростях нагружения, порожденных OC (1.1) с произвольными МФ П и ϕ , — как унаследованных от ДД линейного ОС (1.2), так и новых, специфичных для нелинейного ОС (1.1).

К ОС (1.1) применяется технология качественного анализа определяющих соотношений для реономных материалов, разработанная ранее автором в цикле работ [53– 63]. В них изучены два новых нелинейных ОС, учитывающие историю деформирования (или нагружения) и старение материала [53–55], линейное ОС вязкоупругости (1.2) [56–59] и нелинейная модель типа Максвелла с двумя МФ [60–63]. Все эти ОС, как и (1.1), нацелены на описание комплекса основных реологических эффектов, типичных для материалов, обладающих наследственностью и высокой чувствительностью к скорости деформирования (нагружения).

В статье приняты следующие сокращения и обозначения: $M\Phi$ – материальные функции; (ω_{-} ; ω_{+}) и (\underline{x} ; \overline{x}) – области определения и значений $M\Phi \varphi(u)$, $\overline{x} := \sup \varphi(x)$; ω – краткое обозначение для ω_{+} ; $D_{\varphi} := [0; \omega)$; $\Phi = \varphi^{-1}$, $D_{\Phi} := [0; \overline{x})$; ДД – диаграмма деформирования $\sigma(\varepsilon, b)$ при постоянной скорости нагружения (CH) b; ΦP и $\Phi\Pi$ (KP, KП) – функции (кривые) релаксации и ползучести; h(t) – функция Хевисайда, $\delta(t)$ – дельта-функция; РеМ – регулярные модели (с $\Pi(0) \neq 0$); СиМ – сингулярные модели (ΦP содержит слагаемое $\eta\delta(t)$); y(0) := y(0+) – предел функции y(t) справа в т. t = 0.

2. Материальные функции соотношения Работнова. Линейное ОС вязкоупругости (1.2), инвариантное относительно сдвигов по времени, получается из (1.1) при $\varphi(u) = u$ и содержит лишь одну независимую МФ, так как ФП и ФР связаны условием взаимной обратности интегральных операторов (1.2) ("the interconversion relation"):

$$\int_{0}^{t} \Pi(t-\tau)R(\tau)d\tau = t, \quad \text{или} \quad \int_{0}^{t} \dot{\Pi}(t-\tau)R(\tau)d\tau + \Pi(0)R(t) = 1, \quad t > 0 \quad (2.1)$$

Зная ФР, можно найти ФП из уравнения (2.1), и обратно. Поэтому из трех МФ φ , П, *R* в ОС (1.1) лишь две независимы, а тождество (2.1) является условием взаимной обратности операторов (1.1), отображающих друг в друга функции $\sigma(t)$ и $e(t) = \varphi(\varepsilon(t))$.

На ФП и ФР в ОС (1.1) наложим априори те же минимальные ограничения, что и в линейной теории: П(*t*) и *R*(*t*) должны быть положительными и дифференцируемыми на интервале (0; ∞), П(*t*) – возрастающей, выпуклой вверх, а ФР *R*(*t*) – убывающей и выпуклой вниз на (0; ∞) (ФР может иметь интегрируемую особенность или δ -сингулярность в точке *t* = 0). Из этих условий следует, в частности, существование пределов П(0+) \geq 0, $\dot{\Pi}(+\infty) \geq 0$ и *R*(+ ∞) \geq 0 [57].

Свойства основных теоретических кривых, порождаемых линейным ОС вязкоупругости (1.2) с произвольной ФП, и необходимые феноменологические ограничения на ФП и ФР проанализированы в цикле работ [56–59] и др. Анализ, в частности, показал, что среди моделей, описываемых ОС (1.2) с различными ФР и ФП, необходимо различать (как минимум) три основных класса, поскольку качественные свойства базовых кривых моделей этих классов (а также особенности постановки и решения краевых задач) заметно отличаются: 1) регулярные модели (PeM) – у которых П(0) $\neq 0$ (тогда мгновенный модуль $E = R(0+) = 1/\Pi(0+)$ конечен, а ОС (1.2) и первое уравнение (2.1) сводятся к уравнениям Вольтерры *второго* рода (1.3) с $\varphi(u) = u$ и (2.1)); 2) сингулярные (СиМ) – с ФР, содержащей слагаемое $\eta \delta(t)$, $\eta > 0$ (ФР $R = \eta \delta(t)$ задает ньютоновскую жидкость с ОС $\sigma = \eta \dot{\varepsilon}$ и входит слагаемым в ФР "половины" реоло-

гических моделей из пружин и демпферов), тогда $\Pi(0) = 0$ и $\dot{\Pi}(0) = \eta^{-1}$; 3) нерегулярные модели с неограниченной ΦP (HeM), не содержащей слагаемого $\eta \delta(t)$, но имеющей интегрируемую особенность в т. t = 0 ($R(0+) = +\infty$). Третий класс занимает промежуточное положение между первыми двумя. К нему относится, например, ΦP

 $R(t) = At^{-u}, u \in (0;1), A > 0$, задающая "фрактальный" элемент "фрактальных" моделей ("fractional models"); соответствующая ФП имеет вид $\Pi(t) = A^{-1}C(u)t^{u}, C(u) = (u\pi)^{-1}\sin u\pi$, и обладает не только свойством $\Pi(0) = 0$, как и СиМ, но и свойством $\dot{\Pi}(0) = \infty$, переходным к $\Pi(0) \neq 0$, характеризующему РеМ.

Линейным ОС (1.2) задаются, в частности, все модели, собранные из линейных пружин и демпферов посредством параллельных и последовательных соединений (ФП классических реологических моделей будут использованы для иллюстрации общих свойств ДД ОС (1.1)). Можно доказать, что множество всех несократимых *n*-звенных моделей распадается ровно на два класса эквивалентности: PeM-*n* и CuM-*n* (структурно различные модели эквивалентны, если задаются одинаковыми семействами ФП или ФР). В частности, эквивалентны друг другу трехзвенные PeM Пойнтинга–Томсона и Кельвина ([57], фиг. 1а), а все четыре PeM-4 ([57], фиг. 1в) эквивалентны модели стандартного тела (последовательному соединению моделей Максвелла и Фойгта, т.е. PeM-2 и CuM-2). Например, семейство

$$\Pi(t) = \alpha t + \beta - \gamma e^{-\lambda t}, \quad \lambda > 0, \quad \alpha, \beta \ge 0, \quad \gamma \in [0, \beta]$$
(2.2)

удовлетворяет всем ограничениям на ФП. Оно порождает все PeM-4 при $\gamma \in (0;\beta)$, $\alpha, \beta > 0$, а при $\alpha = 0$ – все PeM-3. Так как $\Pi(0) = \beta - \gamma$, то ФП (2.2) порождает СиМ, когда $\gamma = \beta$: при $\lambda\beta = 0$ – ньютоновскую жидкость, при $\alpha = 0$ – модель Фойгта (СиМ-2), при $\alpha > 0$ – все СиМ-3. При $\gamma = 0$ семейство (2.2) дает модель Максвелла.

На МФ $\varphi(u)$ в ОС (1.1) наложим следующие минимальные априорные требования (анализ покажет, нужно ли дополнить их список): функция $\varphi(u)$, $u \in (\omega_-; \omega_+)$, непрерывно дифференцируема и строго возрастает на $(\omega_-; 0) \cup (0; \omega_+)$ (где $\omega_-\omega_+ < 0$), причем $\varphi(0+) = \varphi(0-) = 0$ (иначе процессу $\varepsilon(t) \equiv 0$ соответствует ненулевой отклик $\sigma(t)$). Формально возможны случаи $\omega_- = -\infty$ и $\omega_+ = +\infty$, и случай $\varphi'(0) = +\infty$. Для материалов с одинаковым поведением при растяжении и сжатии МФ $\varphi(u)$ нечетна, $\omega_- = -\omega_+$.

Из возрастания $\varphi(u)$ следует существование обратной функции $\Phi := \varphi^{-1}$ на промежутке $D_{\Phi} = (\underline{x}; \overline{x})$, где $\overline{x} := \sup \varphi(u) = \varphi(\omega_+ - 0)$, $\underline{x} := \inf \varphi(u) = \varphi(\omega_- + 0)$, и обратимость ОС (1.1). Величины \overline{x} и \underline{x} – важные характеристики МФ φ и Φ , существенно влияющие на поведение теоретических кривых ОС (1.1) [49–52].

Конечность ω_+ или \bar{x} (или ω_- и \underline{x}) означает, что, благодаря такому выбору МФ, в ОС (1.1) встроен критерий разрушения при растяжении (при сжатии), обеспечивающий обрыв теоретических кривых (ползучести, деформирования и др.) в некоторый момент времени. В этом случае их можно интерпретировать как материальные параметры, через которые выражаются предел прочности, предельная деформация, время разрушения [49]. Например, задача моделирования с помощью ОС (1.1) дробно-линейной зависимости Шестерикова-Юмашевой [64] для скорости ползучести от напряжения $r(x) = Ax/(\sigma_* - x), x \in [0; \sigma_*)$, приводит к МФ

$$\varphi(u) = \sigma_*(1 - e^{-u/A}), \quad u \ge 0; \quad \Phi(x) = A \ln[\sigma_*/(\sigma_* - x)], \quad x \in [0; \sigma_*)$$
(2.3)

с ω_+ = +∞ и с конечным $\overline{x} = \sigma_*$ [49].

Для задания МФ ϕ или Ф удобно, например, пятипараметрическое семейство (оно будет использовано для иллюстрации свойств диаграмм деформирования ОС (1.1))

$$y(x) = A[\vartheta(x/C)^{n} + (1 - \vartheta)(x/C)^{m}], \quad x \ge 0,$$

$$n > 1, \quad m < 1, \quad \vartheta \in [0; 1], \quad A, C > 0$$
(2.4)

Фиг. 1

При любых значениях параметров (кроме $\vartheta = 0;1$) y(0) = 0, $y'(0) = \infty$, y(C) = A, функция y(x) возрастает и имеет точку перегиба

$$\tilde{x} = Cq(n,m,\vartheta)^{1/(n-m)}, \quad q := m(1-m)(1-\vartheta) [n(n-1)\vartheta]^{-1}$$
(2.5)

Весовой параметр $\vartheta \in (0;1)$ позволяет совместить точку перегиба (2.5) с любой точкой x > 0 и описать кривые ползучести со всеми тремя стадиями [49]. Семейство (2.4) убывает по ϑ на интервале $x \in (0; C)$ и возрастает на ($C; \infty$). В случае m = 1/n семейство (2.4) стремится при $n \to 1 + 0$ к линейной функции $y = AC^{-1}x$, то есть МФ φ или Φ в OC (1.1) "исчезает" и нелинейное OC превращается в линейное OC (1.2).

На фиг. 1 приведены графики функций (2.4) с m = 1/n, n = 3, A = C = 1 и $\vartheta = 0$; 0.25; 0.5; 0.75; 1 (линии 1-5) и графики при n = 5 и $\vartheta = 0$; 0.5; 1 (штрих-пунктирные линии 6-8). С ростом $n \varphi'(x)$ в окрестностях точек x = 0 и x = 1 возрастают. Штриховые линии 9, 10 - графики взаимно обратных МФ (2.3) с $\sigma_* = 1$, A = 0.25.

При u < 0 можно определить $\varphi(u)$ формулой $\varphi(u) = -y(-u)$, причем для материала с разными свойствами при растяжении и сжатии можно взять разные наборы пяти параметров функции (2.4) при u < 0 и u > 0 (условия y(0) = 0, $y'(0) = \infty$ обеспечивают гладкую склейку МФ φ в точке u = 0 при любом выборе параметров).

3. Семейства кривых релаксации и ползучести ОС Работнова. Кривые релаксации (КР), порождаемые ОС (1.1) при мгновенном деформировании $\varepsilon(t) = \overline{\varepsilon}h(t)$ до уровня $\overline{\varepsilon} \in (\omega_{-}; \omega_{+})$, имеют вид

$$\sigma(t,\overline{\varepsilon}) = \varphi(\overline{\varepsilon})R(t), \quad t > 0 \tag{3.1}$$

КР с $\overline{\epsilon} > 0$ убывают и выпуклы вниз по *t* и возрастают по $\overline{\epsilon}$ (т.е. OC (1.1) воспроизводит основные качественные свойства типичных экспериментальных КР), ибо *R*(*t*) убывает и выпукла вниз, а $\varphi(u)$ возрастает. КР (3.1) подобны и имеют точно такую же форму, как и у линейного OC (1.2), но зависимость КР от $\overline{\epsilon}$ уже не линейна, а задается МФ ϕ . Существенно, что МФ ϕ не влияет на форму КР и на время (спектр, скорость) релаксации. Подобие КР материала — важный индикатор применимости ОС (1.1). Разделение переменных в уравнении (3.1) позволяет, в принципе, определить обе МФ по нескольким КР материала для разных $\overline{\epsilon}$ (если наблюдается их подобие).

Кривые ползучести OC (1.1) при мгновенном нагружении $\sigma(t) = \overline{\sigma} h(t)$ имеют вид:

$$\varepsilon(t,\overline{\sigma}) = \Phi(\overline{\sigma}\Pi(t))$$
 при x < $\overline{\sigma}\Pi(t) < \overline{x}$ (3.2)

где $\overline{x} := \sup \varphi(u), \underline{x} := \inf \varphi(u)$. Семейство КП (3.2) возрастает по $\overline{\sigma}$ (ибо Φ возрастает), а при любом $\overline{\sigma} > 0$ (будем рассматривать этот случай) КП возрастает по t на всем промежутке, где $\overline{\sigma} \Pi(t) < \overline{x}$. Если $\overline{x} = \infty$ (как для линейного ОС (1.2)), то КП с $\overline{\sigma} > 0$ определены при всех $t \ge 0$. Если же $\overline{x} < \infty$, то $\overline{\sigma}\Pi(t) \in D_{\Phi}$ только при $\overline{\sigma} < \overline{x}/\Pi(0)$ и $\Pi(t) < \overline{x}/\overline{\sigma}$; это означает, что КП (3.2) существует только для напряжений $\overline{\sigma} < \sigma_+$, $\sigma_+ := \overline{x}/\Pi(0)$ и обрывается в момент t_* , удовлетворяющий уравнению $\Pi(t_*) = \overline{x}/\overline{\sigma}$, если $\overline{\sigma} > \overline{x}/\Pi(\infty)$ (если $\Pi(\infty) < \infty$, то КП (3.2) с $\overline{\sigma} < \overline{x}/\Pi(\infty)$ не обрывается).

Таким образом, если $\bar{x} < \infty$ и $\Pi(0) \neq 0$, то параметр $\sigma_+ := \bar{x}/\Pi(0) = E\bar{x}$ имеет смысл предела (мгновенной) прочности при растяжении, и в ОС (1.1) уже встроен критерий разрушения. Если $\omega_+ < \infty$, разрушение при растяжении происходит по достижению критической деформации: $\varepsilon_* := \Phi(\bar{x}) = \omega_+$ (такой физический смысл можно придать параметру ω_+). Уравнение кривой длительной прочности при растяжении:

$$t_* = p(\overline{x}/\overline{\sigma}), \quad E_{\infty}\overline{x} < \overline{\sigma} < E\overline{x},$$

где p(x) — обратная функция к $\Pi(t)$, $E := 1/\Pi(0)$, $E_{\infty} := 1/\Pi(\infty)$ — мгновенный и длительный модули диаграмм деформирования линейного ОС (1.2) [56, 57].

Изохронные КП $\sigma = \varphi(\varepsilon)/\Pi(t)$ подобны; это один из необходимых признаков применимости ОС (1.1). В работах [1–19] подобие изохронных КП материала трактовалось как достаточное условие применимости ОС (1.3).

Подробный анализ свойств кривых релаксации, ползучести и длительной прочности, порождаемых ОС (1.1), проведен в работах [49–52].

4. Свойства диаграмм деформирования с постоянной скоростью нагружения. Найдем отклик OC (1.1) на процессы вида $\sigma = bt$, t > 0, где b > 0 – скорость нагружения:

$$\varphi(\varepsilon(t)) = \int_0^t \Pi(t-\tau)bd\tau = bQ(t), \quad Q(t) \coloneqq \int_0^t \Pi(\tau)d\tau$$

то есть $\varepsilon(t) = \Phi(bQ(t))$ при $bQ(t) \in D_{\Phi}$. Это параметрическое задание ДД. Удобно переписать его в форме $\varepsilon(t) = \Phi(\sigma\Theta(t))$, где $\Theta(t) \coloneqq t^{-1}Q(t)$ (свойства усреднения $\Phi\Pi \Theta(t)$ смотри в [56, 57]). Очевидно, Q(0) = 0, $\Theta(0+) = \Pi(0)$, $Q(\infty) = \infty$, $\Theta(\infty) = \Pi(\infty)$, а при t > 0: Q(t) > 0, $\dot{Q}(t) = \Pi(t) > 0$, $\ddot{Q}(t) = \dot{\Pi}(t) > 0$, $\ddot{Q}(t) = \ddot{\Pi}(t) < 0$. Для $\Phi\Pi$ вида (2.2), например, $Q(t) = 0.5\alpha t^2 + \beta t - \gamma \lambda^{-1}(1 - e^{-\lambda t})$.

Исключив параметр $t = \sigma/b$ (или $t = F(\varphi(\varepsilon)/b)$, $F = Q^{-1}$) из тождества $\varphi(\varepsilon(t)) = bQ(t)$, получим семейство ДД в виде $\varepsilon = \varepsilon(\sigma, b)$ и в *явной* форме $\sigma = \sigma(\varepsilon, b)$:

$$\varepsilon(\sigma, b) = \Phi(bQ(\sigma/b))$$
 при $bQ(\sigma/b) < \overline{x}$, или $\sigma(\varepsilon, b) = bF(\phi(\varepsilon)/b), \ \varepsilon \in [0, \omega)$ (4.1)

где ω — краткое обозначение для ω_+ . Так как Q(0) = 0 и $Q(\infty) = \infty$, то обратная к Q функция F(x) определена на всем луче $x \ge 0$, F(0) = 0, $F(\infty) = \infty$.

Уравнение (4.1) можно записать в виде

$$\sigma(\varepsilon, b) = \varphi(\varepsilon)F(s)/s, \quad \text{где} \quad \varepsilon \in (0; \omega), \quad s \coloneqq \varphi(\varepsilon)/b \tag{4.2}$$

Для исследования семейства ДД в общем виде установим свойства М Φ *F*(*x*), вытекающие из ограничений, наложенных на $\Phi\Pi \Pi(t)$ в п. 2 (за исключением $\Pi(t) \leq 0$).

Лемма. Если $\Pi(t)$ положительна, дифференцируема и строго возрастает на $(0; \infty)$, то

функция $F = Q^{-1}$ определена на $[0; \infty)$ и при x > 0 обладает следующими свойствами: 1) F положительна, дважды дифференцируема и строго возрастает, F(0) = 0, $F(\infty) = \infty$;

2) $F'(x) = 1/\dot{Q}(F(x)) = 1/\Pi(F(x)) > 0$, F'(x) строго убывает, $F'(0+) = 1/\Pi(0) =$ = sup F'(x) (в частности, $F'(0+) = \infty$ для нерегулярных моделей), $F'(\infty) = 1/\Pi(\infty) =$ = inf F'(x);

3)
$$F''(x) = -\ddot{Q}(F(x))[\dot{Q}(F(x))]^{-3} = -\dot{\Pi}(F(x))[\Pi(F(x))]^{-3} \le 0;$$

в частности, F''(x) < 0, если нет точек с $\dot{\Pi}(t) = 0$;

4) F(x)/x > F'(x) при x > 0;

5) функция F(x)/x убывает при x > 0;

6) при $x \to 0$ $F(x)/x \to 1/\Pi(0)$ (для нерегулярных моделей $F(x)/x \to \infty$), а при $x \to \infty$: $F(x)/x \to 1/\Pi(\infty)$;

7) Если ФП дважды дифференцируема и $\ddot{\Pi}(t) \le 0$, то $\ddot{Q}(t) \le 0$ и $F''(x) = -\ddot{\Pi}(F(x))[\Pi(F(x))]^{-4} + 3[\dot{\Pi}(F(x))]^2 [\Pi(F(x))]^{-5}$ (и потому F''(x) > 0 на $(0;\infty)$).

Доказательство. Пункты 1–3 леммы следуют из свойств Q(t) и обратной функции. В частности, строгое убывание F'(x) могло бы быть нарушено лишь на тех интервалах, где $\Pi(t) = const$ (но в предпосылке требуется строгое возрастания $\Phi\Pi$); $\ddot{Q}(t) = \dot{\Pi}(t) > 0$ и F''(x) < 0, а равенство F''(x) = 0 возможно лишь в тех точках, где $\dot{\Pi}(F(x)) = 0$; если $\ddot{\Pi}(t) \le 0$, то наличие точки, в которой $\dot{\Pi}(t_0) = 0$, означает, что $\Pi(t) = const$ при $t > t_0$.

Пункты 4 и 5 справедливы для любой функции с F''(x) < 0 и $F(0) \ge 0$. В самом деле, по теореме Лагранжа $y := F(x)/x - F(x) = F(\xi) - F(x) + F(0)/x$, $\xi \in (0; x)$, $F'(\xi) > F'(x)$, так как F'(x) строго убывает (если бы в некоторой точке достигалось равенство $y(x_0) = 0$, то было бы F(x) = const на некотором отрезке $[\xi, x_0]$ и $\Pi(t) =$ const на соответствующем отрезке $[t_0, \zeta]$, что противоречит строгому неравенству F''(x) < 0 и строгой монотонности $\Phi\Pi$). Итак, y(x) > 0. Отсюда следует и п. 5: $(F(x)/x)' = F'(x)x^{-1} - F(x)x^{-2} = -x^{-1}y(x) < 0$.

Пункт 6 следует из дифференцируемости F и предельных равенств $F'(0+) = 1/\Pi(0)$ и $F'(\infty) = 1/\Pi(\infty)$ по правилу Лопиталя.

Пункт 7 получается дифференцированием равенства из п. 3:

$$F'''(x) = -\Pi(F(x)F'(x)[\Pi(F(x))]^{-3} + 3[\Pi(F(x))]^{2}[\Pi(F(x))]^{-4}F'(x);$$

 $F'''(x) \ge 0$, так как $\Pi(t) \le 0$ при всех t > 0; равенство F'''(x) = 0 возможно в некоторой точке $x_0 > 0$ только если существует точка $t_0 > 0$, в которой одновременно $\Pi(t_0) = 0$ и $\Pi(t_0) = 0$, но в силу ограничений $\Pi(t) \ge 0$ и $\Pi(t) \le 0$, наличие такой точки означает, что $\Pi(t) \equiv 0$ и $\Pi(t) = const$ при $t \ge t_0$. Если такие модели с финитной ползучестью исключить из рассмотрения (требованием строгого возрастания $\Phi\Pi$ – смотри предпосылку леммы), то справедливо строгое неравенство F'''(x) > 0 при x > 0.

Из представления ДД в виде (4.2) и пунктов 5, 6 леммы сразу следуют два важных свойства: 1) семейство ДД возрастает по *b* при любом фиксированном $\varepsilon \in (0; \omega)$, т.е. с ростом *b* ДД (4.1) целиком смещается вверх вдоль оси σ (ОС моделирует материалы

с положительной скоростной чувствительностью); 2) для любой ДД с b > 0, порожденной ОС (1.1) с произвольной допустимой $\Phi\Pi$, справедливы (точные) оценки:

$$\varphi(\varepsilon)/\Pi_{\infty} < \sigma(\varepsilon, b) < \varphi(\varepsilon)/\Pi_{0}, \quad \varepsilon \in (0, \omega)$$

Оценка сверху содержательна, если $\Pi_0 \neq 0$, то есть для регулярных моделей. Ниже будет показано, что верхняя и нижняя границы имеют механический смысл: $\varphi(\varepsilon)/\Pi_0 = \sigma(\varepsilon, +\infty) -$ "мгновенная" ДД, а $\varphi(\varepsilon)/\Pi_\infty = \sigma(\varepsilon, 0) -$ "равновесная" ДД. Дифференцируя (4.1) по ε , найдем касательный модуль

$$\sigma'_{\varepsilon}(\varepsilon, b) = F'(\varphi(\varepsilon)/b)\varphi'(\varepsilon) = \varphi'(\varepsilon) \left[\Pi(F(\varphi(\varepsilon)/b)) \right]^{-1}, \quad \varepsilon \in [0, \omega)$$
(4.3)

Так как $\varphi'(\varepsilon) > 0$ и F'(x) > 0, то всегда $\sigma'_{\varepsilon}(\varepsilon, b) > 0$, и ДД $\sigma = \sigma(\varepsilon, b)$ возрастает по ε .

Если $\overline{x} := \varphi(\omega) = \infty$ (как для линейного ОС (1.2), например), то $D_{\Phi} = [0; \infty)$, ДД (4.1) определены при всех $\sigma \ge 0$ и $t \ge 0$, и напряжение $\sigma = bt$ формально может нарастать неограниченно. Если $\omega = \infty$ ДД (4.2) определены на всем луче $\varepsilon \ge 0$. Если же $\omega < \infty$ (т.е. $\varphi(\varepsilon)$ имеет асимптоту $\varepsilon = \omega$), то ДД $\sigma(\varepsilon, b)$ имеют общую вертикальную асимптоту $\varepsilon = \omega$ (если рабочий диапазон деформаций при моделировании лежит внутри [0; $\omega/2$] наличие этой асимптоты и предельной деформации $\varepsilon = \omega$ не проявляются).

Рассмотрим случай $\overline{x} < +\infty$. Тогда $bQ(t) \in D_{\Phi}$ только при $Q(t) < \overline{x}/b$; это означает, что каждая ДД обрывается в момент времени $t = t_{\omega}$, такой, что $Q(t_{\omega}) = \overline{x}/b$, т.е. $t_{\omega} = F(\overline{x}/b)$. В силу п.1 леммы $t_{\omega}(b)$ убывает с ростом b и $t_{\omega}(b) \to 0$ при $b \to +\infty$. ДД ведут себя по-разному в двух случаях. 1) Если $\omega < +\infty$, то есть $\Phi(\overline{x}) < \infty$, то обрыв любой ДД (разрушение) происходит (как и при ползучести) по достижению критической деформации: $\varepsilon(t_{\omega}) = \varepsilon_*$, где $\varepsilon_* := \Phi(\overline{x}) = \omega$ – постоянная, не зависящая от b и $\Phi\Pi \Pi(t)$. Напряжение в момент разрушения зависит от b и $\Phi\Pi$: $\sigma_{\omega} = bt_{\omega} = bF(\overline{x}/b)$, причем $\sigma_{\omega}(b)$ возрастает (т.к. $\sigma'_{\omega}(b) > 0$ в силу п. 4 леммы) и $\sigma_{\omega}(b) \to \sigma_+ := \overline{x}/\Pi(0)$ (см. п. 2) при $b \to \infty$ в силу п. 6 леммы (в частности, $\sigma_{\omega}(b)$ меньше предела прочности σ_+ при любых СН и $\sigma_+ = \sup \sigma_{\omega}(b)$).

2) Если же $\omega = +\infty$, то есть $\Phi(\bar{x}) = \infty$, то деформация $\varepsilon(t) = \Phi(bQ(t))$ обладает вертикальной асимптотой $t = t_{\omega}$; это означает, что любая ДД обрывается в момент времени $t = t_{\omega}$ из-за неограниченного нарастания деформации и ее скорости (можно интерпретировать это как свидетельство зарождения и роста шейки в образце), а каждая ДД в форме $\sigma(\varepsilon, b)$ имеет горизонтальную асимптоту $\sigma = \overline{\sigma}(b)$, где $\overline{\sigma} = bF(\varphi(\infty)/b) = bF(\overline{x}/b)$. "Напряжение течения" (или "шейкообразования") $\overline{\sigma}(b)$ возрастает с ростом СН (так как $\overline{\sigma} = \overline{x}F(x)/x$, $x := \overline{x}/b$, а функция F(x)/x убывает), inf $\overline{\sigma}(b) = \overline{\sigma}(0+) = \overline{x}/\Pi(\infty)$, sup $\overline{\sigma}(b) = \overline{\sigma}(\infty) = \overline{x}/\Pi(0)$ (для регулярных моделей $\overline{\sigma}(\infty) < \infty$, для нерегулярных $\overline{\sigma}(\infty) = \infty$). Верно и обратное: если хотя бы одна ДД (4/1) имеет горизонтальную асимптоту, то ее имеет и МФ φ (т.е. $\omega = \infty$ и $\overline{x} < \infty$), а значит, и все ДД (ДД при постоянной СН линейного ОС (1.2) никогда не имеют горизонтальной асимптоты). Существенно, что зависимости времени разрушения $t_{\omega}(b) = F(\overline{x}/b)$ и "напряжения течения" $\overline{\sigma}(b) = bF(\overline{x}/b)$ от СН определяются только ФП П(t), а МФ φ влияет на них только через скалярный параметр $\overline{x} := \varphi(\omega)$.

Касательный модуль (4.3) зависит от CH (возрастает по *b* при любом фиксированном є, так как $\Pi(t)$ и F(x) возрастают). Мгновенный модуль при $\varepsilon = 0$ не зависит от CH: $E := \sigma'_{\varepsilon}(0+, b) = F'(\varphi(0)/b)\varphi'(0) = F'(0)\varphi'(0) = \varphi'(0)/\Pi(0)$. Для регулярных моделей он конечен, если $\varphi'(0) < \infty$, для нерегулярных (с $\Pi(0) = 0$) он бесконечен, если $\varphi'(0) \neq 0$. Если же $\varphi'(0) = 0$ или $\varphi'(0) = \infty$, то предел $\sigma'_{\varepsilon}(0+, b)$ зависит от соотношений порядков асимптотик $\varphi'(\varepsilon)$ и $\Pi(F(\varphi(\varepsilon)/b))$ при $\varepsilon \to 0$.

Фиг. 2

Длительный модуль $E_{\infty} := \sigma'_{\epsilon}(\infty, b)$ определен лишь в случае $D_{\varphi} = [0; \infty)$, то есть когда $\omega = \infty$: $E_{\infty} = \varphi'(\infty)/\Pi(F(\bar{x}/b))$. Если $\bar{x} = \infty$, то $E_{\infty} = \varphi'(\infty)/\Pi(\infty)$ (так как $F(\infty) = \infty$), и конечность предела $E_{\infty} = \varphi'(\infty)/\Pi(\infty)$ зависит от того, конечны ли $\varphi'(\infty)$ и $\Pi(\infty)$; в частности, если $\varphi'(\infty) < \infty$, то E_{∞} конечен (и $E_{\infty} = 0$ при $\Pi(\infty) = \infty$). Если $\bar{x} < \infty$ (т.е. $\varphi(\varepsilon)$ имеет горизонтальную асимптоту), то $E_{\infty} = 0$, так как $\varphi'(\infty) = 0$, $\Pi(F(\varphi(\infty)/b)) < \infty$ (это верно для любой $\Phi\Pi$ с любым пределом $\Pi(\infty)$). В случае линейного ОС (1.2) (при $\varphi(u) = u$) касательный модуль убывает по ε и все ДД $\sigma(\varepsilon, b)$ выпуклы вверх [56, 57], мгновенный модуль — максимальный касательный модуль, а длительный модуль минимальный. Для ОС (1.1) с произвольной М Φ φ это не обязательно так, ибо ДД не обязана быть выпуклой вверх.

Так как $\sigma_{\varepsilon}^{"}(\varepsilon, b) = [F'(\varphi(\varepsilon)/b)\varphi'(\varepsilon)] = b^{-1}F''(\varphi(\varepsilon)/b)\varphi'(\varepsilon)^{2} + F'(\varphi(\varepsilon)/b)\varphi''(\varepsilon)$, выпуклость ДД зависит от знака и величины $\varphi''(x)$: первое слагаемое отрицательно (ибо F'(x) < 0по п. 3 леммы); если $\varphi''(\varepsilon) < 0$, то второе слагаемое в скобке тоже отрицательно, $\sigma_{\varepsilon}^{"}(\varepsilon, b) < 0$ и ДД выпукла вверх. Таким образом, если $\varphi(x)$ выпукла вверх, то ДД выпукла вверх, а если у $\varphi(x)$ есть участки выпуклости вниз, то у ДД они тоже могут быть (см. фиг. 2а).

Фигуры 2a, 2b демонстрируют разнообразие форм (свойств) ДД ОС (1.1). На фиг. 2a приведены ДД при постоянной CH *b* = 1 моделей с тремя разными МФ Ф(*x*) (Ф = $(x/10)^3$, Ф = $x^{1/3}$ и МФ Ф(*x*) вида (2.4) с *m* = 1/n, *n* = 3, ϑ = 0.001, *A* = 0.5, *C* = 1) для ФП П(*t*) = $0.25t^{1/3}$ (ДД *1–3*) и четырех классических ФП вида (2.2): кривые 4–6 – ДД для ФП РеМ-4 (с λ = 0.1, α = 0.1, β = 1, γ = 0.5 и временем ретардации τ_c = $1/\lambda$ = 10), кривые 7–9 – ДД для ФП РеМ-3 (с α = 0, λ = 0.1, β = 1, γ = 0.5; тогда τ_c = 10, а время релаксации $\tau = \tau_c(1 - \gamma/\beta)$ = 5), штриховые кривые *10–12* – ДД для ФП модели Фойгта (с λ = 0.1, γ = β = 1), штриховые кривые *13–15* – ДД для ФП модели Максвелла (с γ = 0, α = 0.1, β = 0.5 и τ = β/α = 5). ДД моделей с Ф = $(x/10)^3$ выпуклы вверх, с $\Phi = x^{1/3}$ выпуклы вниз, а с $\Phi(x)$ вида (2.4) имеют точку перегиба. На фиг. 2b приведены ДД *1*–5 моделей с МФ (2.3) для *A* = 0.5, $\sigma_* = 2$ и теми же пятью ФП (нумерация ДД – в порядке перечисления ФП). У МФ φ вида (2.3) есть горизонтальная асимптота, и потому каждая ДД $\sigma(\varepsilon, b)$ имеет горизонтальную асимптоту $\sigma = \overline{\sigma}$ с $\overline{\sigma} = bF(\sigma_*/b)$. Штрих-пунктирные линии *6*–*10* – ДД линейного ОС (1.2) ($\varphi(u) = u$) с теми же ФП.

Основные обнаруженные выше общие свойства всех ДД (4.2), порождаемых ОС (1.1) при фиксированной СН, соберем в теореме.

Теорема 1. Пусть $\Pi(t)$ положительна, дифференцируема и строго возрастает на $(0;\infty)$, а $\varphi(x)$ непрерывно дифференцируема и строго возрастает на $(0;\omega)$ и $\varphi(0) = 0$. Тогда любая ДД $\sigma = \sigma(\varepsilon, b)$ с фиксированной СН b > 0 обладает следующими свойствами.

1) Все ДД $\sigma(\varepsilon, b)$ возрастают по ε на всей области определения, $\sigma(0, b) = 0$.

2) Если $\overline{x} := \varphi(\omega) = \infty$ то ДД (4.1) определены при всех $\varepsilon \in (0, \omega)$ и напряжение $\sigma = bt$ формально может нарастать неограниченно; в случае $\omega < \infty$ (когда МФ $\varphi(\varepsilon)$ имеет асимптоту $\varepsilon = \omega$) все ДД $\sigma = \sigma(\varepsilon, b)$ имеют общую вертикальную асимптоту $\varepsilon = \omega$.

2) Если $\overline{x} < +\infty$, каждая ДД обрывается в момент $t_{\omega} = F(\overline{x}/b)$; в случае $\omega < +\infty$ обрыв ДД (разрушение) происходит по достижению критической деформации: $\varepsilon(t_{\omega}) = \varepsilon_*$, где $\varepsilon_* := \Phi(\overline{x}) = \omega$ не зависит от СН *b*; в случае $\omega = +\infty$ каждая ДД $\sigma(\varepsilon, b)$ имеет горизонтальную асимптоту $\sigma = \overline{\sigma}(b)$, где $\overline{\sigma} = bF(\overline{x}/b)$ – напряжение течения, а деформация $\varepsilon(t) = \Phi(bQ(t))$ обладает вертикальной асимптотой $t = t_{\omega}$ (и $\dot{\varepsilon}(t) \to \infty$).

3) Касательный модуль ДД выражается формулой (4.3), он не обязан убывать по ε.

4) Мгновенный модуль (при $\varepsilon = 0$) равен $E := \sigma'_{\varepsilon}(0+, b) = \varphi'(0)/\Pi(0)$ (не зависит от CH), для регулярных моделей $E < \infty$, если $\varphi'(0) < \infty$, для нерегулярных $E = \infty$, если $\varphi'(0) \neq 0$.

5) Длительный модуль $E_{\infty} := \sigma_{\varepsilon}(\infty, b)$ определен лишь в случае $\omega = \infty$ и равен $E_{\infty} = \varphi'(\infty)/\Pi(F(\overline{x}/b));$ для его равенства нулю достаточно одного из условий: a) $\overline{x} < \infty$ или б) $\overline{x} = \infty$ и $\Pi(\infty) = \infty$ и $\varphi'(\infty) < \infty$.

6) Для любой ДД справедливы (точные) оценки: $\varphi(\varepsilon)/\Pi_{\infty} < \sigma(\varepsilon, b) < \varphi(\varepsilon)/\Pi_{0}, \varepsilon \in (0, \omega).$

5. Зависимость диаграмм деформирования от скорости нагружения. Все доказанные утверждения опираются на общие предпосылки – ограничения на МФ ОС (1.1), наложенные в теореме 1 (см. также п. 2). В предыдущем пункте уже доказана

Теорема 2. В предпосылках теоремы 1 справедливы следующие утверждения:

1) При любом $\varepsilon \in (0; \omega)$ семейство ДД (4.2) $\sigma(\varepsilon, b)$, b > 0, возрастает по b (с ростом СН ДД смещается вверх); для всех ДД справедлива оценка снизу $\sigma(\varepsilon, b) > \phi(\varepsilon)/\Pi_{\infty}$ ($\sigma > 0$, если $\Pi_{\infty} = \infty$), а если $\Pi_0 \neq 0$, то верна и оценка сверху $\sigma(\varepsilon, b) < \phi(\varepsilon)/\Pi_0$, $\varepsilon \in (0; \omega)$.

2) Касательный модуль (4.3) возрастает по *b* при любом $\varepsilon \in (0; \omega)$, а его предельные значения при $\varepsilon \to 0$ и $\varepsilon \to \infty$ (мгновенный и длительный модули) не зависят от CH.

3) Если $\overline{x} < \infty$, то ДД (4.1) обрывается в момент $t_{\omega} = F(\overline{x}/b)$, t_{ω} убывает с ростом CH *b*, напряжение разрушения $\sigma_{\omega}(b) = bt_{\omega} = bF(\overline{x}/b)$ возрастает по *b*, $\sigma_{\omega}(b) < \sigma_{+}$, где $\sigma_{+} := \overline{x}/\Pi(0)$ – предел прочности, а при $b \to +\infty \sigma_{\omega}(b) \to \sigma_{+} = \sup \sigma_{\omega}(b)$ и $t_{\omega}(b) \to 0$.

Исследуем, существуют ли пределы семейства ДД (4.2) при $b \to \infty$ и $b \to 0$, то есть ДД при "мгновенном" нагружении и равновесная ДД.

Теорема 3. 1) При $b \to \infty$ (для любого фиксированного $\varepsilon \in [0; \omega)$) семейство ДД (4.2) сходится (снизу) к кривой $\sigma = \varphi(\varepsilon)/\Pi_0$ (мгновенной ДД), если $\Pi_0 \neq 0$. Если же $\Pi_0 = 0$

(модель нерегулярна), то при $b \to \infty$ семейство ДД (в форме $\varepsilon(\sigma, b) = \Phi(\sigma\Theta(\sigma/b)))$ сходится к вертикальной прямой $\varepsilon = 0$ для любого допустимого $\sigma \ge 0$, т.е. такого, что $\sigma\Theta(\sigma/b) \in D_{\Phi}$, или $\sigma\Theta(\sigma/b) < \overline{x}$ (если $\overline{x} = \infty$, то сходимость имеет место на всем луче $\sigma \ge 0$, а если $\overline{x} < \infty$, то с ростом CH *b* область сходимости неограниченно расширяется, т.к. $\sigma/b \to 0$ и $\Theta(\sigma/b) \to 0$ при $b \to \infty$).

2) При $b \to 0$ (для любого $\varepsilon \in [0; \omega)$) семейство ДД (4.1) сходится (сверху) к кривой $\sigma = \varphi(\varepsilon)/\Pi(\infty)$ ("равновесной" ДД), ибо $F(x)/x \to 1/\Pi(\infty)$ при $x \to \infty$. Если $\Phi\Pi$ не ограничена ($\Pi_{\infty} = \infty$), то семейство ДД (4.1) сходится к прямой $\sigma = 0$.

Доказательство. По (4.2) $\sigma(\varepsilon, b) = \phi(\varepsilon)F(x)/x$, где $x = \phi(\varepsilon)/b$. Но для любой допустимой $\Phi \Pi F(x)/x < 1/\Pi_0$ и $F(x)/x \to 1/\Pi_0$ при $x \to 0$ (п. 6 леммы); при $\varepsilon = 0$ сходимость имеет место, так как $\sigma(0, b) = 0$ и $\phi(0) = 0$. Если же $\Pi_0 = 0$, то при $b \to \infty$ семейство ДД $\varepsilon(\sigma, b) = \Phi(\sigma\Theta(\sigma/b))$ сходится к прямой $\varepsilon = 0$ для любого фиксированного $\sigma \ge 0$, так как $\Theta(0+) = \Pi_0 = 0$ и $\Phi(0) = 0$ (и для любого фиксированного $\sigma \ge 0$ найдется достаточно большое *b*, при котором $\sigma\Theta(\sigma/b) < \overline{x}$).

Докажем, что сходимость семейства ДД (4.2) к мгновенной и к равновесной ДД равномерна внутри области определения (на любом отрезке).

Теорема 4. 1) Если модель регулярна ($\Pi_0 \neq 0$), то при $b \to +\infty$ семейство ДД (4.2) $\sigma(\varepsilon, b)$ сходится к функции $\sigma = \phi(\varepsilon)/\Pi_0$ равномерно на любом отрезке [0, ε] с $\varepsilon < \omega$.

2) Семейство ДД любой модели в форме $\varepsilon = \varepsilon(\sigma, b)$ сходится при $b \to +\infty$ к функции $\varepsilon(\sigma) = \Phi(\Pi_0 \sigma)$ равномерно на любом отрезке $S = [\sigma_1, \sigma_2]$ с $\sigma_1 > 0$, $\sigma_2 < \overline{x}/\Pi_0$; если $\Phi'(0+) < \infty$ (т.е. $\varphi'(0+) \neq 0$), это верно и для отрезков с $\sigma_1 = 0$.

3) Если $\Pi_0 = 0$, то семейство $\varepsilon(\sigma, b)$ сходится при $b \to +\infty$ к функции $\varepsilon = 0$ на любом отрезке вида $[0, \sigma_2]$ с $\sigma_2 > 0$.

4) При $b \to 0$ семейство ДД $\sigma = \sigma(\varepsilon, b)$ любой модели сходится к функции $\sigma = \phi(\varepsilon)/\Pi_{\infty}$ равномерно на любом отрезке $[0, \tilde{\varepsilon}]$ с $\tilde{\varepsilon} < \omega$ (в случае $\Pi_{\infty} = \infty - \kappa$ функции $\sigma \equiv 0$).

5) Если $\bar{x} < \infty$ и $\Pi_0 \neq 0$, то равномерная сходимость семейства ДД $\sigma(\varepsilon, b)$ при $b \to \infty$ и $b \to 0$ имеет место не только внутри D_{ϕ} , но и на ее замыкании: если $\omega < \infty$, то сходимость равномерна на [0, ω], а если $\omega = \infty$, то – на всем луче [0, ∞).

6) Если $\overline{x} = \infty$, то равномерной сходимости на всем интервале $[0, \omega)$ при $b \to +\infty$ нет.

Доказательство. 1) Уклонение ДД (4.2) с фиксированной СН от предельной функции $y(\varepsilon) \coloneqq |\sigma(\varepsilon, b) - \phi(\varepsilon)/\Pi_0)| = \phi(\varepsilon)[\Pi_0^{-1} - F(x)x^{-1}]$ – возрастающая функция ε на D_{ϕ} (как произведение возрастающих функций: ведь второй множитель возрастает в силу п. 5 леммы), и потому его норма в пространстве $C[0, \tilde{\varepsilon}]$ совпадает со значением уклонения на правом конце отрезка $E = [0, \tilde{\varepsilon}]$: $\Delta(b) = \sup_{\varepsilon \in E} |y(\varepsilon)| = \phi(\tilde{\varepsilon})[\Pi_0^{-1} - F(\tilde{x})\tilde{x}^{-1}]$, где $\tilde{x} = \phi(\tilde{\varepsilon})/b$. При $b \to +\infty$, очевидно, $\tilde{x} \to 0$, $F(\tilde{x})\tilde{x}^{-1} \to \Pi_0^{-1}$ (в силу п. 6 леммы) и $\Delta(b) \to 0$, то есть сходимость равномерна на $[0, \tilde{\varepsilon}]$.

2) Норма уклонения ДД $\varepsilon(\sigma, b)$ от предельной функции на отрезке *S*:

$$\Delta(b) = \sup_{\sigma \in S} |\varepsilon(\sigma, b) - \Phi(\Pi_0 \sigma)| = \sup_{S} |\Phi(\sigma\Theta(\sigma/b)) - \Phi(\Pi_0 \sigma)| =$$
$$= \sup_{S} \Phi'(\xi) |\sigma\Theta(\sigma/b) - \sigma\Pi(0)|$$

где $\xi = \xi(\sigma, b) \in (\sigma\Pi_0; \sigma\Theta(\sigma/b)) \subset I, I := [\sigma_1\Pi_0, \sigma_2\Theta(\sigma_2/b)].$ Если $\Pi_0 \neq 0$, то $\sigma_1\Pi_0 > 0$ и $\Phi'(x)$ ограничена на отрезке I (как непрерывная функция), поэтому $\Delta(b) \le M\sigma_2 |\Theta(\sigma_2/b) - \Pi_0| \to 0$ при $b \to \infty$ (так как $\dot{\Theta}(t) > 0$ и $\Theta(0+) = \Pi_0$).

3) Если $\Pi_0 = 0$, то $\Theta(0+) = 0$, условие $\sigma_2 \Theta(0) \in D_{\Phi}$ выполнено для всех $\sigma_2 \ge 0$, а отклонение $\varepsilon(\sigma, b)$ от предельной функции $\varepsilon = 0$ на отрезке $S = [0, \sigma_2]$ можно оценить без использования Φ' : $\Delta(b) = \sup_{\sigma \in S} |\Phi(\sigma\Theta(\sigma/b)) - 0| = \Phi(\sigma_2\Theta(\sigma_2/b))$ (в силу возрастания функции от σ). При фиксированном $\sigma_2 \ge 0 \Delta(b) \to 0$ при $b \to \infty$, так как $\Theta(0+) = 0$.

4) Уклонение $z(\varepsilon) := |\sigma(\varepsilon, b) - \prod_{\infty}^{-1} \varphi(\varepsilon))| = bF(\varphi(\varepsilon)/b) - \prod_{\infty}^{-1} \varphi(\varepsilon) = \varphi(\varepsilon)[F(x)x^{-1} - \prod_{\infty}^{-1}]$ является возрастающей функцией ε на D_{φ} (хотя второй множитель убывает в силу п. 5 леммы): ведь $z'(\varepsilon) = \varphi'(\varepsilon)[F'(\varphi(\varepsilon)/b) - \prod_{\infty}^{-1}] > 0$, ибо $F'(x) > F'(\infty) = \prod_{\infty}^{-1}$ в силу п. 2 леммы. Поэтому норма уклонения $z(\varepsilon)$ в пространстве $C[0, \varepsilon]$ совпадает со значением уклонения на правом конце отрезка $E = [0, \varepsilon]: \Delta(b) = \varphi(\varepsilon)[F(\tilde{x})\tilde{x}^{-1} - \prod_{\infty}^{-1}]$, где $\tilde{x} = \varphi(\varepsilon)/b$. При $b \to 0$, очевидно, $\tilde{x} \to \infty$, $F(\tilde{x})\tilde{x}^{-1} \to \prod_{\infty}^{-1}$ (в силу п. 6 леммы) и $\Delta(b) \to 0$, то есть сходимость равномерна на любом отрезке $[0, \varepsilon] c \varepsilon < \omega$. Доказательство сохраняет силу и в случае $\prod_{\infty} = \infty$, т.е. $\prod_{\infty}^{-1} = 0$.

5) Если $\omega < \infty$ и $\bar{x} < \infty$ (т.е. МФ определена и непрерывна на отрезке $[0, \omega]$), то можно положить $\tilde{\varepsilon} = \omega$ и сходимость равномерна на всем $[0, \omega]$. Если $\omega = \infty$ и $\bar{x} < \infty$ (т.е. МФ φ имеет горизонтальную асимптоту, а обратная функция Φ – вертикальную), то сходимость равномерна на всем луче $[0, \infty)$, так как $\Delta(b) = \sup_{\varepsilon \in [0,\infty)} |z(\varepsilon)| = \varphi(\infty)[F(\tilde{x})\tilde{x}^{-1} - \Pi_{\infty}^{-1}]$, где $\tilde{x} = \varphi(\infty)/b$, и, по-прежнему, при $b \to 0$ будет $\tilde{x} \to \infty$ и $F(\tilde{x})\tilde{x}^{-1} \to \Pi_{\infty}^{-1}$ и $\Delta(b) \to 0$. Аналогично ведет себя и норма уклонения при $b \to +\infty$, если $\Pi_0 \neq 0$: $\Delta(b) = \sup_{\varepsilon \in [0,\infty)} |y(\varepsilon)| = \varphi(\infty)[\Pi_0^{-1} - F(\tilde{x})\tilde{x}^{-1}]$, где $\tilde{x} = \varphi(\infty)/b$, и, по-прежнему, при $b \to +\infty$ будет $\tilde{x} \to 0$ и $F(\tilde{x})\tilde{x}^{-1} \to \Pi_0^{-1}$ и $\Delta(b) \to 0$.

6) Если же $\bar{x} = \infty$, то при $\tilde{\varepsilon} \to \omega$ (и фиксированном *b*) будет $\tilde{x} \to \infty$, $F(\tilde{x})\tilde{x}^{-1} \to \Pi_{\infty}^{-1}$ и норма уклонения на отрезке $[0, \tilde{\varepsilon}]$ равна $\Delta(b) = \sup |y(\varepsilon)| \to \varphi(\omega)[\Pi_0^{-1} - \Pi_{\infty}^{-1}] = \infty$, уклонение $\Delta(b)$ не ограничено на $[0, \omega)$ и равномерной сходимости при $b \to +\infty$ нет.

Математические результаты данной статьи о свойствах диаграмм деформирования OC (1.1) справедливы как для случая малых деформаций в OC (1.1), так и для случая, когда OC (1.1) связывает логарифмическую деформацию $\varepsilon = \ln [l(t)/l_0]$ и истинное напряжение. Но от выбора меры деформации и напряжения, конечно, зависит физический смысл этих результатов, сопоставление с данными испытаний и методика идентификации. Специфике OC Работнова в случае конечных деформаций и трехмерного напряженного состояния (как результатам испытаний, так и используемому понятийному аппарату, включая выбор мер деформаций и напряжений и объективных производных в OC (1.1) будут посвящены отдельные работы.

6. Примеры диаграмм деформирования конкретных моделей. Для степенной ФП $\Pi(t) = Bt^{u}, B > 0, u \in (0;1],$ имеем $Q(t) = B(u+1)^{-1}t^{u+1}, F(x) = Hx^{w},$ где $w := (u+1)^{-1} \in (0.5; 1), H := (wB)^{-w},$ и ДД (4.1) имеет вид: В этом случае переменные разделяются, ДД с разными CH *b* подобны, форма всех ДД определяется функцией $\varphi(\varepsilon)^w$, зависимость от CH – степенная с показателем $1 - w \in (0; 0.5]$ (при $u \to 0$ имеем $w \to 1$, $\sigma(\varepsilon, b) \to \varphi(\varepsilon)/B$, т.е. ДД становится слабо чувствительной к CH при малых *u*). Касательный и мгновенный модули:

$$\sigma'(\varepsilon,b) = Hwb^{1-w}\varphi'(\varepsilon)\varphi(\varepsilon)^{-(1-w)}, \quad E = Hwb^{1-w}\varphi'(0)\varphi(0)^{-(1-w)},$$

 $E = \infty$, если $\varphi'(0) \neq 0$ (ибо $\varphi(0) = 0$), а если $\varphi'(0) = 0$, то все зависит от асимптотики произведения $\varphi'(\varepsilon)\varphi(\varepsilon)^{w-1}$ при $\varepsilon \to 0$ (в частности, при u < 1 из существования $\varphi''(0) \neq 0$ следует, что E = 0). При $b \to \infty$ семейство ДД модели с любым $u \in (0;1]$ и любой МФ $\varphi(\varepsilon)$ сходится к вертикальной прямой $\varepsilon = 0$, так как $\Pi(0) = 0$; при $b \to 0$ семейство ДД сходится к прямой $\sigma = 0$, так как $b^{1-w} \to 0$. Абсцисса точки перегиба (если она есть) не зависит от CH и совпадает с абсциссой точки перегиба функции $\varphi(\varepsilon)^w$, поскольку

$$\sigma''(\varepsilon, b) = Hwb^{1-w}\varphi(\varepsilon)^{w-2}[\varphi''(\varepsilon)\varphi(\varepsilon) - (1-w)\varphi'(\varepsilon)^2]$$

Для степенной ФП и любой МФ φ с $\omega = \infty$ и $\bar{x} < \infty$ зависимости времени разрушения и напряжения течения от CH имеют степенной вид: $t_{\omega} = F(\bar{x}/b) = H\bar{x}^w b^{-w}, w \in [0.5;1),$ и $\bar{\sigma}(b) = bF(\bar{x}/b) = H\bar{x}^w b^{1-w}, 1 - w \in (0;0.5]$. В частности, для МФ (2.3) ДД (6.1) имеют вид $\sigma(\varepsilon, b) = Hb^{1-w}\sigma_*^w(1 - e^{-\varepsilon/A})^w, \varepsilon \ge 0$. Каждая ДД обладает горизонтальной асимптотой $\sigma = \bar{\sigma}, \bar{\sigma} = H\sigma_*^w b^{1-w}$, время разрушения $t_{\omega} = F(\bar{x}/b) = H\sigma_*^w b^{-w}$.

Для МФ $\varphi(\varepsilon) = C(1 - \cos(\varepsilon/A))$, возрастающей на отрезке $\varepsilon \in [0, \pi A]$, имеем $\omega = \pi A$, $\Phi(x) = A [\arcsin(x/C - 1) + 0.5\pi]$, $x \in [0, 2C]$, $\overline{x} = 2C$, а семейство ДД (6.1) имеет вид: $\sigma(\varepsilon, b) = Hb^{1-w}C^w(1 - \cos(\varepsilon/A))^w$, $\varepsilon \in [0, \pi A]$. Обрыв любой ДД происходит по достижению критической деформации: $\varepsilon(t_{\omega}) = \varepsilon_*$, где $\varepsilon_* = \omega = \pi A$ (не зависит от CH *b* и $\Phi \Pi$), время разрушения $t_{\omega} = F(\overline{x}/b) = H(2C)^w b^{-w}$. Мгновенный модуль *E* равен нулю для всех $u \in (0;1)$: в самом деле, при $\varepsilon \to 0$ $\varphi(\varepsilon) \sim 0.5CA^{-2}\varepsilon^2$, $\varphi'(\varepsilon)\varphi(\varepsilon)^{w-1} \sim (0.5CA^{-2}\varepsilon^2)^{w-1}CA^{-2}\varepsilon = c\varepsilon^{2w-1}$; но для $u \in (0;1)$ всегда w > 0.5, и потому E = 0 (а для u = 1 имеем w = 0.5 и $E = c \in (0;\infty)$). ДД с этой МФ всегда имеет точку перегиба $\tilde{\varepsilon} = A \arccos u > 0$ (и еще одну в т. $\varepsilon = 0$). При $u \to 0 \tilde{\varepsilon} \to 0.5\pi A$, при $u \to 1 \tilde{\varepsilon} \to 0$.

На фиг. За приведены ДД $\sigma(\varepsilon, b)$ с разными СН b = 0.001; 0.01; 0.1; 1; 10 (кривые I-5) для модели с МФ (2.3) (она дает дробно-линейную зависимость Шестерикова-Юмашевой [64] для скорости ползучести), A = 0.5, $\sigma_* = 1$, и ФП РеМ-3, т.е. ФП (2.2) с $\alpha = 0$, $\lambda = 0.1$, $\beta = 1$, $\gamma = 0.5$ (тогда $\Pi(0) = \beta - \gamma \neq 0$, время ретардации $\tau_c = 1/\lambda = 10$, время релаксации $\tau = \tau_c(1 - \gamma/\beta) = 5$). У всех ДД мгновенный модуль $E = \varphi'(0)/\Pi(0) = A^{-1}\sigma_*(\beta - \gamma)^{-1}$, а длительный модуль $E_{\infty} = 0$. Так как у МФ φ вида (2.3) есть горизонтальная асимптота $\sigma = \sigma_*$, то каждая ДД обрывается в момент $t_{\omega} = F(\sigma_*/b)$ ($\varepsilon(t_{\omega} - 0) = \infty$) и имеет горизонтальную асимптоту $y = \overline{\sigma}(b)$, где напряжение течения $\overline{\sigma} = bF(\sigma_*/b)$ — возрастающая функция СН ($\overline{\sigma}(\infty) = \sigma_*/\Pi(0) = \sigma_*/(\beta - \gamma)$, $\overline{\sigma}(0+) = \sigma_*/\Pi(\infty) = \sigma_*/\beta$). При $b \to \infty$ семейство ДД (монотонно) сходится к кривой $\sigma = (\beta - \gamma)^{-1}\varphi(\varepsilon)$, то есть $\sigma(\varepsilon) = \sigma_*(\beta - \gamma)^{-1}(1 - e^{-\varepsilon/A})$, а при $b \to 0$ семейство ДД сходит-

Фиг. 3

ся к кривой $\sigma = \varphi(\epsilon)/\beta$, т.е. $\sigma(\epsilon) = \sigma_*\beta^{-1}(1 - e^{-\epsilon/A})$ (штриховые кривые с маркерами ∞ и 0); в секторе между ними лежат все ДД с b > 0. Три штрих-пунктирные кривые 6-8, выходящие за пределы описанного криволинейного сектора, — ДД модели с той же МФ φ , но с ФП Фойгта (ФП (2.2) с $\beta = \gamma = 1$) для СН b = 0.01; 0.1; 1. При $b \to 0$ семейство ДД модели с ФП Фойгта сходится к той же кривой $\sigma = \varphi(\epsilon)/\beta$ (ибо значение β такое же). Отличие от PeM-3 (с $\gamma < \beta$) состоит в том, что П(0) = 0 (модель Фойгта сингулярна) и потому $E = \infty$ (касательные к ДД в т. $\epsilon = 0$ вертикальны), а при $b \to \infty$ семейство ДД сходится к вертикальной прямой $\epsilon = 0$. Штриховые прямые 9, 10 — предельные ДД для $b \to \infty$ и $b \to 0$ ($\sigma = \epsilon/(\beta - \gamma)$ и $\sigma = \epsilon/\beta$) в случае линейного ОС (когда $\varphi(u) = u$).

На фиг. Зb приведены ДД с разными CH b = 0.01; 0.1; 1; 10 (кривые 1-4) для модели с той же ФП РеМ-3, что и на фиг. За, и МФ Ф(x) = A [arcsin $(x/C - 1) + 0.5\pi$], $x \in [0, 2C]$ ($\phi(\varepsilon) = C(1 - \cos(\varepsilon/A))$, $\omega = \pi A$, $\bar{x} = 2C$) с A = 1, C = 1. Все ДД имеют нулевой мгновенный модуль $E = \phi'(0)/\Pi(0)$, так как $\phi'(0) = 0$, а $\Pi(0) \neq 0$. Поскольку $\bar{x} < \infty$ и $\Phi(\bar{x}) < \infty$, то любая ДД обрывается (происходит разрушение) по достижению критической деформации $\varepsilon_* = \omega = \pi A$ (постоянная не зависит от CH b и ФП $\Pi(t)$), время разрушения $t_{\omega} = F(\bar{x}/b)$ и предельное напряжение $\sigma_{\omega} = bF(\bar{x}/b)$ зависят от CH b и ФП. При $b \to \infty$ семейство ДД (монотонно) сходится к кривой $\sigma = (\beta - \gamma)^{-1}\phi(\varepsilon)$, то есть $\sigma = 2(1 - \cos\varepsilon)$, а при $b \to 0$ семейство ДД сходится к кривой $\sigma = \phi(\varepsilon)/\beta$, то есть $\sigma = 1 - \cos\varepsilon$ (штриховые кривые с маркерами ∞ и 0); в секторе между ними лежат все ДД с b > 0. Четыре штрих-пунктирные кривые 5-8, выходящие за пределы описанного криволинейного сектора, – ДД модели с ФП Фойгта (при $\beta = \gamma = 1$) и той же МФ $\Phi(x)$ для тех же CH b = 0.01; 0.1; 1; 10. При $b \to 0$ семейство ДД модели с ФП Фойгта сходится к той же кривой $\sigma = \phi(\varepsilon)/\beta$ (поскольку значение β то же самое), а при $b \to \infty$ к вертикальной прямой $\varepsilon = 0$.

На фиг. 4а приведены ДД для двух моделей с МФ $\Phi(x) = A [\arcsin(x/C - 1) + 0.5\pi], x \in [0, 2C]$ (той же самой, что и на фиг. 3b) и ФП П(t) = Bt^u с B = 0.5 и двумя значениями показателя: u = 0.1 (ДД 1-4) и u = 0.9 (ДД 5-8). СН пробегают 3 порядка: b = 0.01; 0.1; 1; 10. Для П(t) = Bt^u имеем $F(x) = Hx^w$, где $w := (u + 1)^{-1} \in [0.5;1),$ $H := (wB)^{-w}$, и ДД (4.1): $\sigma(\varepsilon, b) = bH(\varphi(\varepsilon)/b)^w = Hb^{1-w}\varphi(\varepsilon)^w$. ДД с разными СН подобны, форма всех ДД определяется функцией $\varphi(\varepsilon)^w$, абсцисса точки перегиба $\tilde{\varepsilon} = A \arccos u$ не зависит от СН, мгновенный модуль E равен нулю для всех $u \in (0;1)$. Так как $\bar{x} < \infty$ и $\Phi(\bar{x}) < \infty$, то любая ДД обрывается по достижению критической деформации $\varepsilon * = \omega = \pi A$. Зависимость ДД от СН – степенная с показателем $1 - w \in (0;0.5]$. При $b \to \infty$ семейство ДД модели с любым $u \in (0;1]$ монотонно сходится к вертикальной прямой $\varepsilon = 0$, так как $\Pi(0) = 0$; при $b \to 0$ семейство ДД сходится к прямой $\sigma = 0$, так как $\Pi(\infty) = \infty$. При малых u модель становится слабо чувствительной к СН (ДД 1-4для модели с u = 0.1 лежат в заметно более узком секторе, чем ДД модели с u = 0.9), а при $u \to 0$ имеем $w \to 1$, $\tilde{\varepsilon} \to 0.5\pi A$, $\sigma(\varepsilon, b) \to \varphi(\varepsilon)/B$ (см. штриховую кривую 9).

На фиг. 4b приведены ДД при b = 0.001; 0.01; 0.1; 1 для двух моделей с ФП П(t) = $t^{1/3}/3$ (тогда w = 3/4, $F(s) = 2^{3/2}s^{3/4}$) и двумя МФ $\varphi(x) = \vartheta x^n + (1 - \vartheta)x^{1/n}$ вида (2.4), $x \ge 0, n > 1, \vartheta \in (0;1),$ с разными значениями n и ϑ : ДД $1-4 - для n = 3, \vartheta = 0.5,$ ДД $5-8 - для n = 5, \vartheta = 0.1$. Уравнение ДД имеет вид $\sigma = Hb^{1-w}\varphi(\varepsilon)^w$, т.е. $\sigma(\varepsilon, b) = 2^{3/2}b^{1/4}(\vartheta\varepsilon^n + (1 - \vartheta)\varepsilon^{1/n})^{3/4}$. Все ДД имеют вертикальную касательную в нуле ($E = \infty$), точку перегиба (ее абсцисса не зависит от CH b, так как для степенных ФП ДД подобны) и $E_{\infty} = \infty$. С ростом n ДД приобретает "площадку текучести". При $b \to \infty$ семейство ДД сходится к прямой $\varepsilon = 0$ (так как П(0) = 0); при $b \to 0$ семейство ДД сходится к прямой $\varepsilon = 0.001; 0.01; 0.1; 1$.

Формы ДД на фиг. За и 4b типичны для многих полимеров, асфальтобетонов, металлов и сплавов со скоростной чувствительностью [7–10, 32, 38–46, 63, 65–73]. ДД на фиг. 4a и 3b (с малым, но быстро растущим при очень малых деформациях касательным модулем и точкой перегиба) качественно воспроизводят поведение ДД эластомеров (каучуков, резин и т.п.), пенопластов и биологических тканей (связок, сухожилий, сосудов) [20–22, 25–27, 30–33, 63, 74, 75].

Заключение. В работе продолжен качественный анализ определяющего соотношения Работнова (1.1): при минимальных ограничениях на две МФ выведены в общем виде уравнения семейств теоретических кривых деформирования при постоянных скоростях нагружения, детально изучены их общие качественные свойства в зависимости от свойств МФ (см. теоремы 1-4). На основе их сравнения с типичными свойствами кривых испытаний реономных материалов выявлены необходимые ограничения на МФ, обеспечивающие адекватное описание комплекса основных реологических эффектов, наблюдаемых при нагружениях с постоянной скоростью, сферы влияния обеих $M\Phi$ и ряд индикаторов применимости OC. Обнаружены те эффекты, которые OC (1.1) принципиально не может описать ни при каких $M\Phi$ (например, зависимость формы кривых релаксации от уровня деформации, отрицательная скоростная чувствительность ДД и др.), и те, которые могут быть описаны при определенных дополнительных ограничениях, наложенных на $M\Phi$ (например: выпуклость ДД или наличие у них точек перегиба, подобие ДД, существование мгновенной ДД, конечность мгновенного модуля, равенство нулю или отличие от нуля длительного модуля, разрушение при деформировании с постоянной СН, зависимость времени разрушения от уровня напряжения или СН и т.п.).

Проведенный анализ позволил сопоставить круг реологических явлений, которые OC (1.1) может адекватно описывать, с арсеналом возможностей линейного OC вязкоупругости, которое оно обобщает, указать как наследуемые свойства, так и дополнительные возможности нелинейного OC по сравнению с линейным. Например, доказано, что: при любых MФ все ДД с постоянными скоростями нагружения $\sigma(\varepsilon, b)$ возрастают по ε и по параметру *b* (то есть ДД смещаются вверх с ростом CH); однако их мгновенный и длительный (касательные) модули не зависят от скоростей; если модель регулярна, то при стремлении CH к бесконечности семейство ДД сходится на луче $\varepsilon \ge 0$ к кривой $\sigma = \phi(\varepsilon)/\Pi(0)$ (мгновенной ДД), а при стремлении CH к нулю они сходятся (сверху) к кривой $\sigma = \phi(\varepsilon)/\Pi(\infty)$ (см. теоремы 1–4). Все перечисленные свойства ДД нелинейного OC (1.1) унаследованы от линейного OC вязкоупругости (1.2) [56, 57] (в этом случае мгновенная и равновесная ДД прямолинейны). Но, в отличие от ДД линейного OC, которые всегда выпуклы вверх, ДД OC (1.1) могут иметь участки выпуклости вниз (в частности, в окрестности нуля) и точки перегиба, если они имеются у МФ $\phi(u)$, и горизонтальную асимптоту, если она есть у ϕ .

В последующих работах будут исследованы качественные свойства остальных квазистатических кривых, порождаемых ОС (1.1): кривых деформирования при постоянных и кусочно-постоянных скоростях деформации, кривых релаксации и ползучести с произвольной начальной стадией нагружения, условий описания немонотонности и знакопеременности коэффициента Пуассона, влияния гидростатического давления на кривые ползучести и деформирования, эффекта Маллинза, циклической ползучести, рэтчетинга, приспособляемости и других эффектов. На основе этого анализа будут составлены более полные списки индикаторов применимости ОС (1.1) и его возможностей по моделированию комплексного поведения классов реономных материалов, проявляющих нелинейную наследственность, скоростную чувствительность и разносопротивляемость.

Работа выполнена при финансовой поддержке РФФИ (грант № 17-08-01146_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Работнов Ю.Н*. Равновесие упругой среды с последействием // ПММ. 1948. Т. 12. № 1. С. 53– 62.
- 2. *Наместников В.С., Работнов Ю.Н.* О наследственных теориях ползучести // ПМТФ. 1961. Т. 2. № 4. С. 148–150.
- 3. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
- 4. Работнов Ю.Н., Паперник Л.Х., Степанычев Е.И. Приложение нелинейной теории наследственности к описанию временных эффектов в полимерных материалах // Механика полимеров. 1971. № 1. С. 74–87.
- 5. Дергунов Н.Н., Паперник Л.Х., Работнов Ю.Н. Анализ поведения графита на основе нелинейной наследственной теории // ПМТФ. 1971. № 2. С. 76–82.
- 6. Работнов Ю.Н., Паперник Л.Х., Степанычев Е.И. Нелинейная ползучесть стеклопластика TC8/3-250 // Механика полимеров. 1971. № 3. С. 391–397.
- 7. Работнов Ю.Н., Паперник Л.Х., Степанычев Е.И. О связи характеристик ползучести стеклопластиков с кривой мгновенного деформирования // Механика полимеров. 1971. № 4. С. 624–628.
- 8. *Работнов Ю.Н., Суворова Ю.В.* О законе деформирования металлов при одноосном нагружении // Изв. АН СССР. МТТ. 1972. № 4. С. 41–54.
- 9. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
- 10. *Мельшанов А.Ф., Суворова Ю.В., Хазанов С.Ю.* Экспериментальная проверка определяющего уравнения для металлов при нагружении и разгрузке // Изв. АН СССР. МТТ. 1974. № 6. С. 166–170.
- 11. *Суворова Ю.В.* Нелинейные эффекты при деформировании наследственных сред // Механика полимеров. 1977. № 6. С. 976–980.
- 12. Осокин А.Е., Суворова Ю.В. Нелинейное определяющее уравнение наследственной среды и методика определения его параметров // ПММ. 1978. Т. 42. № 6. С. 1107–1114.
- 13. *Суворова Ю.В., Алексеева С.И*. Нелинейная модель изотропной наследственной среды для случая сложного напряженного состояния // Механика композитных материалов. 1993. № 5. С. 602–607.
- 14. Суворова Ю.В., Алексеева С.И. Инженерные приложения модели наследственного типа к описанию поведения полимеров и композитов с полимерной матрицей // Заводская лаборатория. Диагностика материалов. 2000. Т. 66. № 5. С. 47–51.
- 15. Алексеева С.И. Модель нелинейной наследственной среды с учетом температуры и влажности // ДАН. 2001. Т. 376. № 4. С. 471–473.
- 16. *Мосин А.В.* Вычисление параметров нелинейного определяющего уравнения наследственного типа // Проблемы машиноведения и надежности машин. 2002. № 2. С. 83–88.
- 17. *Суворова Ю.В.* О нелинейно-наследственном уравнении Ю.Н. Работнова и его приложениях // Изв. РАН. МТТ. 2004. № 1. С. 174–181.
- 18. Алексеева С.И., Фроня М.А., Викторова И.В. Анализ вязкоупругих свойств полимерных композитов с углеродными нанонаполнителями // Композиты и наноструктуры. 2011. № 2. С. 28–39.
- 19. Алексеева С.И., Викторова И.В., Фроня М.А. Развитие наследственной модели Работнова и анализ деформационных характеристик композитов // Труды конференции "Наследственная механика деформирования и разрушения твердых тел – научное наследие Ю.Н. Работнова". М.: Изд-во ИМАШ РАН, 2014. С. 11–17.
- Fung Y.C. Stress-strain history relations of soft tissues in simple elongation. In: Biomechanics, Its Foundations and Objectives (ed. by Fung Y.C.). New Jersey: Prentice-Hall, Englewood Cliffs, 1972. P. 181–208.
- 21. *Фанг Я.Ч.* Математические модели зависимости напряжение—деформация для живых мягких тканей // Механика полимеров. 1975. № 5. С. 850–867.
- Woo S. L.-Y. Mechanical properties of tendons and ligaments I. Quasi-static and nonlinear viscoelastic properties // Biorheology. 1982. V. 19. P. 385–396.
- Sauren A.A., Rousseau E.P. A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung // J. Biomech. Eng. 1983. V. 105. P. 92–95.
- Nigul I., Nigul U. On algorithms of evaluation of Fung's relaxation function parameters // J. Biomech. 1987. V. 20. № 4. P. 343–352.
- Fung Y.C. Biomechanics. Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993. 568 p.
- Funk J.R., Hall G.W., Crandall J.R., Pilkey W.D. Linear and quasi-linear viscoelastic characterization of ankle ligaments // J. Biomech. Eng. 2000. V. 122. P. 15–22.

- Abramowitch S.D., Woo S.L.-Y. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory // J. Biomech. Eng. 2004. V. 126. P. 92–97.
- Yang W., Fung T.C., Chian K.S., Chong C.K. Viscoelasticity of Esophageal Tissue and Application of a QLV model // J. Biomech. Engineering. 2006. V. 128. P. 909–916.
- 29. Nekouzadeh A., Pryse K.M., Elson E.L., Genin G.M. A simplified approach to quasi-linear viscoelastic modeling // J. Biomechanics. 2007. V. 40. № 14. P. 3070–3078.
- 30. *De Frate L.E., Li G.* The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model // Biomechanics and Modeling in Mechanobiology. 2007. V. 6. № 4. P. 245– 251.
- 31. *Duenwald S.E., Vanderby R., Lakes R.S.* Constitutive equations for ligament and other soft tissue: evaluation by experiment // Acta Mechanica. 2009. V. 205. P. 23–33.
- 32. Lakes R.S. Viscoelastic Materials. Cambridge: Cambridge Univ. Press, 2009. 461 p.
- Duenwald S.E., Vanderby R., Lakes R.S. Stress relaxation and recovery in tendon and ligament: Experiment and modeling // Biorheology. 2010. V. 47. P. 1–14.
- Nekouzadeh A., Genin G.M. Adaptive Quasi-Linear Viscoelastic Modeling. In "Studies in Mechanobiology, Tissue Engineering and Biomaterials. VI.10". Berlin Heidelberg: Springer, 2013. P. 47–83.
- 35. Karimi A., Navidbakhsh M. Mechanical properties of PVA material for tissue engineering applications // Materials Technology. 2014. V. 29. № 2. P. 90–100.
- 36. De Pascalis R., Abrahams I.D., Parnell W.J. On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model // Proc. R. Soc. A. 2014. V. 470. 20140058. DOI: 10.1098/rspa.2014.0058
- Babaei B., Abramowitch S.D. et al. A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials // J. Royal. Soc. Interface. 2015. V. 12. 20150707. DOI: 10.1098/rsif.2015.0707
- 38. Коларов Д., Балтов А., Бончева Н. Механика пластических сред. М.: Мир, 1979. 304 с.
- 39. Гольдман А.Я. Прогнозирование деформационно-прочностных свойств полимерных и композиционных материалов. Л.: Химия, 1988. 272 с.
- 40. Drozdov A.D. Mechanics of viscoelastic solids. N.-Y.: Wiley, 1998. 484 p.
- 41. Адамов А.А., Матвеенко В.П., Труфанов Н.А., Шардаков И.Н. Методы прикладной вязкоупругости. Екатеринбург: Изд-во УрО РАН, 2003. 411 с.
- 42. Betten J. Creep Mechanics. Berlin, Heidelberg: Springer-Verlag, 2008. 367 p.
- 43. Segal V.M., Beyerlein I.J., Tome C.N., Chuvil'deev V.N., Kopylov V.I. Fundamentals and Engineering of Severe Plastic Deformation. N.Y.: Nova Science Pub. Inc., 2010. 542 p
- 44. Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity. Springer Science & Business Media, 2008. 446 p.
- 45. Christensen R.M. Mechanics of Composite Materials. N.Y.: Dover Publications, 2012. 384 p.
- 46. *Bergstrom J.S.* Mechanics of Solid Polymers. Theory and Computational Modeling. Elsevier, William Andrew, 2015. 520 p.
- Волков И.А., Игумнов Л.А., Коротких Ю.Г. Прикладная теория вязкопластичности. Н. Новгород: Изд-во ННГУ, 2015. 318 с.
- 48. Локощенко А.М. Ползучесть и длительная прочность металлов. М.: Физматлит, 2016. 504 с.
- 49. Хохлов А.В. Анализ общих свойств кривых ползучести при ступенчатом нагружении, порождаемых нелинейным соотношением Работнова для вязкоупругопластичных материалов // Вестник МГТУ им. Н.Э. Баумана. Сер. Естеств. науки. 2017. № 3. С. 93–123.
- 50. Хохлов А.В. Асимптотика кривых ползучести, порожденных нелинейной теорией наследственности Работнова при кусочно-постоянных нагружениях, и условия затухания памяти // Вестник Московского университета. Серия 1: Математика. Механика. 2017. № 5. С. 26–31.
- 51. *Khokhlov A.V.* Analysis of properties of ramp stress relaxation curves produced by the Rabotnov nonlinear hereditary theory // Mechanics of Composite Materials. 2018. V. 54. № 4. P. 473–486.
- 52. Хохлов А.В. Моделирование зависимости кривых ползучести при растяжении и коэффициента Пуассона реономных материалов от гидростатического давления с помощью нелинейнонаследственного соотношения Работнова // Механика композиционных материалов и конструкций. 2018. Т. 24. № 3. С. 407–436.
- 53. *Хохлов А.В.* Определяющее соотношение для реологических процессов: свойства теоретических кривых ползучести и моделирование затухания памяти // Изв. РАН. МТТ. 2007. № 2. С. 147–166.
- 54. *Хохлов А.В.* Определяющее соотношение для реологических процессов с известной историей нагружения. Кривые ползучести и длительной прочности // Изв. РАН. МТТ. 2008. № 2. С. 140–160.

- 55. Хохлов А.В. Критерии разрушения при ползучести, учитывающие историю деформирования, и моделирование длительной прочности // Изв. РАН. МТТ. 2009. № 4. С. 121–135.
- 56. *Хохлов А.В.* Характерные особенности семейств кривых деформирования линейных моделей вязкоупругости // Проблемы прочности и пластичности. 2015. Вып. 77. № 2. С. 139–154.
- 57. Хохлов А.В. Качественный анализ общих свойств теоретических кривых линейного определяющего соотношения вязкоупругости // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2016. № 5. С. 187–245. Режим доступа: http://technomag.edu.ru/doc/840650.html.
- 58. Хохлов А.В. Двусторонние оценки для функции релаксации линейной теории наследственности через кривые релаксации при гатр-деформировании и методики ее идентификации // Изв. РАН. МТТ. 2018. № 3. С. 81–104.
- 59. Хохлов А.В. Анализ общих свойств кривых ползучести при циклических ступенчатых нагружениях, порождаемых линейной теорией наследственности // Вестник Самарского гос. техн. ун-та. Сер. Физ.-мат. науки. 2017. Т. 21. № 2. С. 326–361.
- 60. *Хохлов А.В.* Нелинейная модель вязкоупругопластичности типа Максвелла: моделирование влияния температуры на кривые деформирования, релаксации и ползучести // Вестник Самарского гос. техн. ун-та. Сер. физ.-мат. науки. 2017. Т. 21. № 1. С. 160–179.
- 61. Хохлов А.В. Нелинейная модель вязкоупругопластичности типа Максвелла: свойства семейства кривых релаксации и ограничения на материальные функции // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 6. С. 31–55.
- 62. Хохлов А.В. Идентификация нелинейной модели упруговязкопластичности типа Максвелла по диаграммам нагружения с постоянными скоростями // Деформация и разрушение материалов. 2018. № 4. С. 2–10.
- 63. Хохлов А.В. Свойства диаграмм нагружения и разгрузки, порождаемых нелинейным определяющим соотношением типа Максвелла для реономных материалов // Вестник Самарского гос. техн. ун-та. Сер. Физ.-мат. науки. 2018. Т. 22. № 2. С. 293–324. doi: 10.14498/vsgtu1573
- 64. Шестериков С.А., Юмашева М.А. Конкретизация уравнения состояния при ползучести // Изв. АН СССР. МТТ. 1984. № 1. С. 86–91.
- Khan A.S., Lopez-Pamies O. Time and temperature dependent response and relaxation of a soft polymer // International Journal of Plasticity. 2002. V. 18. P. 1359–1372.
- 66. Krempl E., Khan F. Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers // Int. J. Plasticity. 2003. V. 19. P. 1069–1095
- 67. *McClung A.J.W., Ruggles-Wrenn M.B.* The rate (time)-dependent mechanical behavior of the PMR-15 thermoset polymer at elevated temperature // Polymer Testing. 2008. V. 27. P. 908–914.
- 68. Белякова Т.А., Зезин Ю.П., Ломакин Е.В. Термовязкогиперупругое поведение эластомерных материалов, модифицированных наночастицами наполнителя // Изв. РАН. МТТ. 2010. № 4. С. 63–81.
- 69. Вильдеман В.Э., Третьяков М.П. и др. Экспериментальные исследования свойств материалов при сложных термомеханических воздействиях. М.: Физматлит, 2012. 209 с.
- Khan F, Yeakle C. Experimental investigation and modeling of non-monotonic creep behavior in polymers. // Int. J. Plasticity. 2011. V. 27. P. 512–521.
- Kastner M. et al. Inelastic material behavior of polymers Experimental characterization, formulation and implementation of a material model // Mech. Mater. 2012. V. 52. P. 40–57.
- 72. Yun K.-S., Park J.-B., Jung G.-D., Youn S.-K. Viscoelastic constitutive modelling of solid propellant with damage // Int. J. Solids and Structures. 2016. V. 34. P. 118–127.
- 73. *Kim J.W., Medvedev G.A., Caruthers J.M.* The response of a glassy polymer in a loading-unloading deformation: the stress memory experiment // Polymer. 2013. V. 54. № 21. P. 5993–6002.
- 74. *MacHado G., Chagnon G., Favier D.* Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results // Mech. Mater. 2010. V. 42. P. 841–851.
- 75. Fernandes V.A., De Focatiis D.S. The role of deformation history on stress relaxation and stress memory of filled rubber // Polymer Testing. 2014. V. 40. P. 124–132.