УДК 620.178.3

СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ СОПРОТИВЛЕНИЯ УСТАЛОСТИ ДЕТАЛЕЙ НА БАЗЕ ТЕОРИИ ПОДОБИЯ УСТАЛОСТНОГО РАЗРУШЕНИЯ

© 2020 г. Л. В. Агамиров^{*a*,*}, В. А. Вестяк^{*b*,**}

^а Национальный исследовательский университет "Московский энергетический институт", Москва, Россия ^b Московский авиационный институт (Национальный исследовательский университет), Москва, Россия *e-mail: itno_agamirov@mail.ru **e-mail: kaf311@yandex.ru

> Поступила в редакцию 11.12.2019 г. После доработки 20.12.2019 г. Принята к публикации 29.12.2019 г.

Рассматриваются вопросы определения расчетных характеристик выносливости материалов и элементов конструкций методами статистической теории подобия усталостного разрушения. Статистическому анализу подвергались результаты массовых усталостных испытаний образцов различного типоразмера, моделей и натурных деталей, проведенных различными исследователями и научно-производственными организациями. С целью обоснования критерия подобия усталостного разрушения в широком диапазоне долговечностей и вероятностей разрушения получены корректирующие соотношения, позволяющие производить оценку характеристик сопротивления усталостному разрушению на базе медианной кривой усталости стандартных образцов и справочных параметров теории подобия без необходимости проведения испытаний натурных элементов конструкций.

Ключевые слова: статистическая теория подобия, критерий подобия усталостного разрушения, усталостные испытания, статистический анализ, кривая усталости, долговечность, предел выносливости

DOI: 10.31857/S0572329920030022

Введение. Расчет прочности деталей машин и элементов конструкций при действии переменных напряжений основан на определении пределов выносливости и соответствующих им долговечностей. Наиболее надежным способом обоснования этих характеристик являются натурные испытания объектов, что зачастую оказывается непростой задачей в связи с объективной ограниченностью экспериментальных данных в условиях значительного рассеяния характеристик усталостных свойств, затруднениями, связанными с созданием специализированных испытательных стендов и необходимостью нестационарного нагружения объекта на стенде, временными и ценовыми ограничениями.

По этим причинам наиболее эффективными, особенно на этапе проектирования изделий, являются расчетно-экспериментальные методы, которые позволяют обосновать характеристики выносливости натурных деталей путем испытаний стандартных образцов различного типоразмера и конструктивно-подобных объектов. В основе подобных методов всегда лежит та или иная теория усталостного разрушения, достоверность которой должна быть подтверждена массовыми экспериментами. Одной из таких теорий является статистическая теория подобия усталостного разрушения Когае-

ва-Серенсена [1, 2], основанная на теории "наиболее слабого звена" Вейбулла [3], теории прочности Н.Н. Афанасьева [4], результатах массовых усталостных испытаний сталей, легких и титановых сплавов. Теория подобия детально описывает влияние абсолютных размеров, конструктивных, эксплуатационных и технологических факторов на предел выносливости деталей машин и функцию его распределения путем интерполяции или экстраполяции в область допустимых значений критерия подобия. Эта теория послужила основой для создания системы справочной информации, предназначенной для определения расчетных характеристик сопротивления усталости деталей машин [5].

Необходимо отметить, что грамотное применение теории подобия при планировании, проведении и обработке усталостных испытаний позволяет постоянно дополнять расчетно-экспериментальные исследования ее авторов. Настоящая работа посвящена статистическому анализу экспериментальных данных усталостных испытаний образцов и деталей различного типоразмера, проведенных в разное время, а также коррективам, связанным с зависимостью некоторых важных параметров теории подобия от долговечности. Последнее обстоятельство не учитывается в классическом варианте теории подобия, но было давно замечено исследователями для легких сплавов [6, 7] и сталей [8, 9].

1. Основные уравнения. При выводе основного уравнения теории подобия пренебрегают влиянием второго и третьего главных напряжений:

$$\lg(\xi - 1) = \nu_{\sigma} \cdot \left(\lg(L/\overline{G})_0 - \lg L/\overline{G} \right) + z_p \cdot s \tag{1.1}$$

где $\xi = \sigma_{\text{max}}$, $\sigma\sigma_{-ld_{\text{max}}}$ — максимальное значение первого главного напряжения в зоне концентрации, соответствующее пределу выносливости детали σ_{-ld} , α_{σ} — теоретический коэффициент концентрации напряжений, $u = 0.5 \cdot \sigma_{-1}$ — значение предела выносливости гладкого круглого бруса бесконечно большого диаметра при изгибе с вращением, определяющего нижнюю границу повреждающих напряжений, z_p — квантиль нормированного нормального распределения уровня вероятности *P*, *s* — среднее квадратичное отклонение случайной величины $y = \lg(\xi - 1), L$ — часть периметра поперечного сечения, в котором действуют максимальные напряжения, \overline{G} — относительный максимальный градиент первого главного напряжения в зоне концентрации напряжений, $\lg(L/\overline{G})_0$ — параметр подобия образца стандартного размера. Так, например, при изгибе с вращением для круглого гладкого образца диаметром *d*, $L = \pi \cdot d$, $\overline{G} = G/\sigma_{\text{max}}$. Для d = 7.5 мм $\lg(L/\overline{G})_0 = 1.946$.

Параметр L/\overline{G} называется критерием подобия усталостного разрушения, а уравнение (1.1) уравнением подобия, так как если деталь и модель имеют различные абсолютные и относительные размеры, но имеют одинаковые значения параметра подобия, то функции их распределения совпадают. Эта закономерность, справедливость которой подтверждается многими экспериментами, имеет большое практическое значение, так как она дает возможность находить в первом приближении функции распределения натурных деталей на основе испытаний образцов и моделей.

В [10] обосновано уравнение подобия на основе распределения Вейбулла:

$$\lg(\xi - 1) = v_{\sigma} \cdot \left(\lg(L/\overline{G})_0 - \lg L/\overline{G} + w_p \right)$$
(1.2)

где $w_p = lgln(1/(1 - P)) - lgln2$, получающегося из условия, $w_p = 0$, при P = 0.5. Сравнение формул (1.1) и (1.2) приводит к соотношению:

$$s = v_{\sigma} \cdot w_p / z_p \tag{1.3}$$

Материал	σ_b , МПа	σ ₋₁ , МПа	v_{σ}	S	s (3)
Сталь 45	660	307	0.1	0.045	0.035-0.079
Сталь 40Х	2020	840	0.11	0.05	0.039-0.087
ABT	364	135	0.080	0.05	0.028-0.063
B95	618	174	0.09	0.06	0.032-0.071
АД33	333	127	0.09	0.06	0.032-0.071
Д16	554	166	0.20	0.12	0.071-0.158
BM65	267	113	0.10	0.07	0.035-0.079
МЛ5	221	73	0.30	0.16	0.106-0.237
30ХГСА	—	730	0.10	0.045	0.035-0.079

Таблица 1

определяющему диапазон значений среднего квадратичного отклонения *s* в зависимости от величины v_{σ} . В табл. 1 представлены значения параметров v_{σ} и *s* по справочной информации для некоторых конструкционных материалов, а также интервал значений *s* по формуле (1.3) в диапазоне вероятностей 0.01–0.99.

Как уже указывалось, параметр v_{σ} существенно зависит от базовой долговечности. В [6, 10] показано, что, в первом приближении, в диапазоне долговечностей $10^6 - 5 \times 10^7$ этот параметр определяется соотношением:

$$\mathbf{v}_{\sigma N} = \mathbf{v}_{\sigma} \cdot \sigma_{-1N} / \sigma_{-1} \tag{1.4}$$

где индексом *N* обозначены характеристики для текущей долговечности, а σ_{-1} соответствует пределу выносливости для базовой долговечности, для которой определяется v_{σ} (обычно в качестве такой долговечности принимается база $N_0 = 10^6$ или 10^7 циклов). Таким образом, для построения кривой усталости натурной детали необходимо располагать параметрами медианой кривой усталости гладких лабораторных образцов и справочным значением v_{σ} , параметра наклона уравнения подобия усталостного разрушения. Тогда функция распределения предела выносливости натурной детали будет иметь следующий вид:

$$\sigma_{-1d} = (0.5 \cdot \sigma_{-1N} / \alpha_{\sigma}) \cdot [1 + 10^{v_{\sigma N} \cdot (1.946 - \lg L/G + w_p)}]$$
(1.5)

В формуле (1.5) σ_{-1N} определяется уравнением кривой усталости. В настоящей работе для обработки результатов усталостных испытаний применялось следующее уравнение кривой усталости [11]:

$$\sigma_{-1N} = \sigma_{-1\infty} + A \cdot \lg N^{-\beta} \tag{1.6}$$

Отношение коэффициентов концентрации напряжений и масштабного фактора определяется из следующего уравнения [1, 5]:

$$k_{\sigma}/\varepsilon_{\sigma} = \sigma_{-1N}/\sigma_{-1d} = 2 \cdot \alpha_{\sigma}/[1 + 10^{v_{\sigma N} \cdot (1.946 - \lg L/G + w_p)}]$$
(1.7)

Суммарный коэффициент, учитывающий также влияние технологических факторов равен [1, 5]:

$$K_{\sigma D} = \left(k_{\sigma}/\varepsilon_{\sigma} + 1/k_F - 1\right) / \left(k_v \cdot k_{cor}\right)$$
(1.8)

где k_F – коэффициент состояния поверхности, k_v – коэффициент упрочнения, k_{cor} – коэффициент, учитывающий состояния среды или коэффициент коррозионного воздействия. T-6----- 2

Таолица 2		r	r					
Сплор	ασ	$\lg L/\overline{G}$	N					
CILIAB			10 ⁵	10 ⁶	107	5×10^{7}		
AB	1.00	1.923	250	176	135	115		
	1.00	3.6	207	136	112	95		
	1.00	3.224	235	161	122	104		
	1.00	2.5026	247	167	130	110		
	1.45	1.266	260	190	140	119		
	1.86	0.98	274	200	148	126		
	2.27	0.7718	287	214	155	132		
МЛ5	1.00	1.923	146	93	74	58		
	1.00	2.26	121	82	67	54		
	1.57	1.578	144	108	80	64		
	1.87	1.379	170	123	94	75		
	2.28	1.1702	194	144	108	86		
BM65-1	1.00	1.923	178	128	113	102		
	1.00	2.26	169	123	109	99		
	1.57	1.578	178	130	115	105		
	1.87	1.379	188	145	121	110		
	2.28	1.1702	195	158	126	115		
BT3-1	1.00	1.946	550	473	409	374		
	1.90	2.44	526	450	395	367		
	1.40	1.23	654	528	444	400		
	2.36	0.74	711	551	457	412		
AK-6	1.00	1.922	214	167	136	—		
	1.00	3.496	183	135	109	—		
	1.53	1.267	258	188	152	_		
	1.93	0.982	268	195	164	_		

В табл. 2, 3 приведены результаты статистической обработки усталостных испытаний образцов и натурных деталей из легких сплавов [11–16], проведенных в различное время в МАТИ им. К.Э. Циолковского, на агрегатном предприятии "Рубин" и образцов из легированных сталей [1, 2, 5, 8, 9], проведенных в ИМАШ АН СССР. В этих таблицах представлены теоретические коэффициенты концентрации напряжений, значения критерия подобия $\lg L/\overline{G}$ и расчетные значения пределов выносливости в диапазоне долговечностей $4 \times 10^4 - 5 \times 10^7$ циклов. Относительный градиент для круглых образцов определялся по формуле: $\overline{G} = 2/r + 2/d$, где r – радиус надреза, d – диаметр рабочей части. Подробное описание испытательных установок, режимов и объемов испытаний, методики проведения и обработки результатов содержатся в выше цитированных работах. По результатам экспериментов в табл. 4, 5 определены значения параметра v_{σ} уравнения подобия усталостного разрушения для различных долговечностей. Там же представлены параметры кривой усталости (6).

Анализ табл. 4 показывает, что параметр v_{σ} изменяется не монотонно для легких сплавов, возрастая в диапазоне долговечностей $10^5 - 10^6$ циклов, а затем постепенно снижаясь в соответствии с закономерностью (1.4). Для сталей и титанового сплава

Сплав	ασ	$\lg L/\overline{G}$	N					
			4×10^4	10 ⁵	10 ⁶	5×10^{6}		
12Х2НФА	1.0	1.946	788	718	600	592		
	1.0	1.9055	794	715	596	595		
	1.5	1.23248	913	816	623	585		
	2.0	0.90633	976	846	670	606		
	2.6	0.652247	1060	861	619	618		
30ΧΓCΑ	1.0	1.946	602	552	490	466		
	1.0	1.9055	603	555	490	470		
	1.5	1.23248	810	686	540	488		
	2.0	0.90633	850	736	510	514		
	2.6	0.652247	996	806	567	524		
45ХН2МФА	1.0	1.946	882	784	680	670		
	1.0	1.9055	875	784	683	658		
	1.5	1.23248	1030	882	735	751		
	2.0	0.90633	1040	910	752	756		
	2.6	0.652247	1080	944	790	734		

Таблица	3
---------	---

Таблица 4

Сплав	¢	A	β	Ν					
CILIAB	U_]∞			$v_{\sigma N}$	10 ⁵	10 ⁶	107	5×10^{7}	
AB	36.00	8681 78	2.30	Опыт	0.0813	0.1195	0.0889	0.0901	
	50.00	0001.70		Расчет	0.0682	0.1209	0.0889	0.0662	
МЛ5	11.60	6342.90	2.40	Опыт	0.2644	0.4027	0.3364	0.3468	
	11.00			Расчет	0.2645	0.4638	0.3364	0.2481	
BM65-1	01 (0	26940 54	2.50	Опыт	0.0894	0.1806	0.1050	0.1151	
81.60	20849.54	5.50	Расчет	0.1082	0.1692	0.1050	0.0698		
BT3-1	3-1	2220.97	0.00	Опыт	0.1631	0.1068	0.0790	0.0658	
0.00	2339.87	0.90	Расчет	0.1498	0.1059	0.0790	0.0660		
AK-6	0.00	1971 10	1.25	Опыт	0.1316	0.1351	0.1443	_	
	0.00	18/1.19	1.35	Расчет	0.2033	0.1351	0.0943	—	

Таблица 5

Сплав	$\sigma_{-1\infty}$	A	β	N				
Сплав				$v_{\sigma N}$	4×10^4	10 ⁵	10 ⁶	5×10^{6}
12Х2НФА	519 78	104750 33	3.90	Опыт	0.1705	0.1227	0.0465	0.0187
	517.70	104/30.33		Расчет	0.1706	0.1136	0.0465	0.0271
30ΧΓCΑ	425.02	68145.10	3.90	Опыт	0.2770	0.2205	0.0755	0.0728
	423.92			Расчет	0.2769	0.1845	0.0755	0.0440
45ХН2МФА	0.00	2804 52	0.70	Опыт	0.1335	0.1186	0.0891	0.0820
	0.00	2094.32	0.79	Расчет	0.1432	0.1235	0.0891	0.0731

(табл. 4, 5) видно, что параметр v_{σ} монотонно снижается во всем диапазоне долговечностей при испытаниях.

В настоящей работе выдвигается предположение, что такое поведение параметра наклона связано с изменением механизма усталостного разрушения в области малых долговечностей, граничащих с областью малоцикловой усталости. Эта область для разных сплавов составляет $10^4 - 10^5$ циклов. Это предположение находит свое отражение в форме кривой усталости, если в него ввести четвертый параметр *B*:

$$\sigma_{-1N} = \sigma_{-1\infty} + A \cdot \lg \left(N + B \right)^{-\beta} \tag{1.9}$$

Отметим, что параметр *B* на практике редко используется в уравнении кривой усталости, так как его определение требует весьма больших объемов испытаний и практически не сказывается на поведении кривой усталости в области больших долговечностей. В то же время наличие такого порогового значения подтверждается многими исследователями [17–19], и сопровождается существенной неравномерностью рассеяния характеристик сопротивления усталости в области 10^4-10^5 циклов.

Для аналитического описания указанных закономерностей воспользуемся приближенной формулой для дисперсии функции случайной величины y = f(x):

$$D(y) \approx \left[df(x)/dx \right]^2 \cdot D(x) \tag{1.10}$$

Тогда среднее квадратичное отклонение предела выносливости по уравнениям (1.9), (1.10) будет иметь следующий вид:

$$s_{\sigma_{-1N}} \approx B \cdot \beta \cdot s_{\lg N} / [\lg (N + B)^{\beta+1} \cdot (1 + B/N)]$$

$$(1.11)$$

С учетом (1.11) введем коррективы в формулу (1.4), заменяя значения пределов выносливости их средними квадратичными отклонениями:

$$\mathbf{v}_{\sigma N} \approx \mathbf{v}_{\sigma} \cdot \mathbf{s}_{\sigma_{-1}N} / \mathbf{s}_{\sigma_{-1}} = \mathbf{v}_{\sigma} \cdot \mathbf{\eta} \tag{1.12}$$

где коэффициент η на основании (1.11) равен:

$$\eta = \left[\lg \left(N_0 + B \right) \right]^{\beta+1} \cdot \left(1 + B/N_0 \right) / \left\{ [\lg \left(N + B \right)]^{\beta+1} \cdot \left(1 + B/N \right) \right\}$$
(1.13)

С учетом указанных поправок в табл. 4, 5 представлены расчеты параметра $V_{\sigma N}$ в связи с вариацией долговечности. Наблюдается вполне удовлетворительное соответствие опытных и расчетных значений. Лишь в некоторых случаях эти отклонения достигают 30%. Введение поправки (1.13) позволяет учесть немонотонное изменение параметра наклона для легких сплавов в области малых долговечностей. Расчетные значения *B* для сталей и титанового сплава BT3-1 равняются нулю, а

Рис. 2

для всех легких сплавов составляют 2×10^5 , за исключением сплава AK-6, для которого *B* равно 5×10^4 циклов.

По данным, представленным в табл. 2, 3 на рис. 1(а) построены кривые усталости стандартных образцов из легких сплавов 1-АВ, 2-АК-6, 3-МЛ5, 4-ВМ65-1, на рис. 1(b) кривые усталости стандартных образцов из легированных сталей: 1-45ХН2МФА, 2-12Х2НФА, 3-30ХГСА, и титанового сплава ВТ3-1 (1.4). На рисунках значками отмечены опытные значения пределов выносливости. По данным табл. 4, 5 на рис. 2 (a,b,c) построены зависимости $\lg[\xi - 1]$ от $\lg L/\overline{G}$ для сплавов АВ, МЛ-5, ВМ65-1 соответственно в диапазоне долговечностей $10^5-5 \times 10^7$, на рис. 3 для сплава АК-6 в диапазоне долговечностей 10^5-10^7 .

На рис. 4 (a,b,c) для сталей 12Х2НФА, 30ХГСА, 45ХН2МФА соответственно в диапазоне долговечностей 4 × 10^4 – 10^6 и на рис. 5 для сплава ВТЗ-1 в диапазоне долговечностей 10^5 – 5×10^7 . Точками на рисунках отмечены опытные значения lg(ξ – 1).

Как видно из рисунков, наблюдается вполне удовлетворительное соответствие опытных данных расчетным зависимостям. Оценка параметра $v_{\sigma N}$ производилась методом наименьших квадратов. При этом необходимо учитывать, что параметр $v_{\sigma N}$ является единственным оцениваемым параметром в регрессионном уравнении (1.2), этим объясняется специфический вид регрессионных кривых, как бы сходящихся к одной точке. Но даже при таком минимальном количестве оцениваемых параметров сходимость зависимостей следует признать удовлетворительной, что является след-

Рис. 4

ствием качественных теоретических предпосылок, служащих основанием для статистической теории подобия и коррекциях, связанных с вариацией долговечности, предлагаемых в данной работе.

Для полноты методики отметим, что теория подобия в рассмотренном виде является по сути градиентной с точки зрения распределения напряжений по сечению, то

есть не позволяет определять пределы выносливости объектов без концентрации напряжений при переменном растяжении-сжатии (например, крупногабаритных валов). Это означает, что при переменном растяжении-сжатии и отсутствии у натурной детали концентрации напряжений основные уравнения (1.1), (1.2) использоваться не могут, так как в выражении для параметра подобия относительный максимальный градиент отсутствует. По этой причине в [7] предлагается коррекция параметра подобия с целью использования критерия подобия в случае отсутствия градиента в распределении напряжений:

$$\lg(\xi - 1) = v_{\sigma} \cdot (1.3722 - \lg L + w_{p}) \tag{1.14}$$

где $\xi = \sigma_{\text{max}}$, коэффициент 1.3722 представляет собой логарифм периметра гладкого лабораторного образца диаметром 7.5 мм, $v'_{\sigma} = v_{\sigma}/(1 - v_{\sigma})$ Остальные параметры в формуле (1.14) аналогичны тем, которые использовались выше.

Выводы. 1. Выполнен статистический анализ большого объема экспериментальных данных усталостных испытаний конструкционных алюминиевых, титановых сплавов и легированных сталей, позволивший определить параметры уравнения подобия усталостного разрушения в широком диапазоне долговечностей 4 × 10⁴–5 × 10⁷.

2. Результаты анализа показали, что параметр наклона уравнения подобия v_{σ} изменяется не монотонно для легких сплавов, возрастая в диапазоне долговечностей $10^5 - 10^6$ циклов, а затем, снижается. Для сталей и титанового сплава v_{σ} монотонно снижается во всем диапазоне долговечностей при испытаниях.

3. Так как подобные изменения v_{σ} не учитываются в классическом варианте теории подобия в настоящей работе предложено уравнение, связывающее изменение параметра наклона с формой кривой усталости, позволившее учесть поведение v_{σ} в связи с вариацией долговечности и вероятности. Оценки параметра v_{σ} , выполненные методом наименьших квадратов, показали удовлетворительное соответствие опытных и расчетных значений.

4. Разработанная методика позволяет, в первом приближении, производить обоснование кривых усталости деталей и натурных элементов конструкций в широком диапазоне долговечностей и вероятностей разрушения, используя лишь параметры

медианной кривой усталости стандартных образцов и справочные значения параметров уравнения подобия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Когаев В.П. Расчеты на прочность при напряжениях, переменных во времени. М.: Машиностроение, 1977. С. 232.
- 2. Когаев В.П. Расчет деталей машин на прочность при многоцикловом нагружении. М.: Машиностроение, 1985. С. 64.
- 3. Weibull W.A. A statistical theory of the strength of materials. Proc. Royal Swedish Institute for Engineering Research. Stockholm, 1939. № 151. P. 45.
- 4. *Афанасьев Н.Н.* Статистическая теория усталостной прочности металлов. Киев, Изд. АН УССР, 1953. 123 с.
- 5. Межгосударственный стандарт. ГОСТ 25.504-82. Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости.
- Агамиров Л.В. Расчет на прочность при переменных нагрузках. Электронный информационный ресурс. http://window.edu.ru/resource/697/81697.
- Agamirov L.V. Analytic Substantiation of the Fatigue Curve of a Structural Element on the Basis of the Fatigue Damage Similarity Criterion // Russian Engineering Research. vol. 20, no. 11, pp. 16– 22, 2000 // Vestnik Mashinostroeniya. 2000. V. 80. № 11. P. 27–31.
- 8. *Когаев В.П.* Зависимость параметров уравнения подобия усталостного разрушения от числа циклов для легированных сталей // Проблемы машиностроения и автоматизации. 1988. № 22. С. 72–87.
- 9. Когаев В.П., Гусенков А.П., Алимов М.А., Марцинкевич А.Ю. Расчет статистических характеристик сопротивления усталости деталей из легированных сталей // Заводская лаборатория. 1989. Т. 55. № 4. С. 92–98.
- Агамиров Л.В. Разработка статистических методов оценивания характеристик усталостных свойств материалов и показателей надежности элементов конструкций авиационной техники. Докт. дисс. М.: МАТИ, 1994. С. 385.
- 11. Степнов М.Н., Гиацинтов Е.В. Усталость легких конструкционных сплавов. М.: Машиностроение, 1976. С. 230.
- 12. Степнов М.Н., Агамиров Л.В. О статистических закономерностях сопротивления усталости титанового сплава ВТ3-1 // Заводская лаборатория. 1980. № 1. С. 30.
- 13. Степнов М.Н., Фертман А.М., Агамиров Л.В., Гиацинтов Е.В. Оценка параметров уравнения подобия усталостного разрушения титанового сплава ВТ3-1 // Машиноведение. 1989. № 4. С. 19–22.
- 14. Степнов М.Н., Мозалев В.В., Лисин А.Н., Агамиров Л.В., Евстратова С.П. Расчетный метод точечного и интервального оценивания квантильных кривых усталости деталей машин // Проблемы машиностроения и надежности машин. 1994. № 4. С. 38–43.
- Agamirov L.V., Kramarenko E.I., Mozalev V.V., Lisin A.N. Influence of Various Factors on the Fatigue of Airplane Wheels // Russian Engineering Research. 2010. V. 30. № 11. P. 1095–1102. Original Russian Text in Vestnik Mashinostroeniya. 2010. № 11. P. 29–36.
- 16. Агамиров Л.В., Лисин А.Н., Мозалев В.В. Прогнозирование сопротивления усталости барабанов авиационных колес, подверженных поверхностному пластическому деформированию // Упрочняющие технологии и покрытия. 2011. № 3. С. 8–15.
- 17. Агамиров Л.В., Агамиров В.Л., Вестяк В.А. Стабилизация рассеяния характеристик усталостных свойств конструкционных материалов при статистическом анализе результатов усталостных испытаний // Вестник МАИ. 2011. Т. 18. № 5. С. 62–72.
- 18. Райхер В.Л. Усталостная повреждаемость. М.: МАТИ, 2006. С. 238.
- 19. Райхер В.Л. Рассеяние усталостной долговечности. М.: МАТИ, Изд. ЛАТМЭС, 2003. С. 221.