УДК 534-16

О ФЛАТТЕРЕ ЭЛЛИПТИЧЕСКОЙ ПЛАСТИНЫ

© 2021 г. С. Д. Алгазин^{а,*}, Ж. Г. Ингтем^{b,**}

^а Институт проблем механики им. А.Ю. Ишлинского Российской академии наук, Москва, Россия ^b Московский государственный университет им. М.В. Ломоносова, Москва, Россия *e-mail: algazinsd@mail.ru **e-mail: j-g.ingtem@cs.msu.ru

> Поступила в редакцию 04.12.2019 г. После доработки 19.03.2020 г. Принята к публикации 22.05.2020 г.

Методом математического моделирования исследуется флаттер пластины эллиптической формы в плане при разных направлениях угла атаки набегающего потока. Для численного моделирования неустойчивых колебаний пластины предложен эффективный численный алгоритм без насыщения, который позволяет на редкой сетке получить приемлемую точность в приближенном решении. Численно исследована зависимость критической скорости от безразмерной скорости звука в пластине, толщины пластины и угла направления вектора скорости набегающего потока.

Ключевые слова: численные методы без насыщения, флаттер пластины **DOI:** 10.31857/S0572329921020021

Введение. Рассматривается флаттер пластины, обтекаемой, с одной стороны, потоком воздуха. Принята математическая модель флаттера пластины построена А.А. Ильюшиным, И.А. Кийко [1]. Эффективный алгоритм решения задачи разработан автором и Кийко И.А. [2]. Основу программы составляет построение дискретного бигармонического оператора по методике [3]. Конформное отображение строится по программе Э.П. Казанджана [4]. Программный комплекс устроен таким образом, что если известны параметрические уравнения границы области, то возможно найти критическую скорость флаттера и построить соответствующую собственную форму. Стандартно критическая скорость флаттера ищется на двух сетках 9 × 15 и 15 × 31; критерием правильности расчета является близость полученных значений, возможно задать произвольную сетку.

1. Математическая постановка задачи. Исследование устойчивости колебаний тонкой пластины произвольной формы в плане, которая в плоскости x, y занимает область G с границей ∂G и обдувается потоком газа, приводит к спектральной задаче [1] для амплитудного значения прогибов $\varphi = \varphi(x, y), (x, y) \in G$.

$$D\Delta^2 \varphi - \beta V \text{grad} \varphi = \lambda \varphi; \quad D = \frac{Eh^3}{12(1-v^2)}, \quad \beta = \frac{kp_0}{c_0}$$
 (1.1)

$$\varphi|_{\partial G} = 0, \quad M\varphi|_{\partial G} = 0 \tag{1.2}$$

Здесь *E*, v – модуль Юнга и коэффициент Пуассона материала пластины, *h* – ее толщина, $V = (V_x, V_y)$ – вектор скорости газа, p_0, c_0 – давление и скорость звука в невозмущенном потоке, *k* – показатель политропы газа.

Собственное число λ связано с частотой колебаний соотношением

$$\lambda = -\rho h \omega^2 - \beta \omega \tag{1.3}$$

в котором *ρ* – плотность материала пластины.

Оператор M в (1.2) — это известный в теории пластин дифференциальный оператор, определяемый типом граничных условий. Методика решения спектральной задачи (1.1)— (1.3) описана для произвольного оператора M.

Колебания пластины будут устойчивыми или нет в зависимости от того, будет ли $\operatorname{Re}\omega < 0$ или $\operatorname{Re}\omega > 0$; если $\lambda_1 = \alpha_1 + i\beta_1$ — наименьшее по модулю собственное значение, то вследствие (1.3) выписанным неравенствам соответствуют $F(\alpha_1,\beta_1) > 0$ или $F(\alpha_1,\beta_1) < 0$, где $F(\alpha_1,\beta_1) = \alpha_1\beta_1^2 - \rho h\beta_1^2$. Поскольку $\alpha_1 = \alpha_1(V)$, $\beta_1 = \beta_1(V)$ уравнение $F(\alpha_1,\beta_1) = 0$ определяет нейтральную кривую и соответствующую ей критическую скорость флаттера. Речь идет, следовательно, о нахождении нулей функции $F(\alpha_1(V), \beta_1(V))$ при заданном направлении вектора скорости потока.

Обозначим через *l* характерный размер области *G* и введем безразмерные (со штри-

хами) координаты и параметры: x = x'l, y = y', $E = E'p_0$, h = h'l, $\rho = \frac{\rho' p_0}{c_0^2}$, $\omega = \frac{\omega' c_0}{l}$,

 $V = V'c_0, \varphi = \varphi'l.$

Подставив в (1.1) (1.3), убеждаемся, что в безразмерной форме система сохраняет свой вид, если параметр β заменить на безразмерный параметр k. В дальнейшем изложении штрихи будем опускать.

Введем вместо декартовых координат *x*, *y* криволинейные координаты *r*, θ по формулам $x = u(r, \theta)$, $y = v(r, \theta)$; если выполнены условия Коши–Римана

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

то система координат r, θ ортогональна. Выберем теперь функции $u(r,\theta)$, и $v(r,\theta)$ таким образом, чтобы функция

$$\psi(\zeta) = u(r,\theta) + iv(r,\theta), \quad \zeta = r\exp(i\theta)$$

задавала конформное отображение круга $|\zeta| = r \le 1$ на область *G*. Тогда в координатах (r, θ) уравнение (1.1) примет вид

$$D\Delta(|\psi'(\zeta)|^{-2}\Delta\phi) - k\left((V_x u_r + V_y v_r)\frac{\partial\phi}{\partial r} + \frac{1}{r}(V_y u_r - V_x v_r)\frac{\partial\phi}{\partial\theta}\right) = \lambda |\psi'(\zeta)|^2 \phi \qquad (1.4)$$
$$\left(u_r = \operatorname{Re}\left(\frac{\psi'(\zeta)\zeta}{r}\right), \quad v_r = \operatorname{Im}\left(\frac{\psi'(\zeta)\zeta}{r}\right)\right)$$

граничные условия (1.2) преобразуются известным образом [6]. В дальнейшем изложении область G предполагается односвязной, а контур ∂G — кривой Ляпунова; это обеспечивает выполнение основной теоремы Римана и теоремы о соответствии границ. Обозначим

$$f(r,\theta) = \Phi(r,\theta) + \lambda |\psi'(\zeta)|^2 \varphi$$
$$\Phi(r,\theta) = k \left(\left(V_x u_r + V_y v_r \right) \frac{\partial \varphi}{\partial r} + \frac{1}{r} \left(V_y u_r - V_x v_r \right) \frac{\partial \varphi}{\partial \theta} \right)$$

и запишем уравнение (1.4) в виде

$$D\Delta(|\psi'(\zeta)|^{-2}\Delta\phi) = \Phi(r,\phi) + \lambda |\psi'(\zeta)|^2 \phi$$
(1.5)

Теперь очевидно, что дискретизация краевой задачи (1.5), (1.2) вполне аналогична описанной ранее [5] для бигармонического оператора.

2. Вычислительные эксперименты. Рассматривалась эллиптическая пластина с большой полуосью a = 1 и эксцентриситетом e = 0.7 для 4-х материалов: титан ($c_2 = 14.773$, сталь ($c_2 = 15.131$), алюминий ($c_2 = 15.214$) и дюралюминий ($c_2 = 15.257$), где c_2 – безразмерная скорость звука в пластине (отношение скорости звука в пластине к скоро-

сти звука в воздухе). Величина $h \times 10^3$ менялась от 1 до 5 с шагом 1, где h – толщина пластины (безразмерная, a – характерный размер). Критическая скорость флаттера ищется на двух сетках 9 × 15 и 15 × 31; критерием правильности расчета является близость полученных значений. Было произведено 80 расчетов. Проводились 4 серии расчетов (по 20 расчетов в серии):

Первая краевая задача (защемленная по контуру пластинка). Рассматривается случай $\theta = 0$, где θ – угол направления вектора потока с осью *Ox*. По результатам численных расчетов подбиралась аналитическая зависимость критической скорости флаттера $z = v_{\rm kp}$, от двух безразмерных параметров $x = c_2$ – безразмерная скорость звука в пла-

стине (отношение скорости звука в пластине к скорости звука в воздухе), $y = h \times 10^3$, где h – толщина пластины (безразмерная, a – характерный размер) в результате получено:

$$z = a + bx + cy^3 \tag{2.1}$$

$$a = 0.045960572, \quad b = 0.00347737188, \quad c = 0.014473811$$

Первая краевая задача (защемленная по контуру пластинка). Рассматривается случай $\theta = \pi/2$. Получена та же зависимость (2.1), где a = 10.889836, b = -0.71384416, c = 0.023068911.

Вторая краевая задача (свободно опертая по контуру пластинка). Рассматривается случай $\theta = 0$. Получена та же зависимость (2.1), где a = 1.4538196, b = -0.089596533, c = 0.011091714.

Вторая краевая задача (свободно опертая по контуру пластинка). Рассматривается случай $\theta = \pi/2$. Получена та же зависимость (2.1), где a = 3.885002, b = -0.25079837, c = 0.019491586.

Дальнейшие расчеты проводились для алюминиевой пластины с разными направлениями вектора скорости потока.

В этих таблицах в левой колонке приведены углы θ направления вектора потока с осью Ох. Запись 9 × 15 означает сетку в круге из 9 окружностей по 15 точек на каждой окружности и т.п. Число в круглых скобках указывает номер собственного значения, по которому исследовалась устойчивость.

По таблицам 1, 3–6 подбиралась аналитическая зависимость критической скорости флаттера от двух параметров h – толщина пластины и θ – направление вектора скорости с осью абсцисс. В приведенных формулах первый параметр x = h, а y – доля π в θ . Например, для $\theta = \pi/8$, y = 1/8.

3. Выводы. І. Во всех проведенных расчетах подтвердилось, что зависимость критической скорости флаттера $z = v_{cr}$, от двух безразмерных параметров $x = c_2$ – безразмерная скорость звука в пластине (отношение скорости звука в пластине к скорости звука в воздухе), $y = h \times 10^3$, где h – толщина пластины (безразмерная, a – характерный размер) есть $z = a + bx + cy^3$. Это утверждение не противоречит ранее полученному соотношению (2.1) $z = a + cy^3$ для алюминиевой пластины, т.е. когда варьировалась только толщина пластины, bx – поправка на материал.

Таблица 1

$(a = 1, e = 0.7);$ Al: $E = 0.7 \times 10^{6}$ кгс/см ² , $\rho = 2.7 \times 10^{3}$ кг/м ³					
θ	1-я краевая задача		2-я краевая задача		
	9 × 15	15 × 31	9 × 15	15 × 31	
0	0.3626	0.3622	0.2789	0.2783	
$\pi/16$	0.3652	0.3652	0.2796	0.2796	
$\pi/8$	0.3735	0.3742	0.2821	0.2833	
$3\pi/16$	0.3873	0.3887	0.2867	0.2887	
$\pi/4$	0.4061	0.4076	0.2925	0.2946	
$5\pi/16$	0.4260	0.4280	0.2974	0.2992	
$3\pi/8$	0.4432	0.4441	0.2994	0.3006	
$7\pi/16$	0.4498	0.4502	0.2989	0.2996	
$\pi/2$	0.4503	0.4505	0.2985	0.2987	

Таблица 2

$a = 1, e = 0.7$; Ti: $E = 1.1 \times 10$	^b кгс/см ² , $\rho = 4.5 \times 10^3$ к	аг∕м ³
--	---	-------------------

.

θ	1-я краевая задача		2-я краевая задача	
	9 × 15	15 × 31	9 × 15	15 × 31
0	0.4438	0.4434	0.3011	0.3005
$\pi/16$	0.4481	0.4478	0.3036	0.3032
$\pi/8$	0.4609	0.4611	0.3112	0.3115
$3\pi/16$	0.4829	0.4837	0.3241	0.3250
$\pi/4$	0.5144	0.5157	0.3419	0.3435
$5\pi/16$	0.5545	0.5559	0.3627	0.3646
3π/8	0.5980	0.5993	0.3884	0.3828
$7\pi/16$	0.6291	0.6298	0.3894	0.3902
$\pi/2$	0.6344	0.6346	0.3899(2)	0.3902(2)

Таблица 3

$E = 1 = 0.7$; Alv $E = 0.7 \times 10^6$ and $(2.2^2 - 2.7 \times 10^3)$ and $(2.3^3 + 0.0)$		
$a = 1, e = 0, 7$ Al: $F_{1} = 0, 7 \times 10^{-1}$ Kic/cm ⁻ , $0 = 2, 7 \times 10^{-1}$ Ki/M ⁻ , $n = 0.00^{-1}$	0^3 KE/M^3 , $h = 0.001$	1. $e = 0.7$; A1: $E = 0.7 \times 10^{6} \text{ krc/cm}^{2}$, $\rho = 2.7 \times 10^{6} \text{ krc/cm}^{2}$

θ	1-я краевая задача		2-я краевая задача	
	9 × 15	15 × 31	9 × 15	15 × 31
0	0.0992046(3)	0.0906550(5)	0.0869917(2)	0.127044(4)
$\pi/8$	0.0752673(3)	0.0922430(5)	0.0699500(4)	0.108846(5)
$\pi/4$	0.0953305(5)	0.0948778(4)	0.125775(3)	0.137177(5)
$3\pi/8$	0.099404(4)	0.0979349(5)	0.129950(5)	0.164949(5)
$\pi/2$	0.137070(3)	0.122857(5)	0.127777(5)	0.175892(5)

Можно сказать, что решена задача табулирования: вместо того, чтобы хранить громоздкие таблицы со значениями критической скорости флаттера, зависящей от двух параметров, достаточно воспользоваться простой формулой (2.1).

Таблица 4	
-----------	--

$a = 1, e = 0.7; Al: E = 0.7 \times 10^{\circ} \text{ krc/cm}^2, \rho = 2.7 \times 10^{\circ} \text{ kr/m}^3, h = 0.002$					
Θ	1-я краевая задача		2-я краевая задача		
0	9 × 15	15 × 31	9 × 15	15 × 31	
0	0.185628	0.185868	0.151815(2)	0.152090(2)	
$\pi/8$	0.194063	0.190921	0.163442	0.155237(2)	
$\pi/4$	0.206059	0.203922	0.168332	0.163886(2)	
$3\pi/8$	0.215977	0.216651	0.175135(2)	0.176313(2)	
$\pi/2$	0.220158	0.220423	0.184554	0.185116	

Таблица 5

a = 1, e = 0.7; Al: $E = 0.7 \times 10^{6} \text{ krc/cm}^{2}, \rho = 2.7 \times 10^{3} \text{ kr/m}^{3}, h = 0.004$

Α	1-я краевая задача		2-я краевая задача	
0	9 × 15	15 × 31	9 × 15	15 × 31
0	0.647881	0.647201	0.904399	0.902115
$\pi/8$	0.673244	0.673408	1.24598	1.19275
$\pi/4$	0.752941	0.754649	1.38964(2)	1.55694(2)
$3\pi/8$	0.881436	0.883365	1.62488(3)	1.77013
$\pi/2$	0.945176	0.945504	1.82248(3)	1.75265(2)

Таблица 6

a = 1, e = 0.7; Al: $E = 0.7 \times 10^{6} \text{ krc/cm}^{2}, \rho = 2.7 \times 10^{3} \text{ kr/m}^{3}, h = 0.005$

θ 1	1-я краевая задача		2-я краевая задача	
	9 × 15	15 × 31	9 × 15	15 × 31
0	1.14191	1.14054	1.76638	1.76194
$\pi/8$	1.18812	1.18791	2.09717(2)	2.32947
$\pi/4$	1.33485	1.33702	2.71417(2)	3.04075(2)
$3\pi/8$	1.58769	1.59103	3.01609(3)	3.37000(3)
$\pi/2$	1.77902	1.78041	3.43821(3)	3.41858(2)

II. Максимум критической скорости флаттера для алюминиевой пластины достигается при обтекании вдоль малой полуоси эллипса, а минимум при обтекании вдоль большой оси эллипса для обеих краевых задач: 1-я краевая задача — защемленная пластинка; 2-я краевая задача — свободно опертая пластинка. В первом случае критическая скорость флаттера монотонно возрастает от значения 0.3622 до значения 0.4505 (при h = 0.003). Во втором случае монотонного возрастания критической скорости флаттера для алюминия нет, а для титана есть. Видимо это связано с тем, что первый материал более мягкий.

Для алюминия зависимость критической скорости флаттера от двух параметров h – толщина пластины и θ – направление вектора скорости с осью абсцисс представляется рациональной функцией (для обеих краевых задач): Первая краевая задача $z = \frac{(a + bx + cx^2 + dy)}{(1 + ex + fy + gy^2 + hy^3)},$ $a = 0.090816774, \quad b = -27.413664, \quad c = 27703.816, \quad d = 0.012249219,$ $e = -86.495309, \quad f = 0.093020951, \quad g = -2.5154882, \quad h = 3.0517341;$

Вторая краевая задача

$$z = \frac{a + bx + cx^{2} + dy}{1 + ex + fy + qy^{2} + hy^{3}}$$

$$a = 0.50989183, \quad b = -459.87831, \quad c = 128654.58, \quad d = -0.15318692,$$

$$e = -35.274587, \quad f = -2.276624, \quad g = 3.6044068, \quad h = -1.6181007.$$

Эти формулы содержат 8 параметров, которые могут быть определены в методических расчетах (для других значений эксцентриситета).

Благодарность. Работа выполнена по теме государственного задания № АААА-А20-120011690132-4.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ильюшин А.А., Кийко И.А. Новая постановка задачи о флаттере пологой оболочки // ПММ. 1994. Т. 58. Вып. 3. С. 167–171.
- 2. Алгазин С.Д., Кийко И.А. Численно-аналитическое исследование флаттера пластины произвольной формы в плане // ПММ. 1997. Т. 61. Вып. 1. С. 171–174.
- 3. *Алгазин С.Д.* Численные алгоритмы классической матфизики. II. Спектральные задачи для бигармонического уравнения // Препр. ИПМех. М.: 2001. № 678. 27 с.
- 4. *Казанджан Э.П*. Об одном численном методе конформного отображения односвязных областей // Препр. ИПМ. М., 1977. № 82. 59 с.
- 5. Алгазин С.Д., Бабенко К.И. Численное решение задачи об изгибе и свободных колебаниях пластинки // ПММ.1982. Т. 46. Вып. 6. С. 1011–1015.
- 6. Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек. Издание 2-е, переработанное и дополненное. М.: "URSS", 2016, 278 с. ISBN 978-5-9710-4188-7.