УЛК 539.3

УПРАВЛЕНИЕ ФОРМОЙ СЛОИСТЫХ КОМПОЗИТНЫХ ПЛАСТИН С ПЬЕЗОЭЛЕКТРИЧЕСКИМИ НАКЛАДКАМИ ПРИ ТЕПЛОВОМ НАГРУЖЕНИИ НА ОСНОВЕ МЕТОДА ОТСЧЕТНЫХ ПОВЕРХНОСТЕЙ

© 2021 г. Г. М. Куликов^{a,*}, С. В. Плотникова^a

^а Тамбовский государственный технический университет, Тамбов, Россия *e-mail: gmkulikov@mail.ru

> Поступила в редакцию 17.01.2021 г. После доработки 20.01.2021 г. Принята к публикации 25.01.2021 г.

В данной работе предложен гибридный конечный элемент для моделирования в пространственной постановке связанных термоэлектромеханических полей в композитных пластинах с пьезоэлектрическими накладками, основанный на методе отсчетных поверхностей. Согласно методу отсчетных поверхностей в слоях пластины и пьезоэлектрических накладках выбираются отсчетные поверхности параллельные срединной поверхности для введения в качестве искомых функций температуры, перемещений и электрических потенциалов этих поверхностей. Вначале вычисляется распределение температуры в слоистой пластине путем решения методом конечных элементов задачи теплопроводности. Полученные результаты используется в качестве входных данных для решения задачи термоэлектроупругости. На основе разработанной конечно-элементной модели предложен метод определения оптимальных электрических потенциалов, подаваемых на электроды актуаторов, с целью приведения пластины к заданной форме за счет использования обратного пьезоэлектрического эффекта.

Ключевые слова: термоэлектроупругость, композитная пластина, управление формой, метод конечных элементов, метод отсчетных поверхностей

DOI: 10.31857/S0572329921040085

Введение. В настоящее время устройства и технические системы на основе пьезоактивных материалов проникли в авиационную и космическую технику и широко используются в адаптивных композитных конструкциях. Подобные конструкции с встроенными в них пьезокерамическими материалами способны в значительных пределах менять свои технические характеристики в соответствии с условиями эксплуатации и позволяют эффективно управлять их деформациями. Преимуществом пьезокерамики является то, что в силу прямого и обратного пьезоэлектрических эффектов она может одновременно выполнять функции как сенсора, так и актуатора. Проектирование адаптивных конструкций представляет собой многогранную деятельность, включающую исследования по теплопередаче, механике композитных материалов и конструкций, сенсорам и актуаторам, методам оптимизации. Таким образом, расчет и моделирование тонкостенных композитных конструкций с пьезоэлектрическими сенсорами и актуаторами при тепловых и механических воздействиях на основе пространственной теории термопьезоэлектричества является актуальной задачей.

Расчет термоэлектроупругих слоистых конструкций на основе теории оболочек первого порядка (теория Тимошенко-Миндлина) с использованием четырехузловых конечных элементов выполнен в работах [1, 2]. При этом для описания температуры и электрического потенциала применена дискретная модель слоистых оболочек первого порядка. Конечные элементы для расчета слоистых композитных пластин при тепловых воздействиях на основе теории пластин третьего порядка предложены в работах [3, 4]. В девяностых годах для анализа связанных температурных, механических и электрических полей в слоистых пьезоэлектрических конструкциях стали использоваться трехмерные изопараметрические элементы [5-8]. Однако для расчета адаптивных тонкостенных конструкций такие конечные элементы являются вычислительно неэффективными. В связи с этим получили развитие конечные элементы для расчета в пространственной постановке слоистых пьезоэлектрических конструкций на основе дискретных теорий первого и третьего порядков [9-11] путем использования степенных полиномов для аппроксимации температуры, перемещений и электрического потенциала в пределах слоя. Более общие геометрически точные конечные элементы оболочки для расчета слоистых пьезоэлектрических конструкций на основе метода отсчетных поверхностей [12] с использованием полиномов Лагранжа произвольной степени построены в работе [13]. Согласно методу отсчетных поверхностей в слоях оболочки выбираются отсчетные поверхности параллельные срединной поверхности с целью введения в качестве искомых функций температуры, перемещений и электрических потенциалов этих поверхностей. Отметим, что геометрически точные конечные элементы оболочки [13] не предназначены для расчета композитных конструкций с распределенными на лицевых поверхностях пьезоэлектрическими актуаторами, что представляет интерес для решения задачи управления формой адаптивных композитных конструкций.

В данной работе на основе метода отсчетных поверхностей, расположенных в слоях пластины и пьезоэлектрических накладках в узловых точках полинома Чебышева, построен пространственный четырехузловой конечный элемент слоистой композитной пластины с учетом условия эквипотенциальности на электродах, обобщающий конечный элемент [14] на случай теплового нагружения и позволяющий эффективно решать задачи о приведении пластины к заданной форме и о возврате деформированной пластины к ее первоначальной форме. На возможность компенсации температурных деформаций за счет обратного пьезоэлектрического эффекта указано в работе [15]. Анализ численных алгоритмов и методов управления формой адаптивной конструкции представлен в обзоре [16].

1. Конечный элемент для решения задачи теплопроводности для слоистой пластины на основе метода отсчетных поверхностей. Рассмотрим пластину толщиной h, состоящую из N слоев. Срединная поверхность пластины Ω описывается декартовыми координатами x_1, x_2 , а координата x_3 отсчитывается вдоль нормали к этой поверхности. В n-м слое пластины выбираем I_n отсчетных поверхностей параллельных срединной поверхности, где $I_n \geq 3$. При этом $I_n - 2$ поверхности расположены внутри слоя в узловых точках полинома Чебышева, что обеспечивает равномерную сходимость метода, другие две совпадают с поверхностями раздела слоев. Таким образом, общее число отсчетных поверхностей в пакете равно $N_S = \sum_n I_n - N + 1$. Координаты отсчетных поверхностей определяем по формулам [17]:

$$x_3^{(n)1} = x_3^{[n-1]}, \quad x_3^{(n)I_n} = x_3^{[n]}$$
 (1.1)

$$x_3^{(n)m_n} = \frac{1}{2}(x_3^{[n-1]} + x_3^{[n]}) - \frac{1}{2}h_n \cos\left(\pi \frac{2m_n - 3}{2(I_n - 2)}\right)$$

где $h_n=x_3^{[n]}-x_3^{[n-1]}$ — толщина n-го слоя; $x_3^{[0]}, x_3^{[N]}$ — координаты лицевых поверхностей; $x_3^{[m]}$ — координаты поверхностей раздела слоев; $n=1,\,2,\,\ldots,\,N$; $m=1,\,2,\,\ldots,\,N-1$; $m_n=2,\,\ldots,\,I_n-1$.

Согласно методу отсчетных поверхностей [17] полагаем, что температура $T^{(n)}$, компоненты градиента температуры $\Gamma_i^{(n)} = T_{,i}^{(n)}$ и теплового потока $q_i^{(n)} = -k_{ij}^{(n)}\Gamma_j^{(n)}$, где $k_{ij}^{(n)}$ — коэффициенты теплопроводности, распределены по толщине n-го слоя по следующему закону:

$$\left[T^{(n)}\Gamma_i^{(n)}q_i^{(n)}\right] = \sum_{i_n} L^{(n)i_n} \left[T^{(n)i_n}\Gamma_i^{(n)i_n}q_i^{(n)i_n}\right], \quad x_3^{[n-1]} \le x_3 \le x_3^{[n]}$$
(1.2)

Здесь $T^{(n)i_n}$, $\Gamma_i^{(n)i_n}$, $q_i^{(n)i_n}$ — температура, компоненты градиента температуры и теплового потока на отсчетных поверхностях; $L^{(n)i_n}(x_3)$ — базисные полиномы Лагранжа степени I_n — 1:

$$L^{(n)i_n} = \prod_{j_n \neq i_n} \frac{x_3 - x_3^{(n)j_n}}{x_3^{(n)i_n} - x_3^{(n)j_n}}$$
(1.3)

где i, j = 1, 2, 3; $i_n, j_n = 1, 2, ..., I_n$.

В силу формул (1.2), (1.3) соотношения между градиентом температуры и температурой отсчетных поверхностях n-го слоя имеют вид

$$\Gamma_{\alpha}^{(n)i_n} = T_{,\alpha}^{(n)i_n} \quad (\alpha = 1, 2), \quad \Gamma_3^{(n)i_n} = \sum_i M^{(n)j_n} (x_3^{(n)i_n}) T^{(n)j_n}$$
 (1.4)

где $M^{(n)j_n} = L_{,3}^{(n)j_n}$ — полиномы степени I_n — 2; их значения на отсчетных поверхностях n-го слоя можно представить в форме

$$M^{(n)j_n}(x_3^{(n)i_n}) = \frac{1}{x_3^{(n)j_n} - x_3^{(n)i_n}} \prod_{k_n \neq i_n, j_n} \frac{x_3^{(n)i_n} - x_3^{(n)k_n}}{x_3^{(n)j_n} - x_3^{(n)k_n}} \quad \text{при} \quad j_n \neq i_n$$

$$M^{(n)i_n}(x_3^{(n)i_n}) = -\sum_{j_n \neq i_n} M^{(n)j_n}(x_3^{(n)i_n})$$

$$(1.5)$$

Вариационное уравнение теплопроводности для слоистой пластины относительно градиента температуры и температуры отсчетных поверхностей [13] запишем в виде

$$\delta \iint_{\Omega} \sum_{n} \sum_{i_{n}} \sum_{j_{n}} \frac{1}{2} \Lambda^{(n)i_{n}j_{n}} (\mathbf{\Gamma}^{(n)i_{n}})^{\mathrm{T}} \mathbf{k}^{(n)} \mathbf{\Gamma}^{(n)j_{n}} dx_{1} dx_{2} = \iint_{\Omega} (\hat{q}_{3}^{-} \delta T^{[0]} - \hat{q}_{3}^{+} \delta T^{[N]}) dx_{1} dx_{2}$$
(1.6)

где

$$\Lambda^{(n)i_nj_n} = \int_{x_3^{[n-1]}}^{x_3^{[n]}} L^{(n)i_n} L^{(n)j_n} dx_3$$
 (1.7)

$$\mathbf{\Gamma}^{(n)i_n} = \left[\Gamma_1^{(n)i_n} \Gamma_2^{(n)i_n} \Gamma_3^{(n)i_n} \right]^{\mathrm{T}}, \quad \mathbf{k}^{(n)} = \begin{bmatrix} k_{11}^{(n)} & k_{12}^{(n)} & 0 \\ k_{21}^{(n)} & k_{22}^{(n)} & 0 \\ 0 & 0 & k_{33}^{(n)} \end{bmatrix}$$

Здесь $T^{[0]}$, $T^{[N]}$ — температура нижней и верхней лицевых поверхностей Ω^- и Ω^+ ; \hat{q}_3^- , \hat{q}_3^+ — заданные тепловые потоки на лицевых поверхностях.

Для построения конечно-элементной модели разобьем пластину на прямоугольные элементы, причем число слоев в конечных элементах с пьезоэлектрическими накладками и без них будет отличаться. Предположим для определенности, что накладки расположены на верхней поверхности, тогда число слоев определяется как $N=N_0$ для конечных элементов, не содержащих накладок, и $N=N_0+1$ для элементов с накладками, где N_0 — число слоев в слоистой пластине.

Температура и градиент температуры отсчетных поверхностей n-го слоя в пределах четырехузлового конечного элемента аппроксимируются согласно билинейному закону:

$$T^{(n)i_n} = \sum_r N_r T_r^{(n)i_n} \tag{1.8}$$

$$\Gamma^{(n)i_n} = \sum_{r} N_r \Gamma_r^{(n)i_n}, \quad \Gamma_r^{(n)i_n} = [\Gamma_{1r}^{(n)i_n} \ \Gamma_{2r}^{(n)i_n} \ \Gamma_{3r}^{(n)i_n}]^{\mathrm{T}}$$
(1.9)

где $N_r(\xi_1, \xi_2)$ — билинейные функции формы [13]; ξ_1, ξ_2 — локальные координаты конечного элемента; $T_r^{(n)i_n}, \Gamma_{ir}^{(n)i_n}$ — температура и градиент температуры отсчетных поверхностей в узлах элемента; r = 1, 2, 3, 4.

Введем дополнительные матричные обозначения:

$$\mathbf{T} = [\mathbf{T}_1^{\mathsf{T}} \ \mathbf{T}_2^{\mathsf{T}} \ \mathbf{T}_3^{\mathsf{T}} \ \mathbf{T}_4^{\mathsf{T}}]^{\mathsf{T}} \tag{1.10}$$

$$\mathbf{T}_r = [T_r^{[0]} T_r^{(1)2} \dots T_r^{(1)I_1 - 1} T_r^{[1]} T_r^{(2)2} \dots T_r^{(N-1)I_{N-1} - 1} T_r^{[N-1]} T_r^{(N)2} \dots T_r^{(N)I_N - 1} T_r^{[N]}]^{\mathrm{T}}$$

Учитывая соотношения (1.4), (1.9), (1.10), градиент температурного поля в узлах конечного элемента представим в форме

$$\Gamma_r^{(n)i_n} = \mathbf{B}_{\theta r}^{(n)i_n} \mathbf{T} \tag{1.11}$$

Здесь $\mathbf{B}_{0r}^{(n)i_n}$ — постоянные матрицы порядка $3 \times 4N_S$ [13]. Чтобы применить аналитическое интегрирование в пределах конечного элемента, билинейную аппроксимацию для градиента температуры (1.9) запишем в виде

$$\mathbf{\Gamma}^{(n)i_n} = \sum_{\eta_1, \tau_2} (\xi_1)^{r_1} (\xi_2)^{r_2} \mathbf{\Gamma}^{(n)i_n}_{\eta_1 \tau_2}, \quad \mathbf{\Gamma}^{(n)i_n}_{\eta_1 \tau_2} = [\mathbf{\Gamma}^{(n)i_n}_{1\eta_1 \tau_2} \mathbf{\Gamma}^{(n)i_n}_{2\eta_1 \tau_2} \mathbf{\Gamma}^{(n)i_n}_{3\eta_1 \tau_2}]$$
(1.12)

где

$$\Gamma_{np}^{(n)i_n} = \mathbf{B}_{\theta np}^{(n)i_n} \mathbf{T} \tag{1.13}$$

$$\mathbf{B}_{\theta r_1 r_2}^{(n)i_n} = \frac{1}{4} [\mathbf{B}_{\theta 1}^{(n)i_n} + (1 - 2r_1)\mathbf{B}_{\theta 2}^{(n)i_n} + (1 - 2r_1)(1 - 2r_2)\mathbf{B}_{\theta 3}^{(n)i_n} + (1 - 2r_2)\mathbf{B}_{\theta 4}^{(n)i_n}]$$

Здесь и далее, индексы r_1 , r_2 принимают значения 0 или 1.

Подставляя (1.8), (1.12) в вариационное уравнение (1.6) и выполняя аналитическое интегрирование в пределах конечного элемента, приходим к системе линейных уравнений

$$\mathbf{K}_{\theta\theta} = \sum_{r_1 + r_2 \le 2} \frac{1}{3^{n_1 + r_2}} \sum_{n} \sum_{i_n} \sum_{j_n} \Lambda^{(n)i_n j_n} (\mathbf{B}_{\theta \eta r_2}^{(n)i_n})^{\mathrm{T}} \mathbf{k}^{(n)} \mathbf{B}_{\theta \eta r_2}^{(n)j_n}$$

$$(1.14)$$

Здесь \mathbf{F}_{θ} — вектор теплового нагружения. При сборке элементов в ансамбль следует учитывать, что число слоев в конечных элементах с накладками превышает число сло-

ев в элементах без накладок и, следовательно, размерность матрицы $\mathbf{K}_{\theta\theta}$ зависит от типа конечного элемента.

2. Конечный элемент для решения задачи термоэлектроупругости для слоистой пьезо-электрической пластины на основе метода отсчетных поверхностей. Согласно методу отсчетных поверхностей, примененному для решения связанной задачи термоэлектроупругости [12], полагаем, что перемещения $u_i^{(n)}$, деформации $\varepsilon_{ij}^{(n)}$, напряжения $\sigma_{ij}^{(n)}$, электрический потенциал $\phi^{(n)}$, компоненты векторов напряженности электрического поля $E_i^{(n)}$ и электрического смещения $D_i^{(n)}$ распределены по толщине n-го слоя пластины по закону аналогичному (1.2), (1.3):

$$[u_i^{(n)} \varepsilon_{ij}^{(n)} \sigma_{ij}^{(n)} \phi^{(n)} E_i^{(n)} D_i^{(n)}] = \sum_{i, \dots} L^{(n)i_n} [u_i^{(n)i_n} \varepsilon_{ij}^{(n)i_n} \sigma_{ij}^{(n)i_n} \phi^{(n)i_n} E_i^{(n)i_n} D_i^{(n)i_n}]$$
(2.1)

где $u_i^{(n)i_n}$, $\varepsilon_{ij}^{(n)i_n}$, $\sigma_{ij}^{(n)i_n}$, $\phi^{(n)i_n}$, $E_i^{(n)i_n}$, $D_i^{(n)i_n}$ — перемещения, деформации, напряжения, электрический потенциал, векторы напряженности электрического поля и электрического смещения отсчетных поверхностей n-го слоя.

Соотношения между деформациями и перемещениями отсчетных поверхностей, а также между напряженностью и потенциалом электрического поля отсчетных поверхностей имеют вид

$$2\varepsilon_{\alpha\beta}^{(n)i_n} = u_{\alpha,\beta}^{(n)i_n} + u_{\beta,\alpha}^{(n)i_n}, \quad 2\varepsilon_{\alpha3}^{(n)i_n} = u_{3,\alpha}^{(n)i_n} + \beta_{\alpha}^{(n)i_n} \quad (\alpha,\beta = 1,2)$$
 (2.2)

$$\epsilon_{33}^{(n)i_n} = \beta_3^{(n)i_n}, \quad \beta_i^{(n)i_n} = \sum_{j_n} M^{(n)j_n} (x_3^{(n)i_n}) u_i^{(n)j_n}$$

$$E_{\alpha}^{(n)i_n} = -\varphi_{,\alpha}^{(n)i_n}, \quad E_3^{(n)i_n} = -\sum_{i_n} M^{(n)j_n} (x_3^{(n)i_n}) \varphi^{(n)j_n}$$
 (2.3)

Уравнения состояния линейной теории термопьезоэлектричества представим в форме

$$\sigma_{ij}^{(n)i_n} = C_{ijkl}^{(n)} \varepsilon_{kl}^{(n)i_n} - e_{kij}^{(n)} E_k^{(n)i_n} - \gamma_{ij}^{(n)} \Theta^{(n)i_n}$$

$$D_i^{(n)i_n} = e_{ikl}^{(n)} \varepsilon_{kl}^{(n)i_n} + \varepsilon_{ik}^{(n)} E_k^{(n)i_n} + r_i^{(n)} \Theta^{(n)i_n}$$
(2.4)

где $\Theta^{(n)i_n} = T^{(n)i_n} - T_0$ — приращение температуры отсчетных поверхностей от естественного состояния T_0 ; $C^{(n)}_{ijkl}$, $e^{(n)}_{kij}$, \in упругие, пьезоэлектрические и диэлектрические постоянные; $\gamma^{(n)}_{ij}$, $r^{(n)}_i$ — температурные напряжения и пироэлектрические константы n-го слоя.

Подставляя аппроксимации (1.2), (2.1) в смешанный вариационный принцип термоэлектроупругости для слоистого тела [18], в котором независимыми варьируемыми переменными являются перемещения $u_i^{(n)}$, электрический потенциал $\phi^{(n)}$, независимые от поля перемещений деформации $\eta_{ij}^{(n)}$ и напряжения $\sigma_{ij}^{(n)}$, и интегрируя по поперечной координате с учетом (1.7), получим вариационное уравнение для построения

гибридного конечного элемента слоистой пьезоэлектрической пластины при тепловом нагружении

$$\iint_{\Omega} \sum_{n} \sum_{i_{n}} \sum_{j_{n}} \Lambda^{(n)i_{n}j_{n}} [-\delta(\mathbf{\eta}^{(n)i_{n}})^{\mathsf{T}} (\mathbf{\sigma}^{(n)j_{n}} - \mathbf{C}^{(n)} \mathbf{\eta}^{(n)j_{n}} + (\mathbf{e}^{(n)})^{\mathsf{T}} \mathbf{E}^{(n)j_{n}} + \boldsymbol{\gamma}^{(n)} \Theta^{(n)j_{n}}) - \\
- \delta(\mathbf{E}^{(n)i_{n}})^{\mathsf{T}} (\mathbf{e}^{(n)} \mathbf{\eta}^{(n)j_{n}} + \boldsymbol{\epsilon}^{(n)} \mathbf{E}^{(n)j_{n}} + \mathbf{r}^{(n)} \Theta^{(n)j_{n}}) - \\
- \delta(\mathbf{\sigma}^{(n)i_{n}})^{\mathsf{T}} (\mathbf{\eta}^{(n)j_{n}} - \boldsymbol{\epsilon}^{(n)j_{n}}) + \delta(\boldsymbol{\epsilon}^{(n)i_{n}})^{\mathsf{T}} \boldsymbol{\sigma}^{(n)j_{n}}] dx_{1} dx_{2} = \\
= \iint_{\Omega} (\delta(\mathbf{u}^{[N]})^{\mathsf{T}} \hat{\boldsymbol{\sigma}}^{+} - \delta(\mathbf{u}^{[0]})^{\mathsf{T}} \hat{\boldsymbol{\sigma}}^{-} + \delta \boldsymbol{\phi}^{[N]} \hat{D}_{3}^{+} - \delta \boldsymbol{\phi}^{[0]} \hat{D}_{3}^{-}) dx_{1} dx_{2} \tag{2.5}$$

где $\mathbf{u}^{[0]} = [u_1^{[0]} u_2^{[0]} u_3^{[0]}]^{\mathrm{T}}, \ \mathbf{u}^{[N]} = [u_1^{[N]} u_2^{[N]} u_3^{[N]}]^{\mathrm{T}}, \ \phi^{[0]}, \ \phi^{[N]}$ — перемещения и электрические потенциалы лицевых поверхностей $\Omega^-, \Omega^+; \hat{\sigma}^- = [\hat{\sigma}_{13}^-, \hat{\sigma}_{23}^-, \hat{\sigma}_{33}^-]^{\mathrm{T}}, \hat{\sigma}^+ = [\hat{\sigma}_{13}^+, \hat{\sigma}_{23}^+, \hat{\sigma}_{33}^+]^{\mathrm{T}}, \hat{D}_3^-,$

 \hat{D}_{3}^{+} — заданные механические и электрические нагрузки, действующие на лицевых поверхностях. В вариационном уравнении (2.5) использованы следующие матричные обозначения:

$$\mathbf{e}^{(n)i_n} = [\mathbf{e}_{11}^{(n)i_n} \ \mathbf{e}_{22}^{(n)i_n} \ \mathbf{e}_{33}^{(n)i_n} \ 2\mathbf{e}_{12}^{(n)i_n} \ 2\mathbf{e}_{13}^{(n)i_n} \ 2\mathbf{e}_{23}^{(n)i_n}]^{\mathrm{T}}$$

$$\mathbf{\eta}^{(n)i_n} = [\mathbf{\eta}_{11}^{(n)i_n} \ \mathbf{\eta}_{12}^{(n)i_n} \ \mathbf{\eta}_{13}^{(n)i_n} \ \mathbf{\eta}_{12}^{(n)i_n} \ \mathbf{\eta}_{12}^{(n)i_n} \ \mathbf{\eta}_{13}^{(n)i_n} \ 2\mathbf{\eta}_{13}^{(n)i_n} \ \mathbf{\eta}_{12}^{(n)i_n} \ \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{12}^{(n)i_n} \mathbf{\eta}_{13}^{(n)i_n} \mathbf{\eta}_{13}^{($$

Для интерполяции перемещений, деформаций, потенциала и напряженности электрического поля отсчетных поверхностей *n*-го слоя в пределах четырехузлового конечного элемента пластины воспользуемся стандартными билинейными аппроксимациями

$$u_i^{(n)i_n} = \sum_r N_r u_{ir}^{(n)i_n}, \quad \varepsilon_{ij}^{(n)i_n} = \sum_r N_r \varepsilon_{ijr}^{(n)i_n}$$
 (2.7)

$$\varphi^{(n)i_n} = \sum_r N_r \varphi_r^{(n)i_n}, \quad E_i^{(n)i_n} = \sum_r N_r E_{ir}^{(n)i_n}$$
 (2.8)

где $u_{ir}^{(n)i_n}$, $\varepsilon_{ijr}^{(n)i_n}$, $\phi_r^{(n)i_n}$, $E_{ir}^{(n)i_n}$ — перемещения, деформации, потенциал и напряженность электрического поля в узлах элемента. Для выполнения аналитического интегрирования в пределах элемента аппроксимации (2.7), (2.8) представим в виде

$$\boldsymbol{\varepsilon}^{(n)i_n} = \sum_{r_1, r_2} (\xi_1)^{r_1} (\xi_2)^{r_2} \, \boldsymbol{\varepsilon}_{r_1 r_2}^{(n)i_n}, \quad \boldsymbol{\varepsilon}_{r_1 r_2}^{(n)i_n} = [\boldsymbol{\varepsilon}_{11 r_1 r_2}^{(n)i_n} \, \boldsymbol{\varepsilon}_{22 r_1 r_2}^{(n)i_n} \, \boldsymbol{\varepsilon}_{33 r_1 r_2}^{(n)i_n} \, 2 \boldsymbol{\varepsilon}_{13 r_1 r_2}^{(n)i_n} \, 2 \boldsymbol{\varepsilon}_{23 r_1 r_2}^{(n)i_n} \,]^{\mathsf{T}}$$

$$(2.9)$$

$$\mathbf{E}^{(n)i_n} = \sum_{r_1, r_2} (\xi_1)^{r_1} (\xi_2)^{r_2} \mathbf{E}^{(n)i_n}_{r_1 r_2}, \quad \mathbf{E}^{(n)i_n}_{r_1 r_2} = [E^{(n)i_n}_{1r_1 r_2} E^{(n)i_n}_{2r_1 r_2} E^{(n)i_n}_{3r_1 r_2}]^{\mathrm{T}}$$
(2.10)

Соотношения (2.2), (2.3) с учетом аппроксимаций (2.9), (2.10) запишем в матричной форме

$$\mathbf{\epsilon}_{\eta r_2}^{(n)i_n} = \mathbf{B}_{u\eta r_2}^{(n)i_n} \mathbf{q}, \quad \mathbf{E}_{\eta r_2}^{(n)i_n} = -\mathbf{B}_{\varphi \eta r_2}^{(n)i_n} \mathbf{\Phi}$$
 (2.11)

где $\mathbf{B}_{ur_1r_2}^{(n)i_n}$, $\mathbf{B}_{\phi r_1r_2}^{(n)i_n}$ – *постоянные* в пределах конечного элемента матрицы порядка $6 \times 12N_{\rm S}$ и $3 \times 4N_{\rm S}$ [13]. Искомые векторы узловых перемещений и электрических потенциалов конечного элемента имеют вид

$$\mathbf{q} = [\mathbf{q}_{1}^{\mathrm{T}} \ \mathbf{q}_{2}^{\mathrm{T}} \ \mathbf{q}_{3}^{\mathrm{T}} \ \mathbf{q}_{4}^{\mathrm{T}}]^{\mathrm{T}}, \quad \mathbf{\Phi} = [\mathbf{\Phi}_{1}^{\mathrm{T}} \ \mathbf{\Phi}_{2}^{\mathrm{T}} \ \mathbf{\Phi}_{3}^{\mathrm{T}} \ \mathbf{\Phi}_{4}^{\mathrm{T}}]^{\mathrm{T}}$$

$$\mathbf{q}_{r} = [(\mathbf{u}_{r}^{[0]})^{\mathrm{T}} (\mathbf{u}_{r}^{(1)2})^{\mathrm{T}} \dots (\mathbf{u}_{r}^{(1)I_{1}-1})^{\mathrm{T}} (\mathbf{u}_{r}^{[1]})^{\mathrm{T}} (\mathbf{u}_{r}^{(2)2})^{\mathrm{T}} \dots$$

$$\dots (\mathbf{u}_{r}^{(N-1)I_{N-1}-1})^{\mathrm{T}} (\mathbf{u}_{r}^{[N-1]})^{\mathrm{T}} (\mathbf{u}_{r}^{(N)2})^{\mathrm{T}} \dots (\mathbf{u}_{r}^{(N)I_{N-1}})^{\mathrm{T}} (\mathbf{u}_{r}^{[N]})^{\mathrm{T}}]^{\mathrm{T}}$$

$$\mathbf{u}_{r}^{[m]} = [\mathbf{u}_{1r}^{[m]} \ \mathbf{u}_{2r}^{[m]} \ \mathbf{u}_{3r}^{[m]}]^{\mathrm{T}}, \quad \mathbf{u}_{r}^{(n)m_{n}} = [\mathbf{u}_{1r}^{(n)m_{n}} \ \mathbf{u}_{2r}^{(n)m_{n}} \ \mathbf{u}_{3r}^{(n)m_{n}}]^{\mathrm{T}}$$

$$\mathbf{\Phi}_{r} = [\mathbf{\phi}_{r}^{[0]} \mathbf{\phi}_{r}^{(1)2} \dots \mathbf{\phi}_{r}^{(N)I_{1}-1} \mathbf{\phi}_{r}^{[1]} \mathbf{\phi}_{r}^{(2)2} \dots \mathbf{\phi}_{r}^{(N-1)I_{N-1}-1} \mathbf{\phi}_{r}^{[N-1]} \mathbf{\phi}_{r}^{(N)2} \dots \mathbf{\phi}_{r}^{(N)I_{N}-1} \mathbf{\phi}_{r}^{[N]}]^{\mathrm{T}}$$

Также при построении гибридного конечного элемента вводятся независимые аппроксимации напряжений $\sigma^{(n)i_n}$ и деформаций $\eta^{(n)i_n}$, позволяющие обеспечить корректный ранг матрицы жесткости [19]:

$$\sigma^{(n)i_{n}} = \sum_{r_{1}+r_{2}<2} (\xi_{1})^{r_{1}} (\xi_{2})^{r_{2}} \mathbf{Q}_{n_{1}r_{2}} \sigma^{(n)i_{n}}_{r_{1}r_{2}}
\sigma^{(n)i_{n}}_{00} = [\mu_{1}^{(n)i_{n}} \ \mu_{2}^{(n)i_{n}} \ \mu_{3}^{(n)i_{n}} \ \mu_{4}^{(n)i_{n}} \ \mu_{5}^{(n)i_{n}} \ \mu_{6}^{(n)i_{n}}]^{T}
\sigma^{(n)i_{n}}_{01} = [\mu_{7}^{(n)i_{n}} \ \mu_{9}^{(n)i_{n}} \ \mu_{11}^{(n)i_{n}}]^{T}, \quad \sigma^{(n)i_{n}}_{10} = [\mu_{8}^{(n)i_{n}} \ \mu_{10}^{(n)i_{n}} \ \mu_{12}^{(n)i_{n}}]^{T}
\eta^{(n)i_{n}} = \sum_{r_{1}+r_{2}<2} (\xi_{1})^{r_{1}} (\xi_{2})^{r_{2}} \mathbf{Q}_{r_{1}r_{2}} \eta^{(n)i_{n}}_{r_{1}r_{2}}
\eta^{(n)i_{n}}_{00} = [\psi_{1}^{(n)i_{n}} \ \psi_{2}^{(n)i_{n}} \ \psi_{3}^{(n)i_{n}} \ \psi_{4}^{(n)i_{n}} \ \psi_{5}^{(n)i_{n}} \ \psi_{6}^{(n)i_{n}}]^{T}
\eta^{(n)i_{n}}_{01} = [\psi_{7}^{(n)i_{n}} \ \psi_{9}^{(n)i_{n}} \ \psi_{11}^{(n)i_{n}}]^{T}, \quad \eta^{(n)i_{n}}_{10} = [\psi_{8}^{(n)i_{n}} \ \psi_{10}^{(n)i_{n}} \ \psi_{12}^{(n)i_{n}}]^{T}$$
(2.13)

где

$$\mathbf{Q}_{00} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{Q}_{01} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{Q}_{10} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(2.15)$$

Подставляя конечно-элементные аппроксимации (2.7)—(2.10), (2.13), (2.14) в смешанное вариационное уравнение (2.5), интегрируя аналитически в пределах конечного элемента и исключая напряжения $\sigma_{r_{l'2}}^{(n)i_n}$ и независимые от поля перемещений деформации $\eta_{r_{l'n}}^{(n)i_n}$, приходим к разрешающей системе линейных уравнений

$$\begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\phi} \\ \mathbf{K}_{\phi u} & \mathbf{K}_{\phi\phi} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{\Phi} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{u} \\ \mathbf{F}_{\phi} \end{bmatrix} + \begin{bmatrix} \mathbf{F}_{u\theta} \\ \mathbf{F}_{\phi\theta} \end{bmatrix}$$
 (2.16)

Здесь \mathbf{K}_{uu} , $\mathbf{K}_{u\phi}$, $\mathbf{K}_{\phi u} = \mathbf{K}_{u\phi}^{\mathrm{T}}$, $\mathbf{K}_{\phi\phi}$ — механическая, пьезоэлектрическая и диэлектрическая матрицы жесткости конечного элемента, \mathbf{F}_{u} , \mathbf{F}_{ϕ} — векторы механических и электрических нагрузок, $\mathbf{F}_{u\theta}$ и $\mathbf{F}_{\phi\theta}$ — векторы температурных нагрузок:

$$\mathbf{K}_{uu} = \sum_{n} \sum_{i_{n}} \sum_{j_{n}} \Lambda^{(n)i_{n}j_{n}} \sum_{r_{1}+r_{2}<2} \frac{1}{3^{r_{1}+r_{2}}} (\mathbf{B}_{ur_{1}r_{2}}^{(n)i_{n}})^{\mathsf{T}} \mathbf{Q}_{r_{1}r_{2}} \mathbf{Q}_{r_{1}r_{2}}^{\mathsf{T}} \mathbf{C}^{(n)} \mathbf{Q}_{r_{1}r_{2}} \mathbf{Q}_{r_{1}r_{2}}^{\mathsf{T}} \mathbf{B}_{ur_{1}r_{2}}^{(n)j_{n}}$$

$$\mathbf{K}_{u\phi} = \sum_{n} \sum_{i_{n}} \sum_{j_{n}} \Lambda^{(n)i_{n}j_{n}} \sum_{r_{1}+r_{2}<2} \frac{1}{3^{r_{1}+r_{2}}} (\mathbf{B}_{ur_{1}r_{2}}^{(n)i_{n}})^{\mathsf{T}} \mathbf{Q}_{r_{1}r_{2}} \mathbf{Q}_{r_{1}r_{2}}^{\mathsf{T}} (\mathbf{e}^{(n)})^{\mathsf{T}} \mathbf{B}_{\phi r_{1}r_{2}}^{(n)j_{n}}$$

$$\mathbf{K}_{\phi\phi} = -\sum_{n} \sum_{i_{n}} \sum_{j_{n}} \Lambda^{(n)i_{n}j_{n}} \sum_{r_{1}+r_{2}\leq2} \frac{1}{3^{r_{1}+r_{2}}} (\mathbf{B}_{\phi r_{1}r_{2}}^{(n)i_{n}})^{\mathsf{T}} \mathbf{C}_{r_{1}r_{2}}^{(n)} \mathbf{B}_{\phi r_{1}r_{2}}^{(n)j_{n}}$$

$$\mathbf{F}_{u\theta} = \sum_{n} \sum_{i_{n}} \sum_{j_{n}} \Lambda^{(n)i_{n}j_{n}} \sum_{r_{1}+r_{2}\leq2} \frac{1}{3^{r_{1}+r_{2}}} (\mathbf{B}_{\phi r_{1}r_{2}}^{(n)i_{n}})^{\mathsf{T}} \mathbf{C}_{r_{1}r_{2}}^{(n)} \mathbf{Q}_{r_{1}r_{2}}^{(n)j_{n}}$$

$$\mathbf{F}_{\phi\theta} = -\sum_{n} \sum_{i_{n}} \sum_{j_{n}} \Lambda^{(n)i_{n}j_{n}} \sum_{r_{1}+r_{2}\leq2} \frac{1}{3^{r_{1}+r_{2}}} (\mathbf{B}_{\phi r_{1}r_{2}}^{(n)i_{n}})^{\mathsf{T}} \mathbf{r}^{(n)} \mathbf{Q}_{r_{1}r_{2}}^{(n)j_{n}}$$

$$(2.18)$$

Величины $\Theta_{r_i r_2}^{(n)i_n}$ находятся в результате решения задачи теплопроводности как линейная комбинация приращения температуры $\Theta_r^{(n)i_n} = T_r^{(n)i_n} - T_0$ в узлах конечного элемента [13]:

$$\Theta_{\eta r_2}^{(n)i_n} = \frac{1}{4} \left[\Theta_1^{(n)i_n} + (1 - 2r_1)\Theta_2^{(n)i_n} + (1 - 2r_1)(1 - 2r_2)\Theta_3^{(n)i_n} + (1 - 2r_2)\Theta_4^{(n)i_n} \right]$$
(2.19)

При решении сенсорной задачи выполнялось условие эквипотенциальности на электродах верхних поверхностей пьезоэлектрических накладок, то есть предполагалось, что

$$\varphi_1^{[N]} = \varphi_2^{[N]} = \varphi_3^{[N]} = \varphi_4^{[N]}$$
(2.20)

Для учета условия (2.20) применяется метод штрафных функций, в соответствии с которым к диэлектрической матрице жесткости добавляется штрафная матрица с достаточно большим положительным множителем λ :

$$\mathbf{K}_{\varphi\varphi}^* = \mathbf{K}_{\varphi\varphi} + \lambda \hat{\mathbf{K}} \tag{2.21}$$

Чтобы сохранить симметрию диэлектрической матрицы жесткости (2.21), ненулевые компоненты штрафной матрицы выбираются следующим образом:

$$\hat{\mathbf{K}}_{N_{\rm S},N_{\rm S}} = 2, \quad \hat{\mathbf{K}}_{N_{\rm S},2N_{\rm S}} = -1, \quad \hat{\mathbf{K}}_{N_{\rm S},4N_{\rm S}} = -1$$

$$\hat{\mathbf{K}}_{2N_{\rm S},N_{\rm S}} = -1, \quad \hat{\mathbf{K}}_{2N_{\rm S},2N_{\rm S}} = 2, \quad \hat{\mathbf{K}}_{2N_{\rm S},3N_{\rm S}} = -1$$

$$\hat{\mathbf{K}}_{3N_{\rm S},2N_{\rm S}} = -1, \quad \hat{\mathbf{K}}_{3N_{\rm S},3N_{\rm S}} = 1, \quad \hat{\mathbf{K}}_{4N_{\rm S},N_{\rm S}} = -1, \quad \hat{\mathbf{K}}_{4N_{\rm S},4N_{\rm S}} = 1$$

$$(2.22)$$

При получении глобальной матрицы жесткости учитываем, что, как уже отмечалось, число слоев в конечных элементах с накладками превышает число слоев в элементах без накладок и, следовательно, размерность матриц \mathbf{K}_{uu} , $\mathbf{K}_{u\phi}$, $\mathbf{K}_{\phi\phi}$ зависит от типа конечного элемента. После сборки элементов в ансамбль приходим к глобальной системе линейных алгебраических уравнений, которую для решения задачи управления формой удобно записать в виде

$$\mathbf{KX} = \mathbf{F} \tag{2.23}$$

где K — глобальная матрица жесткости; X — глобальный вектор узловых перемещений и электрических потенциалов; F — глобальный вектор, механических, электрических и температурных нагрузок:

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{uu}^{G} & \mathbf{K}_{u\phi}^{G} \\ \mathbf{K}_{\omega u}^{G} & \mathbf{K}_{\omega 0}^{G} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{q}^{G} \\ \mathbf{\Phi}^{G} \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} \mathbf{F}_{u}^{G} + \mathbf{F}_{u\theta}^{G} \\ \mathbf{F}_{o}^{G} + \mathbf{F}_{o\theta}^{G} \end{bmatrix}$$
(2.24)

3. Решение задачи управления формой слоистой пластины. Обозначим через L число пьезоэлектрических накладок на верхней лицевой поверхности пластины. Пусть $\mathbf{V} = \begin{bmatrix} V_1 \ V_2 \ \dots \ V_L \end{bmatrix}^\mathsf{T}$ — вектор электрических потенциалов, подаваемых на электроды накладок, тогда вектор внешних нагрузок можно записать в виде

$$\mathbf{F} = \mathbf{F}_0 + \mathbf{PV} \tag{3.1}$$

где ${\bf P}$ — матрица порядка $4N_{\rm S}M\times L$, где M — число узлов конечно-элементной сетки. Элементы матрицы p_{kl} равны 1, если k-я компонента вектора правых частей отвечает наличию потенциала на электроде l-й накладки, и нулю в противном случае; ${\bf F}_0$ — вектор правых частей, зависящий от поверхностных нагрузок.

Поставим задачу о приведении деформированной в результате теплового нагружения срединной поверхности пластины к ее недеформированному состоянию. В этом случае целевая функция задачи оптимизации имеет вид

$$J(\mathbf{V}) = \frac{1}{2} (\mathbf{R} \mathbf{X})^{\mathrm{T}} (\mathbf{R} \mathbf{X}) \to \min$$
 (3.2)

где ${\bf R}$ — матрица порядка $M \times 4N_SM$, элементы которой r_{mk} равны 1, если k-я компонента вектора неизвестных соответствует поперечному перемещению срединной поверхности в m-м узле сетки, и равны нулю в противном случае.

Для решения задачи оптимизации (3.2) применим прямой метод. Из соотношений (2.23), (3.1) следует, что $\mathbf{X} = \mathbf{K}^{-1}(\mathbf{F}_0 + \mathbf{PV})$, поэтому

$$\frac{\partial \mathbf{X}}{\partial \mathbf{V}} = \mathbf{K}^{-1} \mathbf{P} \tag{3.3}$$

Необходимое условие минимума функции (3.2) с учетом (3.3) и симметрии матрицы \mathbf{K} можно записать в виде

$$\mathbf{AV} = \mathbf{B} \tag{3.4}$$

где ${\bf A}-$ симметричная матрица порядка $L\times L;$ ${\bf B}-$ вектор правых частей, определяемые по формулам

$$\mathbf{A} = \mathbf{P}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{R}^{\mathsf{T}} \mathbf{R} \mathbf{K}^{-1} \mathbf{P}, \quad \mathbf{B} = -(\mathbf{R} \mathbf{K}^{-1} \mathbf{P})^{\mathsf{T}} \mathbf{R} \mathbf{K}^{-1} \mathbf{F}_{0}$$
 (3.5)

Система линейных уравнений (3.4), (3.5) решается методом исключения Гаусса. В результате находим электрические потенциалы, которые необходимо подать на электроды накладок, чтобы привести пластину к недеформируемому состоянию.

Рис. 1. Консольная пластина с пьезоэлектрической накладкой

4. Численные результаты. 4.1. Консольная пластина с пьезоэлектрической накладкой. Для оценки эффективности разработанного конечного элемента GeXSaS4 рассмотрим задачу о нагреве двухслойной пластины длиной a = 100 мм и шириной b = 20 мм, изображенной на рис. 1. Пластина состоит из двух слоев углепластика толщиной $h_1 = h_2 = 1$ мм с направлением волокон [0/90]. На расстоянии 20 мм от заделки на верхней поверхности пластины расположена квадратная накладка из пьезокерамики PZT-5A толщиной $h_3 = 0.5$ мм. Материальные константы пьезокерамики PZT-5A соответствуют работе [20]:

$$C_{1111} = C_{2222} = 99.201 \, \Gamma \Pi a, \quad C_{3333} = 86.856 \, \Gamma \Pi a, \quad C_{1122} = 54.016 \, \Gamma \Pi a$$
 $C_{1133} = C_{2233} = 50.778 \, \Gamma \Pi a, \quad C_{1313} = C_{2323} = 21.1 \, \Gamma \Pi a, \quad C_{1212} = 22.593 \, \Gamma \Pi a$ $\gamma_{11} = \gamma_{22} = 3.314 \times 10^5 \, \Pi a/K, \quad \gamma_{33} = 3.26 \times 10^5 \, \Pi a/K$ $k_{11} = k_{22} = k_{33} = 1.8 \, \mathrm{Bt/mK}$ $e_{311} = e_{322} = -7.209 \, \mathrm{K}\pi/\mathrm{m}^2, \quad e_{333} = 15.118 \, \mathrm{K}\pi/\mathrm{m}^2, \quad e_{113} = e_{223} = 12.322 \, \mathrm{K}\pi/\mathrm{m}^2$ $\epsilon_{11} = \epsilon_{22} = 1.53 \times 10^{-8} \, \Phi/\mathrm{m}, \quad \epsilon_{33} = 1.5 \times 10^{-8} \, \Phi/\mathrm{m}, \quad r_3 = 7.0 \times 10^{-4} \, \mathrm{K}\pi/\mathrm{m}^2\mathrm{K}$

Материальные константы углепластика [21] следующие:

$$\begin{split} E_{\rm L} &= 172.5 \; \Gamma \Pi {\rm a}, \quad E_{\rm T} = 6.9 \; \Gamma \Pi {\rm a}, \quad G_{\rm LT} = 3.45 \; \Gamma \Pi {\rm a}, \\ G_{\rm TT} &= 1.38 \; \Gamma \Pi {\rm a}, \quad \nu_{\rm LT} = \nu_{\rm TT} = 0.25 \end{split}$$

$$\alpha_{\rm L} &= 0.57 \times 10^{-6} \; 1/{\rm K}, \quad \alpha_{\rm T} = 35.6 \times 10^{-6} \; 1/{\rm K} \\ k_{\rm L} &= 36.42 \; {\rm BT/mK}, \quad k_{\rm T} = 0.96 \; {\rm BT/mK} \end{split}$$

$$\varepsilon_{\rm L} = 3.095 \times 10^{-11} \; \Phi/{\rm m}, \quad \varepsilon_{\rm T} = 2.653 \times 10^{-11} \; \Phi/{\rm m}$$

где $E_{\rm L}$, $E_{\rm T}$, $G_{\rm LT}$, $G_{\rm TT}$ — модули упругости; $\nu_{\rm LT}$, $\nu_{\rm TT}$ — коэффициенты Теплового расширения; $k_{\rm L}$, $k_{\rm T}$ — коэффициенты теплопроводности; индексы L и T обозначают направления вдоль и поперек волокон.

Сетка	20 × 2	60 × 6	120 × 12	120 × 12		240 × 24
I_n	7	7	7	3	5	7
$u_3(A,0)$, MKM	-17.40	-17.47	-17.52	-17.45 -17.55		-17.56
$\Theta(B,-h_1)$, K	2.771	2.884	2.893	2.855	2.893	2.895
$\varphi(B, h_2 + h_3), B$	2.257	2.265	2.267	2.267	2.267 2.267	

Таблица 1. Исследование сходимости в пластине с пьезоэлектрической накладкой

Нижняя лицевая поверхность пластины Ω^- подвергается действию теплового потока $\hat{q}_3^-=10^3$ Вт/м². Верхняя поверхность пластины Ω^+ , а также наружная поверхность и торцы накладки поддерживаются при заданной температуре $\Theta^{[N]}=T^{[N]}-T_0=0$ К, где N=2 или 3. Предполагается, что электрод на поверхности раздела накладки и пластины заземлен, а на электроде наружной поверхности накладки выполняется условие эквипотенциальности.

Учитывая условия симметрии, моделировалась половина пластины ($b/2 \le x_2 \le b$) с использованием регулярных конечно-элементных сеток. В табл. 1 приведено исследование сходимости разработанного конечного элемента GeXSaS4 в зависимости от выбранных сеток и от числа отсчетных поверхностей I_n в слоях пластины и накладке. Как видим, редкая сетка 20×2 обеспечивает достаточно надежные результаты по сравнению с эталонными, полученными с использованием сетки 240×24 .

Проведено также сравнение с результатами расчета на основе 20-узлового конечного элемента SOLID226 [22]. Как известно, трехмерные пьезоэлектрические элементы программного комплекса ANSYS [22], в частности SOLID226, не предоставляют пользователям возможности учета пироэлектрического эффекта, поэтому сравнение возможно, только при условии $r_3=0$. На рис. 2 показано распределение температуры, электрического потенциала, электрического смещения и напряжений по толщине пакета в точке B(3b/2,3b/4) для двух значений пироэлектрической константы, вычисленные с помощью элемента GeXSaS4 на сетке 240×24 при выборе семи отсчетных поверхностей в слоях пластины и накладке ($I_1=I_2=I_3=7$) и конечного элемента SOLID226 путем использования трехмерных сеток $240\times24\times6$ в слоях пластины и накладке. Как видим, учет пироэлектрической константы практически не влияет на результаты расчета напряжений, однако ее влияние на потенциал и смещение электрического поля в пьезоэлектрической накладке существенно.

4.2. Консольная пластина с четырьмя пьезоэлектрическими накладками. Далее рассмотрим двухслойную пластину, изображенную на рис. 3. Длина и ширина прямоугольной пластины, толщины слоев h_1 , h_2 и накладок h_3 , направления армирования в композитных слоях и использованные в пластине и накладках материалы описаны в разделе 4.1. Расстояния между квадратными накладками и расстояния от накладок до краев пластины приняты равными c=4 мм. Параметры теплового нагружения пластины соответствуют разделу 4.1. Электроды на поверхностях раздела пьезоэлектрических накладок и пластины заземлены. С учетом симметрии моделировалась половина пластины $(b/2 \le x_2 \le b)$ с использованием регулярных конечно-элементных сеток.

Рассматриваются две задачи: тепловое нагружение пластины, при котором на электродах верхних накладок выполняется условие эквипотенциальности (задача Т) и

Рис. 2. Зависимости температуры Θ (K), электрического потенциала φ (B), электрического смещения D_3 (Кл/м²) и напряжений σ_{22} , σ_{23} , σ_{33} (МПа) в точке B от поперечной координаты в пластине с пьезоэлектрической накладкой: конечный элемент GeXSaS4 при $r_3 = 7.0 \times 10^{-4}$ Кл/м²К (—) и $r_3 = 0$ (——); элемент SOLID226 [22] (\circ)

Рис. 3. Консольная пластина с четырьмя накладками

управление деформированной формой пластины путем решения задачи оптимизации (3.2) при наличии температурных воздействий (задача О). В табл. 2, 3 представлено исследование сходимости конечного элемента GeXSaS4 в температурной задаче (T) и задаче оптимизации (О) в зависимости от конечно-элементных сеток и от числа отсчетных поверхностей I_n . Здесь ϕ_l — электрический потенциал на верхнем электроде l-й накладки, полученный в результате решения системы уравнений (2.23), (2.24); V_l электрический потенциал на электроде І-й накладки, найденный в результате решения системы уравнений (3.4), (3.5), где l = 1, 2, 3, 4. Полученные результаты свидетельствуют об эффективности разработанного конечного элемента GeXSaS4 с точки зрения использования редких сеток.

На рис. 4 приведены зависимости поперечного перемещения и нормального напряжения от продольной координаты. Отметим, что в результате решения задачи оптимизации срединную поверхность удается привести к форме близкой к исходной недеформированной, но при этом величина напряжений в пластине возрастает. На рис. 5 показаны распределения напряжений в точках A(c + b/2, 3b/4), B(2c + 3b/2, 3b/4) по толщине пакета путем решения обеих поставленных задач. Как видим, конечный элемент GeXSaS4 с высокой точностью воспроизводит поперечные компоненты тензора напряжений вблизи раздела слоев и на лицевых поверхностях пластины с учетом нулевых граничных условий. Результаты, показанные на рис. 4, 5, получены с помощью

Таблица 2. Исследование сходимости в пластине с четырьмя накладками (задача Т)							
Сетка	25 × 2	75 × 6	$150 \times 12 \qquad 300 \times 24$		300 × 24	300 × 24	
I_n	7	7	7 3		5	7	
$u_3(C,0)$, MKM	-12.58	-12.82	-12.93	-12.67	-12.97	-13.00	
$\Theta(B,-h_1)$, K	2.293	2.308	2.311	2.312	2.312	2.312	
ϕ_1 , B	2.522	2.662	2.674	2.632	2.673	2.675	
ϕ_2 , B	2.821	2.917	2.921	2.881	2.920	2.921	
ϕ_3 , B	2.824	2.918	2.922	2.882	2.921	2.922	
ϕ_4 , $ B$	2.827	2.919	2.922	2.882	2.920	2.921	

						<u> </u>
Сетка	25 × 2	75 × 6	150 × 12	300 × 24	300 × 24	300 × 24
I_n	7	7	7	3 5		7
$u_3(C,0)$, MKM	-0.3185	-0.2456	-0.2266	-0.2095	-0.2167	-0.2171
V_1 , B	-19.55	-20.59	-21.17	-20.35	-21.29	-21.41
V_2 , B	-13.94	-13.38	-13.11	-12.44	-13.06	-13.15
V_3 , B	-21.87	-21.10	-21.02	-20.05	-20.95	-21.07
V_4 , B	-5.468	-7.201	-7.820	-7.784	-8.186	-8.242

Таблица 3. Исследование сходимости в пластине с четырьмя накладками (задача О)

сетки 300×24 при выборе семи отсчетных поверхностей в слоях пластины и накладках, то есть $I_1 = I_2 = I_3 = 7$.

4.3. Защемленная прямоугольная пластина с пьезоэлектрическими накладками на верхней лицевой поверхности. В заключение рассмотрим защемленную по контуру прямоугольную пластину длиной $2a=240\,$ мм и шириной $2b=160\,$ мм (см. рис. 6). На верхней поверхности пластины расположены 24 пьезоэлектрические накладки, имеющие форму квадрата со стороной $c=20\,$ мм. Расстояния от краев пластины до накладок $d=10\,$ мм. Толщины слоев, направления армирования и свойства материалов совпадают с приведенными в разделе 4.1.

Пусть нижняя поверхность пластины подвергается действию температуры $\Theta^- = 5 \text{ K}$. Верхняя лицевая поверхность пластины, а также наружные поверхности и торцы накладок поддерживаются при заданной температуре $\Theta^+ = 0 \text{ K}$. Электроды на границах раздела углепластика и накладок заземлены, а на верхних электродах накладок выпол-

Рис. 4. Зависимости поперечного перемещения $u_3(x_1, 3b/4, 0)$ (мм) и нормального напряжения $\sigma_{11}(x_1, 3b/4, h_2/2)$ (МПа) от продольной координаты в консольной пластине с четырьмя накладками: задача Т (—) и задача О (——)

Рис. 5. Зависимости напряжений σ_{11} , σ_{13} , σ_{23} , σ_{33} (МПа) в точках A, B от поперечной координаты в консольной пластине с четырьмя накладками: задача T (—) и задача O (—)

няется условие эквипотенциальности. Аналогично разделу 4.2 рассматриваем две задачи: температурное нагружение пластины (задача Т) и управление формой пластины в случае температурных воздействий (задача О). В силу симметрии рассматривается 1/4 часть пластины, в которой накладки пронумерованы. Приведенные ниже резуль-

Таблица 4. Результаты расчета поперечного перемещения в точке С и электрических потенциалов на электродах шести накладок в защемленной прямоугольной пластине

Задача Т	$u_3(C,0)$, MKM	ф ₁ , В	ф ₂ , В	ф3, В	ϕ_4 , B	φ ₅ , Β	φ ₆ , Β
	-63.56	5.271	7.240	7.699	7.520	6.452	7.849
Задача О	$u_3(C,0)$, MKM	V_1 , B	V_2 , B	<i>V</i> ₃ , B	V_4 , B	<i>V</i> ₅ , B	<i>V</i> ₆ , B
	-2.741	231.1	477.0	535.8	118.7	398.3	528.7

Рис. 6. Защемленная прямоугольная пластина с пьезоэлектрическими накладками

Рис. 7. Деформированная срединная поверхность защемленной прямоугольной пластины: задача Т (слева) и задача О (справа)

таты получены с использованием сетки 120×80 при выборе пяти отсчетных поверхностей в слоях и накладках ($I_1 = I_2 = I_3 = 5$).

В табл. 4 приведены электрические потенциалы на верхних электродах m-й накладки ϕ_m и V_m , где $m=1,\,2,\ldots,6$, полученные в результате решения задач Т и О, соответственно, а также поперечное перемещение в центре пластины. На рис. 7 изображены деформированные срединные поверхности пластины, полученные после решения задач Т и О. Как видим, в результате решения задачи оптимизации срединную поверхность удается привести к форме достаточно близкой к исходной. Однако величины напряжений существенно возрастают, на что указывают приведенные на рис. 8 зависимости нормальных напряжений от продольной координаты, выведенные для верхнего слоя пластины. На рис. 9 показаны распределения поперечных касательных напряжений в точках $A(5a/6,\,b/4)$, $B(5a/6,\,3b/4)$ по толщине пакета. Отметим, что граничные условия на лицевых поверхностях пластины и накладок и условия

Рис. 8. Зависимости напряжений $\sigma_{11}(x_1, b/4, h_2/2)$, $\sigma_{22}(x_1, b/4, h_2/2)$ (\square) и $\sigma_{11}(x_1, 3b/4, h_2/2)$, $\sigma_{22}(x_1, 3b/4, h_2/2)$ (\circ) от продольной координаты в защемленной прямоугольной пластине: задача Т (\square) и задача О (-)

Рис. 9. Зависимости напряжений σ_{13} , σ_{23} (МПа) в точках A, B от поперечной координаты в защемленной прямоугольной пластине: задача T (—) и задача O (—)

непрерывности на поверхностях раздела слоев и накладок выполняются с высокой точностью, что свидетельствует об эффективности конечного элемента GeXSaS4.

Заключение. В работе построен четырехузловой гибридный конечный элемент на основе метода отсчетных поверхностей, расположенных в узловых точках полиномов Чебышева, который позволяет с высокой точностью рассчитывать в трехмерной постановке связанные температурные, электрические и механические поля в слоистых

композитных пластинах с распределенными на лицевых поверхностях пьезоэлектрическими накладками как в сенсорных, так и актуаторных задачах. На основе разработанного конечного элемента предложен простой и эффективный алгоритм нахождения оптимальных электрических потенциалов на электродах пьезокерамических накладок, который позволяет привести деформированную пластину к исходной недеформированной форме за счет использования обратного пьезоэлектрического эффекта.

Благодарность. Работа выполнена при поддержке Российского научного фонда (проект 18-19-00092). Авторы благодарят А.О. Глебова за помощь с расчетами в ANSYS.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Lee H.J.*, *Saravanos D.A*. A mixed multi-field finite element formulation for thermopiezoelectric composite shells // Int. J. Solids Struct. 2000. V. 37. P. 4949–4967.
- 2. *Varelis D., Saravanos D.A.* Non-linear coupled multi-field mechanics and finite element for active multi-stable thermal piezoelectric shells // Int. J. Numer. Methods Eng. 2008. V. 76. P. 84–107.
- 3. *Gu H.*, *Chattopadhyay A.*, *Li J.*, *Zhou X*. A higher order temperature theory for coupled thermopiezoelectric-mechanical modeling of smart composites // Int. J. Solids Struct. 2000. V. 37. P. 6479–6497.
- 4. *Jian J.P., Li D.X.* Finite element formulations for thermopiezoelastic laminated composite plates // Smart Mater. Struct. 2008. V. 17. 13 p.
- 5. *Rao S.S.*, *Sunar M*. Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures // AIAA J. 1993. V. 31. P. 1280–1286.
- 6. *Tzou H.S.*, *Ye R.* Piezothermoelasticity and precision control of piezoelectric systems: Theory and finite element analysis // J. Vibr. Acoust. 1994. V. 116. P. 489–495.
- 7. Görnandt A., Gabbert U. Finite element analysis of thermopiezoelectric smart structures // Acta Mechanica. 2002. V. 154. P. 129–140.
- 8. Shang F, Kuna M., Schrrzer M. A finite element procedure for three-dimensional analyses of thermopiezoelectric structures in static applications // Tech. Mech. 2002. V. 22. P. 235–243.
- 9. *Lee H.J.*, *Saravanos D.A*. Coupled layerwise analysis of thermopiezoelectric composite beams // AIAA J. 1996. V. 34. P. 1231–1237.
- 10. *Oh I.K., Han J.H., Lee I.* Thermopiezoelastic snapping of piezolaminated plates using layerwise nonlinear finite elements // AIAA J. 2001. V. 39. P. 1188–1197.
- 11. *Brischetto S., Carrera E.* Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers // J. Therm. Stresses. 2012. V. 35. P. 766–804.
- 12. Kulikov G.M., Mamontov A.A., Plotnikova S.V. Coupled thermoelectroelastic stress analysis of piezoelectric shells // Compos. Struct. 2015. V. 124. P. 65–76.
- 13. Kulikov G.M., Plotnikova S.V. Coupled thermoelectroelastic analysis of thick and thin laminated piezoelectric structures by exact geometry solid-shell elements based on the sampling surfaces method // Int. J. Numer. Methods Eng. 2021. V. 122. P. 2446-2477.
- 14. *Плотникова С.В., Куликов Г.М.* Управление формой композитных пластин с распределенными пьезоэлектрическими актуаторами в трехмерной постановке // Механика композ. матер. 2020. Т. 56. № 5. С. 821—840.
- 15. *Ha S.K.*, *Keilers C.*, *Chang F.K.* Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators // AIAA J. 1992. V. 30. № 3. P. 772–780.
- 16. *Irschik H*. A review on static and dynamic shape control of structures by piezoelectric actuation // Eng. Struct. 2002. V. 24. P. 5–11.
- 17. *Kulikov G.M.*, *Plotnikova S.V.* Heat conduction analysis of laminated shells by a sampling surfaces method // Mech. Res. Commun. 2014. V. 55. P. 59–65.

- 18. *Куликов Г.М.*, *Плотникова С.В.* Решение связанной задачи термопьезоэлектричества на основе геометрически точного элемента оболочки // Механика композ. матер. 2010. Т. 46. № 4. С. 513-534.
- Kulikov G.M., Plotnikova S.V., Carrera E. Hybrid-mixed solid-shell element for stress analysis of laminated piezoelectric shells through higher-order theories // Adv. Struct. Mater. 2018. V. 81. P. 45-68.
- Vel S.S., Batra R.C. Generalized plane strain thermopiezoelectric analysis of multilayered plates // J. Therm. Stresses. 2003. V. 26. P. 353–377.
- 21. *Kapuria S., Sengupta S., Dumir P.C.* Three-dimensional solution for a hybrid cylindrical shell under axisymmetric thermoelectric load // Arc. Appl. Mech. 1997. V. 67. P. 320–330.
- 22. ANSYS 2019 R2 Release / Canonsburg, USA: ANSYS Inc, 2019.