УДК 620.1

ТЕОРЕТИЧЕСКИЕ СООБРАЖЕНИЯ ОБ ОСАЖДЕНИИ СУЛЬФИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ В ЛЕГИРОВАННЫХ СТАЛЯХ

© 2020 г. М. М. Асадов^{*a*,*}, К. Будегдег^{*a*}, И. Муссауи^{*b*}, А. Рула^{*b*,**}

^а Институт катализа и неорганической химии, Азербайджанская НАН, Баку, Азербайджан ^b Научно-технологический факультет, LIME LEAM, Университет им. М. С. Беняхиа, Джиджель, Алжир *e-mail: mirasadov@gmail.com **e-mail: amkroula@univ-jijel.dz

> Поступила в редакцию 01.09.2019 г. После доработки 18.09.2019 г. Принята к публикации 25.09.2019 г.

Механические свойства деталей из легированных сталей могут быть улучшены путем термической и/или термохимической обработки, вследствие осаждения простых и/или сложных химических соединений (карбидов, нитридов и/или карбонитридов). Тем не менее, осаждение сульфидов переходных металлов (СПМ) считается нежелательным явлением из-за негативного влияния на свойства материала. Данное явление было объектом нескольких теоретических исследований (феноменологическое описание, термодинамический и/или кинетический подходы) и все еще является темой для активного обсуждения. В данной работе теоретический подход к этому явлению осуществляется на основе безразмерного математического анализа (сбор и математическое моделирование конкретного массива данных), на базе которого предлагается провести относительное ранжирование способности переходных металлов (ПМ) образовывать сульфиды и создать модели для расчета количества любого СПМ и его относительного содержания в металлической структуре железоуглеродистых (Fe–C) сплавов.

Ключевые слова: переходные металлы, сульфиды, железоуглеродистые (Fe–C) сплавы, безразмерный анализ

DOI: 10.31857/S0572329920010195

1. Введение. Сульфиды переходных металлов (СПМ) представляют собой квазинеизбежную и вредную примесь в железоуглеродистых сплавах. Стали могут содержать серу по нескольким причинам (примесь железной руды и всех других химических компонентов, используемых в ходе длительного и сложного процесса выработки). Удалить их довольно сложно, а точный процесс обессеривания изучен не полностью [1, 2]. Одновременное наличие серы и переходных металлов (S и ПМ = Ti, V, Cr, Mn, Co, Ni, Zr, Nb и Мо – являются наиболее используемыми ПМ) в химическом составе материала может привести к их объединению в простой (M_xS_y) или сложный ($A_xB_yS_z$) СПМ. Формированию и последующему осаждению этих включений способствует чрезвычайно низкая растворимость щелочных и щелочноземельных металлов в железных (Fe) и железоуглеродистых (Fe–C) сплавах [3–5].

Осаждение этих включений в низкоуглеродистых сталях отрицательно сказывается на их механических свойствах и значительно ухудшает их коррозионную стойкость [4–13]. Часто отмечалось преобладание осадков сульфида марганца (MnS); действи-

тельно, это химическое соединение является преобладающим, несмотря на наличие других ПМ (даже с более высоким содержанием, чем у марганца) [4–14, 21–25].

Как было установлено Реформатской и др. [14], включения MnS осаждаются в структуре сталей, поскольку эти материалы всегда содержат марганец (в качестве примеси или легирующего элемента). В хромсодержащих сталях с очень низким содержанием марганца наиболее вероятными соединениями являются сульфиды хрома. Из-за его низкого содержания, MoS_2 никогда не обнаруживался в молибденсодержащих сталях или модельных сплавах на основе железа. Также молибден не был обнаружен в марганецсодержащих сульфидных включениях [14]. MnS может существовать индивидуально или образовывать сложные комбинации, содержащие также оксиды кремния или алюминия [6]. Это объясняет большое количество исследований, посвященных именно этому соединению (влияние размера, количества и распределение в металлической матрице на физико-химические и механические свойства деталей из низкоуглеродистой марганцевой стали при одновременном присутствии различных (по природе и количеству) ПМ [1–14, 20–25]).

Таким образом, целью данного исследования является относительное описание взаимодействия ПМ с серой. Как было показано в предшествующем исследовании о карбидизации ПМ [15], следуя основным правилам математического безразмерного анализа [16, 17] и используя данные IUPAC (МСТПХ) и NIST (НИСТ) [18, 19], а также основы теории металлургических процессов [20] предложена эмпирическая и относительная математическая модель для оценки сульфидообразования (сульфидизации) любого металла в железоуглеродистых сплавах. Это позволит сортировать возможности для всех ПМ образовывать СПМ ($M_x S_y$), а также, в последствии, рассчитать массовую долю (Q_{MxSy} ; мас. %) осажденного сульфида в металлической матрице материала.

2. Основные параметры осаждения сульфидов в железоуглеродистых (Fe–C) сплавах. Наиболее вероятными реакциями являются осаждение и растворение в железе карбидов переходных металлов (КПМ), причем сера редко присутствует в химическом составе железоуглеродистых (Fe–C) сплавов. Во время процесса затвердевания Fe–C сплавов присутствующие в сплаве ПМ (легирующие элементы) могут:

• образовать соответствующие карбиды переходных металлов (КПМ) с углеродом: $M_a C_b$ или

• образовать соответствующие сульфиды (СПМ) в случае наличия в сплаве серы: $(M_x S_v)$ или

• раствориться в железе и образовать твердые растворы (феррит и/или аустенит): железо (Fe) является растворителем, а ПМ – растворенным веществом.

Реформатская подтвердила, что природа сульфидных включений в сталях определяется энергией Гиббса ΔG их образования [14]. Абсолютные значения ΔG для СПМ, встречающихся в сталях, уменьшаются в данной последовательности: TiS > MnS > > CrS > NiS > FeS.

Результаты исследований [1–14, 21–25] показали, что оценки поведения сульфида ПМ только с изменением свободной энергии (ΔG_{MxSy}) недостаточно для понимания явления осаждения. Необходимо принять во внимание некоторые другие параметры, такие как:

• значения энергии связи ($E_{\rm b}^{\rm M-S}$) между исследуемыми ПМ и атомами серы в химическом соединении $M_{\rm x}S_{v}$

• различия в электроотрицательности между рассматриваемым ПМ и атомами серы, а также между тем же ПМ и атомами железа и между тем же ПМ и атомами углерода, то есть: $\Delta \chi_{M-S}$, $\Delta \chi_{M-Fe}$ и $\Delta \chi_{M-C}$.

ПМ	Ti	V	Cr	Mn	Fe	Со	Ni	Zr	Nb	Mo
Сульфид	TiS	V_2S_3	CrS	MnS	FeS	CoS	NiS	ZrS ₂	NbS_2	MoS_2
$\Delta G_{ m f}^{\circ}~({ m M}_{ m pSq});$ [ккал/моль]	- 19.33	-62.51	- 158.80	- 52.25	-22.64	- 19.8	-21.03	- 29.43	- 29.67	-54.2
Карбид	TiC	VC	Cr ₂₃ C ₆	Mn ₃ C	Fe ₃ C	Co ₂ C	Ni ₃ C	ZrC	Nb_2C	Mo ₂ C
$\Delta G_{\mathrm{f}}^{\circ}(\mathrm{M}_{x}\mathrm{C}_{y});$ [ккал/моль]	-44.22	-23.65	-101.05	-3.41	+4.24	+3.33	+8.88	-34.6	-45.27	-120.9
$E_b^{M_x S_y}$; (эВ)	0.814	1.170	1.230	0.840	0.971	0.811	0.863	1.030	1.149	1.392
$E_b^{\mathrm{M}_a\mathrm{C}_b}$ (эB)	0.864	1.177	1.243	1.068	1.231	1.063	1.303	1.034	1.005	0.973
χ; (1)	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.33	1.60	2.16
SPDF; (1)	1.04	0.95	0.92	1.03	0.75	0.70	0.67	1.25	0.98	0.42
SPRF; (1)	0.768	0.906	0.960	0.781	1.389	1.421	1.447	0.546	0.856	1.928
RSA_{Fe-C}^{M} ; (1)	0.329	2.266	1.375	9.706	-4.383	-4.514	-2.292	0.579	0.628	0.519
Ранжирование	7	2	3	1	9	10	8	5	4	6

2.1. Вероятность осаждения сульфида переходного металла (BOC = SPP). Согласно основным правилам безразмерного анализа и основам теории металлургических процессов, вероятность осаждения любого СПМ может быть оценена при помощи соотношения:

$$SPP = (\Delta G^{M_x S_y}) / (\Delta G^{M_a C_b})$$
(2.1)

где $\Delta G^{M_x S_y}$ и $\Delta G^{M_a C_b}$ – соответственно значения изменения свободной энергии сульфида и карбида одного и того же рассматриваемого ПМ. В табл. 1 приведены все изменения свободной энергии СПМ и КПМ [19].

2.2. Относительная стабильность кристаллической структуры сульфида переходного металла (OCC = SRS). Согласно тем же теоретическим правилам, модель для оценивания способности ПМ образовать сульфиды также будет зависеть от отношения между значениями энергии связи рассматриваемого ПМ и серы в $M_x S_y$ ($E_b^{M_x S_y}$) к значениям энергии связи того же ПМ и углерода в $M_a C_b$ ($E_b^{M_a C_b}$). Это соотношение описывает относительную стабильность (OC: без единиц измерения) кристаллической структуры СПМ:

$$SRS = (E_b^{M_x S_y})/(E_b^{M_a C_b})$$

$$(2.2)$$

Значения энергии связи Е_b рассчитываются по формуле, предложенной Муссау и др. [15]:

$$E_b = \left[E_i \left(1 - \frac{d}{2r_0} \right) \right] / v \tag{2.3}$$

где E_b – значение энергии связи [эВ], E_i : *i*-я энергия ионизации [эВ], *d* – наименьший параметр ячейки [м], r_0 – атомный радиус [м] и *v* – валентность (степень окисления) рассматриваемого ПМ.

Эта когезионная прочность является безразмерной и рассматривается только между одним ПМ и одним атомом серы (или углерода) в соответствующей химической комбинации ($M_x S_y$ или $M_a C_b$). Все рассчитанные значения энергий связи (один ПМ и один атом серы или углерода в исследуемом сульфиде или карбиде) приведены в табл. 1.

Таблица 1

2.3. Движущая и тормозящая силы процесса осаждения СПМ. Значение электроотрицательности элементов — фундаментальная описательная величина при рассмотрении вопроса об образовании ионов или при изучении конкуренции между элементами за образование какой-либо химической связи. В этом исследовании этими возможными химическими соединениями могут быть сульфиды (M_xS_y) и/или карбиды (M_aC_b) и/или интерметаллические соединения M_pFe_q . В таких случаях следует учитывать химический потенциал растворенных элементов, но авторы предпочитают использовать разность электроотрицательности между рассматриваемыми элементами, поскольку, согласно Полингу [18], электроотрицательность напрямую связана с этим химическим потенциалом. Способность любого элемента образовывать связи с другим элементом напрямую связана с возникающей разницей в электроотрицательности между ними. Это значение действует как "движущая сила" изучаемой реакции. Но в Fe–C сплавах взаимодействие любого ПМ с серой также следует учитывать по отношению к:

• углероду: растворенное вещество в Fe-C сплавах, приводящее к образованию соответствующих карбидов;

• железу: растворитель в Fe–C сплавах и приводит к образованию соответствующих интерметаллических соединений.

Возможные комбинации исследуемого ПМ с углеродом (С) и/или железом (Fe) являются "тормозящей силой" связи между этим ПМ и серой (S). Таким образом, это "соревнование" в формировании химических соединений (сульфидов и/или карбидов и/или интерметаллических соединений) будет зависеть от:

• $\Delta \chi_{M-S}$: разницы электроотрицательности между исследуемым ПМ (М) и серой; действует как движущая сила для образования СПМ (ДСОС = SPDF),

• $\frac{1}{(\Delta \chi_{M-C})(1 + Abs(\Delta \chi_{M-Fe}))}$: обратной суммы разностей электроотрицательности

между рассматриваемым ПМ и углеродом и тем же ПМ и железом; действует как тормозящая сила для образования СПМ (TCOC = SPRF).

3. Методы расчета, результаты и обсуждение. *3.1.* Постановка модели. Основное правило математического безразмерного анализа предполагает, что любое свойство (явление) может быть описано одним (и только одним) безразмерным уравнением: проницательной безразмерной математической формулировкой основных характеристик изучаемого явления. *E*, число этих безразмерных уравнений, определяется как разность (E = P - U), где P – количество рассматриваемых свойств, а U – количество единиц измерения. В соответствии со всеми этими соображениями ожидаемая модель (нацеленная на количественную оценку способности любого ПМ образовывать сульфиды) будет относительной функцией термодинамических (значения ΔG), структурных (E_b^{M-S}) и физических ($\Delta \chi_{M-S}$ и $\Delta \chi_{M-Fe}$) соображений. Математическое выражение будет математическим произведением выбранных параметров: вероятности осаждения СПМ, его относительной стабильности, разности электроотрицательности между этим ПМ и серой, углеродом и железом. Этот теоретический подход объединяет основные характеристики задействованных элементов или соединений и предоставляет

$$RSA_{\text{Fe-C}}^{\text{M}} = (SPP)(SRS)(SPDF)(SPRF) = \\ = \left(\frac{\Delta G^{\text{M}_{x}\text{S}_{y}}}{\Delta G^{\text{M}_{a}\text{C}_{b}}}\right) (E_{b}^{\text{M}_{x}\text{S}_{y}}) / E_{b}^{\text{M}_{a}\text{C}_{b}}) (\Delta\chi_{\text{M-S}}) \left(\frac{1}{(\Delta\chi_{\text{M-C}})(1 + Abs(\Delta\chi_{\text{M-Fe}}))}\right)$$
(3.1)

где RAS_{Fe-C}^{M} – относительная способность к образованию сульфида (ОСОС) рассматриваемого ПМ в Fe-C сплавах, $\Delta G^{M_x S_y}$ [ккал/моль] – изменение свободной

относительную оценку изучаемого явления, например:

энергии СПМ, $\Delta G^{M_a C_b}$ [ккал/моль] – изменение свободной энергии карбида ПМ, $E_b^{M_x S_y}$, $E_b^{M_a C_b}$ – энергии связи [кал/моль] между исследуемым ПМ и серой и тем же ПМ и углеродом в сульфидах и карбидах, соответственно. $\Delta \chi_{M-S}$, $\Delta \chi_{M-C}$ и $\Delta \chi_{M-Fe}$ представляют собой разность электроотрицательности между исследуемым ПМ и серой, углеродом и железом соответственно ($\chi_S = 2.58$; $\chi_C = 2.55$, $\chi_{Fe} = 1.83$).

Рассчитанные значения этих параметров и RAS_{Fe-C}^{M} наиболее часто используемых ПМ (в 4-м и 5-м периодах) и их статистический анализ приведены в табл. 1 и 2. Графическая интерпретация эволюции выбранных параметров и значений ОСОС некоторых ПМ представлена на рис. 1. Трехмерный график поверхности (полученный с использованием метода взвешенных наименьших квадратов в ПО Statistica V.8) значений ОСОС в зависимости от значений ВОС и ТСОС (в соответствии с наивысшими абсолютными значениями коэффициента их корреляции) показан на рис. 2.

Анализ этих результатов позволяет сделать следующие замечания:

 марганец и кобальт являются элементами с соответственно самыми высокими и самыми низкими значениями ОСОС (RAS^{Mn} = 9.706; RAS^{Co} = -4.514);

• марганец, несомненно, является наиболее способным для образования сульфида

(MnS) элементом, и это связано с его самым высоким значением $BOC = \left(\frac{\Delta G^{M_x S_y}}{\Delta G^{M_a C_b}}\right)$:

управляющим параметром с наибольшим значением коэффициента корреляции ($KK_{BOC} = 0.993$). Действительно, значения ОСС, ДСОС и ТСОС для Mn ближе к значениям для всех других ПМ! Соотношение, описывающее термодинамическую вероятность, является одним из ведущих параметров;

Пара- метр	$SRS = \left(\frac{\Delta G^{M_x S_y}}{\Delta G^{M_a C_b}}\right)$	$SPP = \left(\frac{E_b^{M_x S_y}}{E_b^{M_a C_b}}\right)$	$SPDF = \Delta \chi_{M-S}$	$SPRF = \frac{1}{(\Delta \chi_{M-C})(1 + \Delta \chi_{M-Fe})}$
RSA_{Fe-C}^{M}	0.993	0.037	0.427	-0.048

Таблица 2

Рис. 2

• отношение ($\Delta G^{M_x S_y} / \Delta G^{M_a C_b}$), описывающее вероятность осаждения СПМ, имеет самое высокое значение коэффициента корреляции (0.993). Это означает, что оно оказывает сильное положительное влияние на осаждение СПМ, в то время как $[(\Delta \chi_{M-C})(1 + Abs(\Delta \chi_{M-Fe})]^{-1}$ – тормозящая сила для осаждения СПМ, имеет самое низкое и отрицательное значением (-0.048) коэффициента корреляции;

• изучая эволюцию значений ОСОС для ПМ IV-го периода, можно заметить максимальное значение для марганца и более низкие значения для всех предшествующих и последующих ПМ в IV-м периоде (атомный номер изменяется от 22 до 28 с шагом 1). Это изменение не связано ни с атомным номером ПМ, ни с числом его внешних электронов (на *d*-оболочке). Более глубокий анализ показывает, что полученные значения напрямую связаны с изменением числа неспаренных электронов на катионе ПМ (см. табл. 3). Mn²⁺ – катион с наибольшим числом неспаренных электронов ($n_{u,e} = 5$).

Таблица 3

ПМ	Z	Распределение электронов	Сульфид	Катион	Распределение электронов катиона	Кол-во неспаренных электронов	OCOC
Ti	22	$4s^2 3d^2$	TiS	Ti ²⁺	$3d^2$	2	0.329
V	23	$4s^2 3d^3$	V_2S_3	V ³⁺	$3d^1$	1	2.266
Cr	24	$4s^1 3d^5$	CrS	Cr ²⁺	$3d^4$	4	1.375
Mn	25	$4s^2 3d^5$	MnS	Mn ²⁺	$3d^5$	5	9.706
Fe	26	$4s^2 3d^6$	FeS	Fe ²⁺	$3d^6$	4	-4.383
Со	27	$4s^2 3d^7$	CoS	Co ²⁺	$3d^7$	3	-4.514
Ni	28	$4s^2 3d^8$	NiS	Ni ²⁺	$3d^8$	2	-2.292

119

Таким образом, ОСОС для марганца является самым высоким среди всех других ПМ: это подтверждается максимальным значением вероятности осаждения его сульфида (ВОС) в сочетании с минимальным значением силы торможения осаждения его сульфида (ТСОС).

3.2. Массовая доля осажденного СПМ. Следующим шагом является вычисление количества любого осажденного СПМ ($Q_{M_xS_y}$) в металлической структуре материала. Химический состав сплава и ОСОС всех существующих ПМ являются исходными данными. Необходимо сравнить значение ОСОС исследуемого ПМ со значением имеющегося ПМ с наибольшим значением ОСОС и рассмотреть соотношение количеств исследуемого ПМ с серой (Q^M/Q^S). Учитывая способность железа растворять элементы, имеющееся количество ПМ (Q^{TM}) оценивается в соответствии с:

$$Q^{\rm TM} = \frac{(100 - DL^{\rm TM})}{100} q^{\rm TM}; [\%]$$
(3.2)

где DL^{TM} и q^{TM} – предел растворения в Fe–C сплавах [3] и количественные значения рассматриваемого ПМ.

Количество имеющейся серы рассчитывается исходя из тех же соображений (ее ко-

личество и предельные значения растворения): $Q^{S} = \frac{(100 - DL^{S})}{100} q^{S}$. Затем рассчитанное относительное количество СПМ соотносят с его стехиометрическими формулами (*x*, *y*) согласно:

$$Q_{M_x S_y} = \left(\frac{RSA_{Fe-C}^M}{RSA_{Fe-C}^{M+}}\right) \left(\frac{Q^M}{Q^S}\right) (M_M x + 32y)$$
(3.3)

где $M_{\rm M}$ и 32 — молярные массы исследуемого ПМ и серы.

Присутствие MnS в любой содержащей марганец стали (с другими ПМ или без них под воздействием серы во время выработки или любой термохимической обработки) было предметом многочисленных исследований [4–14, 21–25]. Множество классических металлографических анализов, ACM, энергодисперсионная рентгеновская спектроскопия (EDX) (растровая электронная микроскопия (SEM)/просвечивающий электронный микроскоп (TEM)), дифракционный рентгеновский анализ (XRD) подтверждают наличие включений MnS в самых разнообразных сталях, даже если массовая доля марганца была значительно ниже, чем у хрома, никеля и молибдена.

Действительно, Малиночка показал, что только MnS осаждался в стали с 0.58% Mn (0.56C, 0.032S), содержащей 0.91% V [21]. Кроме того, SEM-EDX анализ Fe–C–Mn–Ni, содержащего 42% Ni, выявил наличие MnS и отсутствие NiS [22]. Это подтвержда-

ет низкое значение ОСОС этого элемента (ОСОС $_{Fe-C}^{Ni} = -2.292$). Мураками [22] также заметил осаждение в основном сульфидов марганца (99.19% MnS + 0.81% CrS) в низ-коуглеродистой стали AISI12L14 с марганцем и небольшим количеством хрома.

Эти примеры подтверждают правильность приведенных в статье рассуждений: марганец — это металл с самой высокой способностью образовывать соответствующий сульфид независимо от количества любого другого металла, существующего в Fe–C сплавах [1–14, 21–25]. В большинстве случаев металлографический анализ проводится для количественного определения относительного или массового количества осажденных включений (графит в чугунах, карбидах и/или сульфидах, железо-интерметаллические комбинации). Таким образом, общая масса Q_{tot} всех включений СПМ является их алгебраической суммой и может быть вычислена по формуле:

$$Q_{\text{tot}} = \sum_{i=1}^{n} (Q_{M_x S_y})_i$$
(3.4)

Таблина 4

	OCOC [1]	ПР [%]	q ^M [%]	<i>Q</i> ^М [%]	Суль- фид	$Q_{\mathrm{M}_{x}\mathrm{S}_{y}}$ (r)	$Q_{\rm tot};$ (%)		$(\% M_x S_y)_{str}$	
ПМ							Рассчи- танное значение	Значе- ние из [22]	Рассчи- танное значение	Значе- ние из [22]
Mn	9.706	3.0	1.05	1.018	MnS	291.101	99.015	99.19	1.64	нет
Cr	1.375	7.5	0.08	0.074	CrS	2.896	0.985	0.81		
Всего				293.997	100	100				
ПМ	OCOC	OCOC $\Pi P[\%] q^{M}[\%] Q^{M}[\%]$		Суль-	$Q_{\mathrm{M}_{x}\mathrm{S}_{y}}$ (Γ)	$Q_{\rm tot};$ (%)		$(\% M_x S_y)_{str}$		
	[1]				фид		Рассчи- танное значение	Значе- ние из [23]	Рассчи- танное значение	Значе- ние из [23]
Mn	9.706	3.0	0.21	0.2037	MnS	1609.785	99.93	100	1.22	<1.5
Ti	0.329	0.6	0.0042	0.00417	TiS	1.026	0.07	0		
Всего				1476.577	100	100				
ΠМ	$\Pi M \text{ OCOC } \Pi P [\%] q^M [\%] Q^M [\%]$			Суль-	$Q_{\mathrm{M}_x\mathrm{S}_y}$ (g) Q_{tot} ; (%)			$(\% M_x S_y)_{str}$		
	[1]				фид		Рассчи- танное значение	Значе- ние из [24]	Рассчи- танное значение	Значе- ние из [24]
Mn	9.706	3.0	1.33	1.2901	MnS	1604.412	78.39	93.0	[0.7 - 1.0]	<1.5
Nb	0.628	1.6	0.034	0.033	NbS ₂	8.608	0.41	2.35		
V	2.266	2.0	0.0656	0.0656	V_2S_3	433.955	21.20	4.65		
Всего					2046.975	100	100			

где $(Q_{M_xS_y})_i$ — относительное количество сульфидов *i*-го ПМ (согласно 5) в исследуемом сплаве.

Все СПМ составляют часть металлической структуры исследуемого материала, который всегда выражается как относительное содержание структуры. Оценим относительное содержание любого СПМ в металлической структуре следующим образом:

$$\left(\%M_{x}S_{y}\right)_{\text{str}} = \frac{Q_{M_{x}S_{y}} \cdot 100}{\sum_{i=1}^{n} (Q^{M}M_{M})_{i/100}}$$
(3.5)

где n – количество существующих легирующих ПМ, М: рассматриваемый переходный металл, $Q_{\rm M}$ и $M_{\rm M}$: его имеющееся количество и атомный вес соответственно.

3.3. Применение моделей и апробация. Точность представленной модели будет подтверждена только в том случае, если она может подтвердить результаты опубликованных исследований по осаждению СПМ в легированных сталях, содержащих серу. Мураками [22] сообщил данные металлографических и SEM-EDX характеристик для низкоуглеродистой режущей стали (0.07 C, 1.05 Mn, 0.07 P, 0.34 S, 0.24 Pb и 0.08 Cr) без общего количества сульфидов (но отметив, что 99% сульфидов были MnS).

При расчете RSA^{Mn}, RSA^{Cr}, Q_{MnS} , Q_{CrS} и Q_{tot} в соответствии с предложенной моделью (уравнения 3.1–3.5), получим результаты, представленные в табл. 4, где:

$$Q^{S} = \frac{100 - DL^{S}}{100} q^{S} = \left(\frac{(100 - 3.510^{-2})}{100}\right)(0.305) = 0.304\%.$$

Сравнение вычисленных и опубликованных результатов [22–24] демонстрирует точность рассуждений и относительных формулировок, предложенных для описания осаждения СПМ в легированных сталях. Сульфид марганца MnS является преобладающим осажденным включением в легированных сталях, содержащих серу и марганец с другими ПМ или без них. Рассчитанные значения относительных количеств (($Q_{M_xS_y}$)) и содержаний в металлической структуре ($(M_xS_y)_{str}$ MnS и других СПМ (таких как CrS или TiS или NbS₂ или V₂S₃) соответствуют опубликованным данным ([22–24], табл. 4).

4. Заключение. Образование сульфидов, а затем процесс осаждения в сталях является следствием соперничества, которое испытывает каждый металл в процессе охлаждения (начиная с ликвидуса и заканчивая всеми фазовыми превращениями). Это состязание заканчивается, когда исследуемый ПМ растворяется в твердом растворе (аустенит, затем феррит) или способствует образованию некоторых химических комбинаций (СПМ и/или КПМ). Сульфиды должны рассматриваться как продукт осаждения (растворенное вещество) в металлической матрице, состоящей из железа (растворитель). При изучении осаждения сульфидов в Fe–C сплавах необходимо учитывать значения разности электроотрицательности между всеми рассматриваемыми элементами. Следует также учитывать термодинамические и структурные аспекты (значения свободной энергии СПМ и энергии связи между атомами в осажденных карбидах/сульфидах).

Основные правила безразмерного математического анализа позволили сформулировать модель (уравнение (3.1)) для расчета относительной способности образовывать сульфиды любого ПМ. Вычисленные значения позволяют сортировать/ранжировать все ПМ по этой способности.

Результаты исследований подтверждают, что марганец является элементом с самой высокой способностью образовывать свой собственный сульфид MnS. Это химическое соединение всегда является основным включением в Fe–C сплавы, содержащие S и Mn с другими ПМ или без них.

Расчет массовой доли и относительного содержания осажденных СПМ также может быть выполнен в соответствии с простым относительным соображением (уравнения (3.2)–(3.5)). Таким образом, этот теоретический подход и его расчетные модели могут быть использованы в качестве инструментов прогнозирования при изучении возможности осаждения СПМ в легированных сталях.

Благодарности. Настоящая работа является частью научной деятельности лаборатории LIME университета Джиджеля, выполненная при финансовой поддержке DGRS-DT 2019-22 PRFU A16N01UN180120190004.

СПИСОК ЛИТЕРАТУРЫ

- Hiraki T. et al. Removal of sulfur from CaF₂ containing desulfurization slag exhausted from secondary steelmaking process by oxidation // Metallurgical and Materials Transactions B. 2012. V. 43. № 4. P. 703–709.
- 2. *Kaushik P., Lehmann J., Nadif M.* State of the art in control of inclusions, their characterization, and future requirements // Metallurgical and Materials Transactions B. 2012. V. 43. № 4. P. 710–725.
- 3. *Dudziak T. et al.* Sulphidation of Low-Alloyed Steels Used in Power Industry // Oxidation of Metals. 2019. P. 1–21.
- Amezhnov A.V. et al. Effect of Chemical Composition and Microstructure Parameters on Carbon and Low-Alloy Steel Corrosion Resistance under Oil Industry Pipeline Operation Conditions // Metallurgist. 2019. V. 62. № 9–10. P. 1030–1038.
- 5. *Kumar P.P., Balachandran G.* Microinclusion Evaluation Using Various Standards // Transactions of the Indian Institute of Metals. 2019. V. 72. № 4. P. 877–888.

- 6. *Egorushkin V.E., Panin V.E.* Physical foundations of nonlinear fracture mechanics // Mechanics of Solids. 2013. V. 48. № 5. P. 525–536.
- 7. *Maciejewski J*. The effects of sulfide inclusions on mechanical properties and failures of steel components // Journal of Failure Analysis and Prevention. 2015. V. 15. № 2. P. 169–178.
- 8. *Belyaev A.K. et al.* Parametric instability in cyclic loading as the cause of fracture of hydrogenous materials // Mechanics of Solids. 2012. V. 47. № 5. P. 533–537.
- 9. *Vorob'ev N.I. et al.* Sulfides in forgings of 40KhGM structural steel // Russian Metallurgy (Metally). 2006. V. 2006. № 2. P. 119–125.
- 10. *Grajcar A., Płachcińska A*. Effect of sulphide inclusions on the pitting-corrosion behaviour of high-Mn steels in chloride and alkaline solutions // Materiali in tehnologije. 2016. V. 50. № 5. P. 713– 718.
- 11. *Dhua S.K. et al.* Influence of nonmetallic inclusion characteristics on the mechanical properties of rail steel // Journal of materials engineering and performance. 2000. V. 9. № 6. P. 700–709.
- 12. *Park I.J. et al.* A study on corrosion behavior of DP-type and TRIP-type cold rolled steel sheet // Materials transactions. 2009. V. 50. № 6. P. 1440–1447.
- Bykov A.A. Current requirements and metallurgical aspects of improving the corrosion resistance and other service properties of carbon steels and low-alloy steels // Metallurgist. 2012. V. 56. № 7– 8. P. 628–632.
- 14. *Reformatskaya I.I., Freiman L.I.* Precipitation of sulfide inclusions in steel structure and their effect on local corrosion processes // Protection of Metals. 2001. V. 37. № 5. P. 459–464.
- 15. *Moussaoui I., Roula A., Boufligha S.* On transition metals carbides precipitation in alloyed steels // Physica B: Condensed Matter. 2009. V. 404. № 14–15. P. 2047–2050.
- 16. Buckingham E. On physically similar systems; illustrations of the use of dimensional equations // Physical review. 1914. V. 4. № 4. P. 345.
- 17. Boubata N., Moussaoui I., Roula A. A non-dimensional approach to computing the global relative glass forming ability of oxides // Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B. 2012. V. 53. № 3. P. 115–120.
- 18. Pauling L. General Chemistry. Courier Corporation, 1988.
- 19. Rankin D.W.H. CRC Handbook of Chemistry and Physics / Ed. by D.R. Lide. 2009.
- 20. Totten G.E. Steel heat treatment: metallurgy and technologies. CRC Press, 2006.
- 21. *Малиночка Я.Н. и др.* Металловедение и термическая обработка металлов. 1979. Т. 9. С. 23-26.
- Murakami T., Tomita K., Shiraga T. Development of free cutting steel without lead addition to replace AISI12L14 // JFE Tech. Rep. 2010. V. 15. P. 10–16.
- 23. *Yuki N., Shibata H., Emi T.* Solubility of MnS in Fe–Ni alloys as determined by in-situ observation of precipitation of MnS with a confocal scanning laser microscope // ISIJ international. 1998. V. 38. № 4. P. 317–323.
- 24. *Ino M*. Influence of sulfur content on the hydrogen-induced fracture in linepipe steels // Metallurgical Transactions A. 1979. V. 10. № 11. P. 1691–1698.
- 25. *Gigacher G. et al.* Non-Metallic Inclusions in High-Manganese-Alloy Steels // Steel Research International. 2005. V. 76. № 9. P. 644–649.