УДК 539.3+519.65

ИССЛЕДОВАНИЕ ПОГРЕШНОСТИ БЫСТРОЙ ТРИГОНОМЕТРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ ПРИ РЕШЕНИИ ЗАДАЧИ О НАПРЯЖЕНИЯХ В БРУСЕ

© 2023 г. А. Д. Чернышов^{*a*,*}, В. В. Горяйнов^{*b*,**}, М. И. Попов^{*a*,***}

^аВоронежский государственный университет инженерных технологий, Воронеж, Россия ^bВоронежский государственный технический университет, Воронеж, Россия

> *e-mail: chernyshovad@mail.ru **e-mail: gorvit77@mail.ru ***e-mail: mihail semilov@mail.ru

Поступила в редакцию 27.03.2022 г. После доработки 24.04.2022 г. Принята к публикации 25.04.2022 г.

С помощью быстрой тригонометрической интерполяции решена задача о напряжениях в брусе прямоугольного сечения. Проведено сравнение полученного приближенного аналитического решения с точным, в ходе которого исследована относительная погрешность компонент перемещений, компонент тензора напряжений, невязка уравнений равновесия Ламе и невязка граничных условий. Установлено, что при использовании в быстрых разложениях граничной функции второго порядка и небольшом количестве членов в рядах Фурье (от двух до шести) максимальная относительная погрешность δ_{max} компонент перемещений и компонент тензора напряжений составляет менее одного процента. С увеличением порядка граничной функции и/или количества членов N в рядах Фурье δ_{max} быстро уменьшается. Увеличение порядка граничной функции является более эффективным способом уменьшения погрешности вычислений δ_{max} , чем увеличение количества членов в рядах Фурье. При исследовании интенсивности напряжений б в брусе с различными габаритными размерами прямоугольного сечения, но одинаковой площадью всех сечений выяснилось, что наименьшее значение $\tilde{\sigma}_{max}$ среди всех сечений наблюдается в брусе с квадратным сечением.

Ключевые слова: перемещения, компоненты тензора напряжений, уравнения Ламе, быстрые разложения, быстрая тригонометрическая интерполяция, высокая точность **DOI:** 10.31857/S0572329922100142, **EDN:** KIQKNY

1. Введение. Среди аналитических методов, применяемых для решения задач теории упругости, можно выделить такие как метод угловых суперпозиций [1, 2], метод расширения границ [3], метод возмущений [4–6], лучевой метод [7–9], разложения в ряды [10–14] и по функциям Фадля–Папковича [15, 16], двухшаговый метод последовательного возмущения параметров [17], метод быстрых разложений [18–20]. Последний, из перечисленных методов, имеет следующие положительные качества, которыми в совокупности не обладает ни один из известных методов:

1. Доказана сходимость и получена оценка погрешности метода [21].

2. Показана быстрая сходимость используемых рядов Фурье, что позволяет ограничиваться в расчетах небольшим количеством членов ряда и, как следствие, проводить расчет на ЭВМ с высокой точностью при большой экономии времени [22]. 3. Метод быстрых разложений применим для решения как линейных [18–20], так и нелинейных задач [23–25], а также задач для криволинейных областей [24, 25], с подвижными границами [25] и фазовыми превращениями [25].

Классическую тригонометрическую интерполяцию чаще всего используют для улучшения качества обработки изображений [26] и восстановления периодических дискретных сигналов конечной длительности [27]. Для решения инженерных задач интегро-дифференциального типа применение классической тригонометрической интерполяции на конечном отрезке проблематично из-за невозможности ее дифференцирования в общем случае и большой ошибки между интерполяционными точками. Устранение подобных недостатков можно осуществить при использовании быстрой тригонометрической интерполяции. Быстрая тригонометрическая интерполяция использовалась при исследовании напряжений в клине [20], расчете траектории космических кораблей [23], решении нелинейного уравнения теплопроводности для криволинейной области с условиями Дирихле [24] и решении двухфазной задачи Стефана с внутренним источником [25]. В данной работе будет исследована погрешность быстрой тригонометрической интерполяции в зависимости от порядка граничной функции и количества членов в рядах Фурье на примере решения задачи о напряжениях в брусе.

2. Постановка задачи. В условиях плоской деформации проекции вектора перемещений материальных точек бруса зависят только от координат *x*, *y*:

$$U = U(x, y), \quad V = V(x, y), \quad W = 0$$
 (2.1)

Компоненты тензора напряжения будут иметь вид:

$$\sigma_{xx} = (\lambda + 2\mu)\frac{\partial U}{\partial x} + \lambda \frac{\partial V}{\partial y}, \quad \sigma_{yy} = (\lambda + 2\mu)\frac{\partial V}{\partial y} + \lambda \frac{\partial U}{\partial x}$$

$$\sigma_{xy} = \mu \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right), \quad \sigma_{zz} = \lambda \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y}\right), \quad \sigma_{xz} = \sigma_{yz} = 0$$
(2.2)

Запишем уравнения равновесия Ламе для перемещений с учетом массовых сил X(x, y), Y(x, y)

$$\left(\lambda + 2\mu\right)\frac{\partial^2 U}{\partial x^2} + \left(\lambda + \mu\right)\frac{\partial^2 V}{\partial x \partial y} + \mu\frac{\partial^2 U}{\partial y^2} + X\left(x, y\right) = 0$$
(2.3)

$$\left(\lambda + 2\mu\right)\frac{\partial^2 V}{\partial y^2} + \left(\lambda + \mu\right)\frac{\partial^2 U}{\partial x \partial y} + \mu\frac{\partial^2 V}{\partial x^2} + Y\left(x, y\right) = 0$$
(2.4)

К уравнениям (2.3), (2.4) необходимо добавить граничные условия. Будем считать, что упругий брус имеет прямоугольное сечение $\Omega = (0 \le x \le a, 0 \le y \le b)$. На сторонах бруса зададим условия Дирихле в общем виде

$$U|_{x=0} = f_1(y), \quad U|_{x=a} = f_3(y), \quad V|_{x=0} = \varphi_1(y), \quad V|_{x=a} = \varphi_3(y)$$
(2.5)

$$U|_{y=0} = f_2(x), \quad U|_{y=b} = f_4(x), \quad V|_{y=0} = \varphi_2(x), \quad V|_{y=b} = \varphi_4(x)$$
(2.6)

Функции, входящие в граничные условия (2.5) и (2.6), следует подбирать с учетом условий их согласования

$$f_{1}(0) = f_{2}(0), \quad f_{3}(0) = f_{2}(a), \quad f_{3}(b) = f_{4}(a), \quad f_{4}(0) = f_{1}(b)$$

$$\varphi_{1}(0) = \varphi_{2}(0), \quad \varphi_{3}(0) = \varphi_{2}(a), \quad \varphi_{3}(b) = \varphi_{4}(a), \quad \varphi_{4}(0) = \varphi_{1}(b)$$
(2.7)

выполнение которых позволит найти непрерывное решение задачи (2.3)-(2.6).

В качестве примера функции из (2.5), (2.6) зададим следующим образом

$$f_1(y) = 0, \quad f_2(x) = 0, \quad f_3(y) = K \sin 1.2\pi a y, \quad f_4(x) = K \sin 1.2\pi b x$$

$$\varphi_1(y) = 0, \quad \varphi_2(x) = 0, \quad \varphi_3(x) = -K \sin a \sin y, \quad \varphi_4(x) = -K \sin x \sin b$$
(2.8)

Массовые силы в (2.3), (2.4) запишем выражениями

$$X(x, y) = (1.2\pi y)^{2} (\lambda + 2\mu) K \sin 1.2\pi xy + + (\lambda + \mu) K \cos x \cos y + (1.2\pi x)^{2} \mu K \sin 1.2\pi xy Y(x, y) = -(\lambda + 2\mu) K \sin x \sin y - \mu K \sin x \sin y + + (\lambda + \mu) ((1.2\pi)^{2} xyK \sin 1.2\pi xy - 1.2\pi K \cos 1.2\pi xy)$$
(2.9)

Зависимости (8) и (9) подобраны так, что задача (3)-(6) имеет точное решение

$$U(x, y) = K \sin 1.2\pi xy, \quad V(x, y) = -K \sin x \sin y \tag{2.10}$$

где К – константа, регулирующая величину перемещений.

Точное решение (2.10) позволит провести исследование погрешности решения краевой задачи (2.3)–(2.6) путем сравнения с приближенным аналитическим решением, полученным методом быстрых разложений. При сравнении будут вычислены: относительная погрешность компонент перемещений (2.1), компонент тензора напряжений (2.2), невязка уравнений равновесия Ламе (2.3), (2.4) и невязка граничных условий (2.5), (2.6).

3. Метод и построение решения. Для решения используем приближенный метод быстрых разложений [21], в соответствии с которым представим U = U(x, y) и V = V(x, y) в виде суммы граничных функции $M_{2p}^{U}(x; y)$, $M_{2p}^{V}(x; y)$ и ряда Фурье по синусам

$$U = M_{2p}^{U}(x; y) + \sum_{m=1}^{N_{1}} u_{m}(x) \sin m\pi \frac{y}{b}, \quad V = M_{2p}^{V}(x; y) + \sum_{m=1}^{N_{1}} v_{m}(x) \sin m\pi \frac{y}{b}$$

$$x \in [0; a], \quad y \in [0; b]$$
(3.1)

Здесь N_1 – число учитываемых членов в рядах Фурье. Граничные функции $M_{2p}^U(x; y)$ и $M_{2p}^V(x; y)$ порядка 2*p* определяются равенствами

$$M_{2p}^{U}(x;y) = \sum_{i=1}^{2p+2} A_{i}(x) P_{i}(y), \quad M_{2p}^{V}(x;y) = \sum_{i=1}^{2p+2} B_{i}(x) P_{i}(y)$$
(3.2)

где $A_i(x)$ и $B_i(x)$, i = 1 - 2p + 2 – коэффициенты граничных функций, $P_i(y)$, i = 1 - 2p + 2 – быстрые полиномы [21].

Для исследования влияния порядка граничной функции на точность решения краевой задачи (2.3)–(2.6) в быстрых разложениях (3.1) будем использовать граничные функции второго, четвертого и шестого порядков, которые получаются из (3.2) при p = 1, p = 2 и p = 3 соответственно, т.е.

$$M_{2}^{U}(x;y) = \sum_{i=1}^{4} A_{i}(x) P_{i}(y), \quad M_{2}^{V}(x;y) = \sum_{i=1}^{4} B_{i}(x) P_{i}(y)$$
$$M_{4}^{U}(x;y) = M_{2}^{U}(x;y) + \sum_{i=5}^{6} A_{i}(x) P_{i}(y), \quad M_{4}^{V}(x;y) = M_{2}^{V}(x;y) + \sum_{i=5}^{6} B_{i}(x) P_{i}(y) \quad (3.3)$$
$$M_{6}^{U}(x;y) = M_{4}^{U}(x;y) + \sum_{i=7}^{8} A_{i}(x) P_{i}(y), \quad M_{6}^{V}(x;y) = M_{4}^{V}(x;y) + \sum_{i=7}^{8} B_{i}(x) P_{i}(y)$$

Быстрые полиномы $P_i(y)$ и коэффициенты $A_i(x)$, $B_i(x)$ определяются равенствами

$$P_{1}(y) = \left(1 - \frac{y}{b}\right), \quad P_{2}(y) = \frac{y}{b}, \quad P_{3}(y) = \left(\frac{y^{2}}{2} - \frac{y^{3}}{6b} - \frac{by}{3}\right), \quad P_{4}(x) = \left(\frac{y^{3}}{6b} - \frac{by}{6}\right)$$

$$P_{5}(y) = \left(\frac{y^{4}}{24} - \frac{y^{5}}{120b} - \frac{by^{3}}{18} + \frac{b^{3}y}{45}\right), \quad P_{6}(y) = \left(\frac{y^{5}}{120b} - \frac{by^{3}}{36} + \frac{7b^{3}y}{360}\right)$$

$$P_{7}(y) = \left(\frac{y^{6}}{720} - \frac{y^{7}}{5040b} - \frac{by^{5}}{360} + \frac{b^{3}y^{3}}{270} - \frac{2b^{5}y}{945}\right)$$

$$P_{8}(y) = \left(\frac{y^{7}}{5040b} - \frac{by^{5}}{720} + \frac{7b^{3}y^{3}}{2160} - \frac{31b^{5}y}{15120}\right)$$

$$A_{1}(x) = U|_{y=0}, \quad A_{2}(x) = U|_{y=a}, \quad A_{3}(x) = \frac{\partial^{2}U}{\partial y^{2}}|_{y=0}, \quad A_{4}(x) = \frac{\partial^{2}U}{\partial y^{2}}|_{y=a}$$

$$A_{5}(x) = \frac{\partial^{4}U}{\partial y^{4}}|_{y=0}, \quad B_{2}(x) = V|_{y=a}, \quad B_{3}(x) = \frac{\partial^{2}V}{\partial y^{2}}|_{y=0}, \quad B_{4}(x) = \frac{\partial^{2}V}{\partial y^{2}}|_{y=a}$$

$$B_{5}(x) = \frac{\partial^{4}V}{\partial y^{4}}|_{y=0}, \quad B_{6}(x) = \frac{\partial^{4}V}{\partial y^{4}}|_{y=a}, \quad B_{7}(x) = \frac{\partial^{6}V}{\partial y^{6}}|_{y=0}, \quad B_{8}(x) = \frac{\partial^{6}V}{\partial y^{6}}|_{y=a}$$

Для возможности выполнения выражений (3.4) необходимо потребовать, чтобы U = U(x, y) и V = V(x, y) удовлетворяли условию гладкости $(U, V) \in C^{(6)}(\Omega)$.

Неизвестными в (3.1) являются функции, зависящие только от одной переменной х

 $A_{1}(x) - A_{2p+2}(x), \quad B_{1}(x) - B_{2p+2}(x), \quad p = 1...3, u_{m}(x), v_{m}(x), \quad m = 1...N_{1}$ (3.5)

Функции из (3.5) представим быстрыми разложениями по переменной *х*. Причем в повторных разложениях будут использованы граничные функции тех же порядков, что и в быстрых разложениях (3.1) по переменной *у*:

$$A_{i}(x) = M_{2p}^{A(i)}(x) + \sum_{n=1}^{N_{2}} a_{n+2p+2}^{(i)} \sin n\pi \frac{x}{a}, \quad B_{i}(x) = M_{2p}^{B(i)}(x) + \sum_{n=1}^{N_{2}} b_{n+2p+2}^{(i)} \sin n\pi \frac{x}{a}$$
$$u_{m}(x) = M_{2p}^{u(m)}(x) + \sum_{n=1}^{N_{2}} u_{n+2p+2}^{(m)} \sin n\pi \frac{x}{a}, \quad v_{m}(x) = M_{2p}^{v(m)}(x) + \sum_{n=1}^{N_{2}} v_{n+2p+2}^{(m)} \sin n\pi \frac{x}{a} \quad (3.6)$$
$$i = 1...2p + 2, \quad p = 1...3, \quad m = 1...N_{1}$$

В (3.6) обозначено через N_2 – число учитываемых членов в рядах Фурье. Граничные функции $M_{2p}^{A(i)}(x), M_{2p}^{B(i)}(x), M_{2p}^{u(m)}(x), M_{2p}^{v(m)}(x)$ определяем равенствами

$$M_{2p}^{A(i)}(x) = \sum_{k=1}^{2p+2} a_k^{(i)} P_k(x), \qquad M_{2p}^{B(i)}(x) = \sum_{k=1}^{2p+2} b_k^{(i)} P_k(x)$$

$$M_{2p}^{u(m)}(x) = \sum_{k=1}^{2p+2} u_k^{(m)} P_k(x), \qquad M_{2p}^{v(m)}(x) = \sum_{k=1}^{2p+2} v_k^{(m)} P_k(x)$$
(3.7)

где $a_k^{(i)}$, $b_k^{(i)}$, $u_k^{(m)}$ и $v_k^{(m)}$, i = 1...2p + 2, p = 1...3, $m = 1 - N_1 -$ коэффициенты граничных функций вторичных разложений; $P_k(x)$, k = 1 - 2p + 2 – быстрые полиномы [21].

При p = 3 выражения для коэффициентов граничных функций $a_k^{(i)}, b_k^{(i)}, u_k^{(m)}, v_k^{(m)}$ и быстрых полиномов $P_k(x)$ имеют вид

$$P_{1}(x) = \left(1 - \frac{x}{a}\right), \quad P_{2}(x) = \frac{x}{a}, \quad P_{3}(x) = \left(\frac{x^{2}}{2} - \frac{x^{3}}{6a} - \frac{ax}{3}\right), \quad P_{4}(x) = \left(\frac{x^{3}}{6a} - \frac{ax}{6}\right)$$

$$P_{5}(x) = \left(\frac{x^{4}}{24} - \frac{x^{5}}{120a} - \frac{ax^{3}}{18} + \frac{a^{3}x}{45}\right), \quad P_{6}(x) = \left(\frac{x^{5}}{120a} - \frac{ax^{3}}{36} + \frac{7a^{3}x}{360}\right)$$

$$P_{7}(x) = \left(\frac{x^{6}}{720} - \frac{x^{7}}{5040a} - \frac{ax^{5}}{360} + \frac{a^{3}x^{3}}{270} - \frac{2a^{5}x}{945}\right)$$

$$P_{8}(x) = \left(\frac{x^{7}}{5040a} - \frac{ax^{5}}{720} + \frac{7a^{3}x^{3}}{2160} - \frac{31a^{5}x}{15120}\right)$$
(3.8)

$$a_{1}^{(i)} = A_{i}|_{x=0}, \quad a_{2}^{(i)} = A_{i}|_{x=a}, \quad a_{3}^{(i)} = A_{i}^{(*)}|_{x=0}, \quad a_{4}^{(i)} = A_{i}^{(*)}|_{x=a}, \quad a_{5}^{(i)} = A_{i}^{(4)}|_{x=0}$$

$$a_{6}^{(i)} = A_{i}^{(4)}|_{x=a}, \quad a_{7}^{(i)} = A_{i}^{(6)}|_{x=0}, \quad a_{8}^{(i)} = A_{i}^{(6)}|_{x=a}, \quad i = 1..8$$
(3.9)

$$b_{1}^{(i)} = B_{i}|_{x=0}, \quad b_{2}^{(i)} = B_{i}|_{x=a}, \quad b_{3}^{(i)} = B_{i}^{"}|_{x=0}, \quad b_{4}^{(i)} = B_{i}^{"}|_{x=a}, \quad b_{5}^{(i)} = B_{i}^{(4)}|_{x=0}$$

$$b_{6}^{(i)} = B_{i}^{(4)}|_{x=a}, \quad b_{7}^{(i)} = B_{i}^{(6)}|_{x=0}, \quad b_{8}^{(i)} = B_{i}^{(6)}|_{x=a}, \quad i = 1..8$$
(3.10)

$$u_{1}^{(m)} = u_{m}\big|_{x=0}, \quad u_{2}^{(m)} = u_{m}\big|_{x=a}, \quad u_{3}^{(m)} = u_{m}^{"}\big|_{x=0}, \quad u_{4}^{(m)} = u_{m}^{"}\big|_{x=a}, \quad u_{5}^{(m)} = u_{m}^{(4)}\big|_{x=0}$$

$$u_{6}^{(m)} = u_{m}^{(4)}\big|_{x=a}, \quad u_{7}^{(m)} = u_{m}^{(6)}\big|_{x=0}, \quad u_{8}^{(m)} = u_{m}^{(6)}\big|_{x=a}, \quad m = 1...N_{1}$$
(3.11)

$$v_{1}^{(m)} = v_{m}\big|_{x=0}, \quad v_{2}^{(m)} = v_{m}\big|_{x=a}, \quad v_{3}^{(m)} = v_{m}^{*}\big|_{x=0}, \quad v_{4}^{(m)} = v_{m}^{*}\big|_{x=a}, \quad v_{5}^{(m)} = v_{m}^{(4)}\big|_{x=0}$$

$$v_{6}^{(m)} = v_{m}^{(4)}\big|_{x=a}, \quad v_{7}^{(m)} = v_{m}^{(6)}\big|_{x=0}, \quad v_{8}^{(m)} = v_{m}^{(6)}\big|_{x=a}, \quad m = 1...N_{1}$$

$$(3.12)$$

Если p = 2, то для описания граничных функций (3.7) из (3.8) следует взять первые шесть полиномов, а в (3.9)–(3.12) учесть первые шесть коэффициентов. При p = 1 граничные функции (3.7) будут содержать первые четыре полинома из (3.8) и первые четыре коэффициента из (3.9)–(3.12).

Таким образом, краевая задача (2.3)–(2.6) сведена к определению $2(2p + 2 + N_1)(2p + 2 + N_2)$ неизвестных коэффициентов

$$a_{k}^{(i)}, b_{k}^{(i)}, u_{k}^{(m)}, v_{k}^{(m)}, \quad i = 1...2p + 2, \quad k = 1...2p + 2, \quad p = 1...3, \quad m = 1...N_{1}$$

$$a_{n+2p+2}^{(i)}, \quad b_{n+2p+2}^{(i)}, \quad u_{n+2p+2}^{(m)}, \quad v_{n+2p+2}^{(m)}, \quad n = 1...N_{2}$$

$$(3.13)$$

Значения восьми коэффициентов

$$a_1^{(1)}, b_1^{(1)}, a_2^{(1)}, b_2^{(1)}, a_1^{(2)}, b_1^{(2)}, a_2^{(2)}, b_2^{(2)}$$
 (3.14)

входящих в (3.13), находятся при помощи значений компонент перемещений U = U(x, y) и V = V(x, y) в угловых точках прямоугольной области (см. формулы (3.4), (3.9), (3.10)). С учетом условия согласований (2.7), коэффициенты (3.14) определяются равенствами

$$a_1^{(1)} = b_1^{(1)} = a_2^{(1)} = b_2^{(1)} = a_1^{(2)} = b_1^{(2)} = 0, \quad a_2^{(2)} = K \sin 1.2\pi ab, \quad b_2^{(2)} = -K \sin a \sin b$$

Для нахождения остальных $2(2p + 2 + N_1)(2p + 2 + N_2) - 8$ коэффициентов из (3.13) используем быструю тригонометрическую интерполяцию, апробированную в работах [20, 22–25]. Для этого подставим U = U(x, y) и V = V(x, y) из (3.1) в дифферен-

циальные уравнения (2.3), (2.4) и граничные условия (2.5), (2.6). Полученные таким образом выражения в статье не приводим из-за их громоздкости.

Из граничных условий (2.5), (2.6) линейные алгебраические уравнения получим следующим образом. Промежуток [0, b] равномерно разобьем точками $y = y_s = sb/(N_1 + 2p + 1)$, $s = 0, 1, ..., N_1 + 2p + 1$ на $N_1 + 2p + 1$ отрезков и запишем уравнения, полученные из граничных условий (2.5) при подстановке U = U(x, y) и V = V(x, y) из (3.1), в каждой внутренней расчетной точке $y = y_s$, $s = 1, ..., N_1 + 2p$. Будем иметь $4(N_1 + 2p)$ линейных алгебраических уравнений. Аналогично, промежуток [0, *a*] равномерно разобьем точками $x = x_s = sa/(N_2 + 2p + 1)$, $s = 0, 1, ..., N_2 + 2p + 1$ на $N_2 + 2p + 1$ отрезков и запишем уравнения, полученные из граничных условий (2.6) при подстановке U = U(x, y) и V = V(x, y) из (3.1), в каждой внутренней расчетной точке $x = x_s$, $s = 1, ..., N_2 + 2p$. Тем самым, будем иметь еще $4(N_2 + 2p)$ линейных алгебраических уравнений.

Из дифференциальных уравнений (2.3), (2.4) линейные алгебраические уравнения запишем следующим образом. На область прямоугольника $x \in [0; a]$, $y \in [0; b]$ равномерно нанесем сетку в $N_2 + 2p + 2$ точках $x = x_s = sa/(N_2 + 2p + 1)$, $s = 0, 1, ..., N_2 + 2p + 1$ и в $N_1 + 2p + 2$ точках $y = y_s = sb/(N_1 + 2p + 1)$, $s = 0, 1, ..., N_1 + 2p + 1$. Для составления системы линейных алгебраических уравнений используются только внутренние точки, образующие сетку из $(N_1 + 2p)(N_2 + 2p)$ внутренних точек (x_s, y_s) . Затем, уравнения (2.3), (2.4) при подстановке в них U = U(x, y) и V = V(x, y) из (3.1) запишем в каждой расчетной точке (x_s, y_s) . В итоге, получаем $2(N_1 + 2p)(N_2 + 2p)$ линейных алгебраических уравнений. В результате приходим к замкнутой системе $2(N_1 + 2p)(N_2 + 2p) + 4(N_1 + 2p) + 4(N_2 + 2p)$ линейных алгебраических уравнений относительно оставшихся $(2(2p + 2 + N_1)(2p + 2 + N_2) - 8)$ неизвестных из (3.13). Данная система уравнений решена в среде Марlе. После чего, найденные неизвестные (3.13) подставлены в быстрые разложения (3.1). Тем самым, построено приближенное аналитическое решение краевой задачи (2.3)–(2.6).

4. Полученные результаты и их анализ. В вычислительных экспериментах будем использовать граничные функции (3.3) второго, четвертого и шестого порядков. Количество членов в рядах Фурье первого (3.1) и второго (3.6) быстрых разложений примем одинаковыми, т.е. $N_1 = N_2 = N$, и выполним расчеты при N = 2...6. В качестве материала бруса выберем тяжелый бетон В30 с характеристиками [28] $E = 32.5 \times 10^9$ Па, v = 0.2. Тогда коэффициенты Ламе будут равны $\lambda = 9.03 \times 10^9$ Па, $\mu = 1.35 \times 10^{10}$ Па.

Величину параметра K и размеры сечения примем равными $K = 10^{-6}$, a = 1 м, b = 1 м.

Приближенное аналитическое решение (3.1) сравнивается с точным (2.10). Относительная погрешность перемещений (2.1), тензора напряжений (2.2), невязка уравнений равновесия Ламе (2.3), (2.4) и граничных условий (2.5), (2.6) вычислялась по формуле

$$\delta = |\Delta| / f_{\text{max}} \cdot 100\%$$

где
 $\Delta-$ абсолютная погрешность, $f_{\rm max}-$ максимальное значение исследуе
мого объекта.

Покажем на рис. 1–4 относительную погрешность расчетов, выполненных при использовании граничной функции четвертого порядка M_4 (p = 2) для N = 4. Из рисунков видно, что максимальная относительная погрешность δ_{\max} у компонент тензора напряжений σ_{xx} , σ_{zz} , σ_{xy} и невязки дифференциального уравнения (2.3) достигается в точке (1; 1), а у компонент перемещений U и V, компоненты тензора напряжений σ_{yy} и невязки дифференциального уравнения (2.4) – в ее окрестности. Поэтому в табл. 1–3 приведены значения δ_{\max} всех исследуемых объектов в этих точках для гра-

Рис. 1. Относительная погрешность δ компонент перемещений: (a) *U*, (b) *V*.

ничных функций второго M_2 (p = 1), четвертого M_4 (p = 2) и шестого M_6 (p = 3) порядков при N = 2...6.

Рис. 2. Относительная погрешность δ компонент тензора напряжений: (a) σ_{xx} , (b) σ_{yy} , (c) σ_{zz} , (d) σ_{xy} .

Рис. 3. Невязка δ уравнений равновесия Ламе: (a) (3), (b) (4).

Из табл. 1–3 можно увидеть, что точнее всего определяются компоненты перемещений U и V (искомая функция). По сравнению с компонентами перемещений точность нахождения компонент тензора напряжений σ_{xx} , σ_{yy} , σ_{zz} , σ_{xy} (первые производные искомой функции) падает на порядок, а точность вычисления невязки уравнений равновесия Ламе (2.3), (2.4) (вторые производные искомой функции) падает на два порядка. Подобная тенденция наблюдается при выборе любого порядка граничной функции и для любого N, а также согласуется с многочисленными вычислительными экспериментами авторов, например [15].

Табл. 1 показывает, что даже при использовании граничной функции второго порядка M_2 и небольшом количестве членов в рядах Фурье N = 3 достигается точность вычислений компонент перемещений и компонент тензора напряжений ($\delta_{max} < 1\%$) выше, чем точность входных данных из справочников. С увеличением порядка граничной функции и/или количества членов в рядах Фурье (см. табл. 2 и 3) эта точность быстро возрастает. Так, если в быстрых разложениях (3.1) и (3.6) использовать граничную функцию второго порядка M_2 , то увеличение N количества членов в рядах Фурье на четыре (с двух до шести) ведет к увеличению точности вычислений компонент перемещений, компонент тензора напряжений и невязки дифференциальных уравнений (2.3), (2.4) примерно на один порядок (см. табл. 1). Такое же увеличение точности вычислений можно достичь, используя граничную функцию четвертого порядка M_4 (см. табл. 2) и увеличивая N в рядах Фурье на три (с двух до пяти). Если же применить граничную функцию шестого порядка M_6 (см. табл. 3), то повышение точности вычислений на порядок можно достичь увеличением N в рядах Фурье на два (с двух до четырех).

Из табл. 1–3 видно, что граничные условия $U|_{x=0}$, $U|_{y=0}$, $V|_{x=0}$, $V_{y=0}$ выполняются точно при выборе любого порядка граничной функции и при любом количестве учитываемых членов в рядах Фурье. Точность выполнения граничных условий $U|_{x=a}$, $U|_{y=b}$, $V|_{x=a}$, $V|_{y=b}$, а также дифференциальных уравнений (2.3), (2.4), и точность вычисления компонент перемещений и компонент тензора напряжений зависят от выбора порядка граничной функции и количества членов в рядах Фурье. Если увеличить порядок граничной функции (со второго до четвертого или с четвертого до шестого), а *N* во всех расчетах взять одинаковым, то относительная погрешность δ_{max} у компо-

Исследуемый объект		N					
		2	3	4	5	6	
Компоненты	U	0.32	0.13	7.28×10^{-2}	4.21×10^{-2}	2.70×10^{-2}	
перемещений	V	0.12	5.80×10^{-2}	3.00×10^{-2}	1.67×10^{-2}	9.80×10^{-3}	
Компоненты тензора на-	σ_{xx}	1.59	0.73	0.41	0.25	0.17	
пряжений	σ_{yy}	1.16	0.53	0.30	0.18	0.12	
	σ_{zz}	1.42	0.65	0.36	0.22	0.15	
	σ_{xy}	1.46	0.67	0.37	0.23	0.15	
Невязка ДУ	(3)	11.12	6.36	4.25	3.08	2.35	
	(4)	12.66	4.87	2.19	1.15	0.86	
Невязка ГУ	$U\Big _{x=a}, U\Big _{y=b}$	0.27	0.11	4.70×10^{-2}	2.52×10^{-2}	1.47×10^{-2}	
	$V\Big _{x=a}, V\Big _{y=b}$	1.11×10^{-3}	4.51×10^{-4}	2.18×10^{-4}	1.18×10^{-4}	7.10×10^{-5}	
	$U\big _{x=0}, U\big _{y=0},$	0	0	0	0	0	
	$V\big _{x=0}, V\big _{y=0}$						

Таблица 1. Относительная погрешность δ_{\max} , % при использовании M_2

нент перемещений и компонент тензора напряжений уменьшится на два порядка. Также на два порядка уменьшится невязка граничных условий $U|_{x=a}$, $U|_{y=b}$. Для граничных условий $V|_{x=a}$, $V|_{y=b}$ невязка уменьшается на три порядка.

Анализируя поведение максимальной невязки дифференциальных уравнений (2.3), (2.4) можно сделать следующий вывод: увеличение порядка граничной функции со второго до четвертого ведет к уменьшению невязки на один порядок, а при увеличе-

Рис. 4. Невязка граничных условий: (a) $U|_{x=a}$, $U|_{y=b}$, (b) $V|_{x=a}$, $V|_{y=b}$.

Исследуемый объект		N					
		2	3	4	5	6	
Компоненты	U	1.50×10^{-2}	3.50×10^{-3}	1.49×10^{-3}	7.25×10^{-4}	3.80×10^{-4}	
перемещении	V	4.80×10^{-3}	1.52×10^{-3}	5.90×10^{-4}	2.70×10^{-4}	1.35×10^{-4}	
Компоненты тензора	σ_{xx}	6.15×10^{-2}	2.10×10^{-2}	9.10×10^{-3}	4.79×10^{-3}	2.82×10^{-3}	
напряжений	σ_{yy}	5.32×10^{-2}	1.81×10^{-2}	7.50×10^{-3}	3.61×10^{-3}	2.06×10^{-3}	
	σ_{zz}	5.46×10^{-2}	1.87×10^{-2}	8.10×10^{-3}	4.31×10^{-3}	2.59×10^{-3}	
	σ_{xy}	5.61×10^{-2}	1.92×10^{-2}	8.29×10^{-3}	4.33×10^{-3}	2.60×10^{-3}	
Невязка ДУ	(3)	0.64	0.26	0.13	7.53×10^{-2}	4.67×10^{-2}	
	(4)	0.38	0.13	6.52×10^{-2}	3.51×10^{-2}	2.10×10^{-2}	
Невязка ГУ	$U\big _{x=a}, U\big _{y=b}$	6.81×10^{-3}	2.00×10^{-3}	7.50×10^{-4}	3.32×10^{-4}	1.65×10^{-4}	
	$V\big _{x=a}, V\big _{y=b}$	1.92×10^{-6}	6.10×10^{-7}	2.40×10^{-7}	1.10×10^{-7}	5.50×10^{-8}	
	$U\big _{x=0}, U\big _{y=0},$	0	0	0	0	0	
	$V\big _{x=0}, V\big _{y=0}$						

Таблица 2. Относительная погрешность δ_{\max} , % при использовании M_4

нии порядка граничной функции с четвертого до шестого на возрастание точности еще влияет число N. Так, при N = 2 уменьшение невязки будет составлять один порядок, при N = 6 уже два порядка.

Исследуемый объект		N					
		2	3	4	5	6	
Компоненты	U	2.22×10^{-4}	6.00×10^{-5}	2.09×10^{-5}	8.52×10^{-6}	3.90×10^{-6}	
перемещении	V	1.05×10^{-4}	2.59×10^{-5}	8.45×10^{-6}	3.27×10^{-6}	1.37×10^{-6}	
Компоненты тензора	σ_{xx}	1.44×10^{-3}	4.14×10^{-4}	1.60×10^{-4}	7.50×10^{-5}	3.77×10^{-5}	
напряжений	σ_{yy}	1.55×10^{-3}	4.18×10^{-4}	1.42×10^{-4}	5.65×10^{-5}	2.78×10^{-5}	
	σ_{zz}	1.28×10^{-3}	3.67×10^{-4}	1.46×10^{-4}	6.70×10^{-5}	3.50×10^{-5}	
	σ_{xy}	1.31×10^{-3}	3.37×10^{-4}	1.45×10^{-4}	6.68×10^{-5}	3.50×10^{-5}	
Невязка ДУ	(3)	2.00×10^{-2}	6.34×10^{-3}	2.57×10^{-3}	1.21×10^{-3}	6.32×10^{-4}	
	(4)	1.29×10^{-2}	3.82×10^{-3}	1.50×10^{-3}	6.49×10^{-4}	3.37×10^{-4}	
Невязка ГУ	$U\big _{x=a}, U\big _{y=b}$	1.14×10^{-4}	2.58×10^{-5}	8.80×10^{-6}	3.40×10^{-6}	1.44×10^{-6}	
	$V\big _{x=a}, V\big _{y=b}$	2.24×10^{-9}	5.59×10^{-10}	1.95×10^{-10}	7.60×10^{-11}	3.35×10^{-11}	
	$U\big _{x=0}, U\big _{y=0},$	0	0	0	0	0	
	$V\big _{x=0}, V\big _{y=0}$						

Таблица 3. Относительная погрешность δ_{\max} , % при использовании M_6

Граничная	N						
функция	2	3	4	5	6		
$M_2 (p = 1)$	64	90	120	154	192		
$M_4 \ (p=2)$	120	154	192	234	280		
$M_{6} (p = 3)$	192	234	280	330	384		

Таблица 4. Количество линейных алгебраических уравнений

Таблица 5. Время расчета

Границиая функция	N						
траничная функция	2	3	4	5	6		
$M_2 (p = 1)$	6.98 c	10.42 c	14.42 c	19.37 c	25.40 c		
$M_4 (p=2)$	12.20 c	16.85 c	24.28 c	37.75 c	49.73 c		
$M_{6} (p = 3)$	23.68 c	34.07 c	47.65 c	67.57 c	96.62 c		

С помощью табл. 4 и 5 можно ответить на вопрос, что более эффективно для уменьшения погрешности вычислений — увеличение порядка граничной функции или увеличение количества членов в ряде Фурье. В табл. 4 представлено количество линейных алгебраических уравнений в системах, которые необходимо решить для расчета данных, указанных в табл. 1–3. В табл. 5 записано время расчета программы в секундах на персональном компьютере с процессором Intel Core i3-4160 и ОЗУ 8 ГБ. Из табл. 4 видно, что одинаковая трудоемкость вычислений получается при выборе следующих комбинаций параметров *p* и *N*:

1) p = 1 и N = 4 или p = 2 и N = 2-120 линейных алгебраических уравнений;

2) p = 1 и N = 5 или p = 2 и N = 3-154 линейных алгебраических уравнения;

3) p = 1 и N = 6 или p = 2 и N = 4 или p = 3 и N = 2-192 линейных алгебраических уравнения;

4) p = 2 и N = 5 или p = 3 и N = 3-234 линейных алгебраических уравнения;

5) p = 2 и N = 6 или p = 3 и N = 4 - 280 линейных алгебраических уравнений.

Учитывая данные табл. 1-3 можно сделать вывод, что в каждом из пяти указанных вариантов комбинаций параметров *p* и *N* точность расчетов выше (значение δ_{max} в среднем падает на порядок) в случаях, соответствующих более высокому значению параметра *p*, т.е. более высокому порядку граничной функции. Принимая во внимание данные табл. 5, отметим, что повышение порядка граничной функции приводит и к сокращению времени расчета. Для пяти комбинаций параметров *p* и *N*, соответствующих одинаковой трудоемкости расчетов, уменьшение времени расчета при большем значении параметра *p* составляет от 2.5% (третья комбинация) до 15% (первая комбинация).

При изучении свойств поля напряжений в брусе наибольший интерес представляет исследование влияния геометрических размеров его сечения на величину интенсивности напряжений б [29]

$$\tilde{\sigma} = \sqrt{\left(\left(\sigma_x - \sigma_y\right)^2 + \left(\sigma_y - \sigma_z\right)^2 + \left(\sigma_z - \sigma_x\right)^2 + 6\left(\sigma_{xy}\right)^2\right)/2}$$

и расположение точки с наибольшим ее значением $\tilde{\sigma}$.

Размеры сечения	a = b = 1	a = 2, b = 1/2	a = 3, b = 1/3	a = 4, b = 1/4	a = 5, b = 1/5
Значение б _{тах}	1.31 × 10 ⁵ Па	1.79 × 10 ⁵ Па	2.65 × 10 ⁵ Па	3.54 × 10 ⁵ Па	4.43 × 10 ⁵ Па
Координаты точки	(0.86; 1)	(2; 0)	(3; 0)	(4; 0)	(5; 0)

Таблица 6. Значения $\tilde{\sigma}_{max}$ и ее координаты

Рис. 5. Интенсивность напряжений $\tilde{\sigma}$: (a) a = b = 1, (b) a = 2, b = 1/2.

Размеры сечения в расчетах подобраны таким образом, чтобы площадь сечения бруса оставалась постоянной. Вычислительные эксперименты показали, что качественный вид профилей интенсивности напряжений б квадратного и прямоугольного сечений бруса будут различны. Виды подобных профилей для случаев a = b = 1 и a = 2, b = 1/2 изображены на рис. 5, из которого видно, что точка с максимальной интенсивностью напряжений $\tilde{\sigma}_{max}$ для квадратного сечения расположена на стороне y = 1, а для прямоугольного – находится в угловой точке (2; 0). Значения $\tilde{\sigma}_{max}$ для различных значений a и b, и координаты точки, в которой достигается $\tilde{\sigma}_{max}$ записаны в табл. 6. Анализируя данные этой таблицы, можно сделать вывод, что для прямоугольного сечения наибольшая интенсивность напряжений $\tilde{\sigma}_{max}$ всегда расположена в крайней точке длинной жестко защемленной стороны при x = a. Также из табл. 6 видно, что напряжения в брусе тем выше, чем больше превосходство длины одной стороны над длиной другой стороны прямоугольного сечения. Наименьшая интенсивность напряжений среди всех сечений наблюдается в брусе с квадратным сечением.

5. Заключение. В статье показана эффективность быстрой тригонометрической интерполяции при решении задач теории упругости на примере задачи о напряжениях в брусе прямоугольного сечения. При использовании в быстрых разложениях граничной функции второго порядка и небольшом количестве членов в рядах Фурье (от двух до шести) максимальная относительная погрешность δ_{max} компонент перемещений и компонент тензора напряжений составляет менее 1%, что является приемлемой погрешностью для большинства технических расчетов. С увеличением порядка граничной функции и/или количества членов N в рядах Фурье погрешность δ_{max} быстро уменьшается. Увеличение порядка граничной функции является более эффективным способом уменьшения погрешности δ_{max} по сравнению с увеличением количества членов в рядах Фурье. При исследовании интенсивности напряжений $\tilde{\sigma}$ в брусе с различными габаритными размерами прямоугольного сечения, но одинаковой площадью всех сечений выяснилось, что наименьшее значение $\tilde{\sigma}_{max}$ среди всех сечений наблюдается в брусе с квадратным сечением. В этом случае точка с $\tilde{\sigma}_{max}$ расположена на стороне y = b не далеко от угловой точки (a; b). Для прямоугольного сечения точка с максимальной интенсивностью напряжений $\tilde{\sigma}_{max}$ будет расположена на длинной стороне в точке (a; 0). При этом, чем больше превосходство длины одной стороны прямоугольного сечения над длиной его другой стороны, тем выше $\tilde{\sigma}_{max}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Савичев И.С., Чернышов А.Д.* Применение метода угловых суперпозиций для решения контактной задачи о сжатии упругого цилиндра // Изв. РАН. МТТ. 2009. № 3. С. 151–162.
- 2. *Чернышов А.Д.* Метод угловых суперпозиций для краевых задач. LAP LAMBERT Academic Publishing, 2012. 350 с.
- 3. *Чернышов А.Д.* Решение задачи о кручении упругого стержня угольного сечения методом расширения границ // ПМТФ. 2009. Т. 50. № 6 (298). С. 193–200.
- 4. Гоцев Д.В., Ковалев А.В., Спорыхин А.Н. Локальная неустойчивость пластин с запрессованными кольцевыми включениями при упругопластическом поведении материалов // ПМТФ. 2001. Т. 42. № 3 (247). С. 146–151.
- 5. *Минаева Н.В.* О применении метода возмущений в механике деформируемых тел // Изв. РАН. МТТ. 2008. № 1. С. 37–39.
- 6. Шашкин А.И., Минаева Н.В., Гриценко А.В. Квазистатическое деформирование упругого стержня при продольном изгибе // Изв. высш. уч. зав. Машиностр. 2008. № 12. С. 21–25.
- 7. Вервейко Н.Д., Егоров М.В. Математическое моделирование динамического деформирования упруговязкопластических оболочек конечной длины лучевым методом // Вестн. Самарск. гос. тех. ун-та. Сер.: Физ.-мат. науки. 2018. Т. 22. № 2. С. 325–343. https://doi.org/10.14498/vsgtu1610
- 8. *Севастьянов Г.М., Штука В.И., Буренин А.А.* Лучевой метод в приближенном решении задачи об ударном нагружении несжимаемого цилиндрического слоя // Вестн. Чувашск. гос. пед. ун-та им. И.Я. Яковлева. Сер.: Mex. пред. сост. 2015. № 4 (26). С. 50–62.
- 9. *Буренин А.А., Рагозина В.Е.* К построению приближенных решений краевых задач ударного деформирования // Изв. РАН. МТТ. 2008. № 2. С. 106–113.
- 10. Вестяк А.В., Земсков А.В. Модель нестационарных упруго-диффузионных колебаний шарнирно опертой балки Тимошенко // Изв. РАН. МТТ. 2020. № 5. С. 107–119. https://doi.org/10.31857/S0572329920030174
- Гандилян Д.В., Устинов К.Б. Влияние поверхностных эффектов в задачах теории упругости для областей, ограниченных неконцентрическими окружностями // Изв. РАН. МТТ. 2020. № 5. С. 95–106. https://doi.org/10.31857/S0572329920050062
- 12. Тарлаковский Д.В., Федотенков Г.В. Пространственное нестационарное движение упругой сферической оболочки // Изв. РАН. МТТ. 2015. № 2. С. 118–128.
- 13. *Буренин А.А., Ковтанюк Л.В., Мурашкин Е.В.* Об остаточных напряжениях в окрестности цилиндрического дефекта сплошности вязкоупругопластического материала // ПМТФ. 2006. Т. 47. № 2 (276). С. 110–119.
- 14. *Timoshenko S.P., Goodier J.N.* Theory of elasticity. 3rd ed. McGraw-Hill Inc., 1970. 567 р. = Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука, 1979. 560 с.
- 15. *Меньшова И.В.* Разложения по функциям Фадля-Папковича. Основные формулы // Вестн. Чувашск. гос. пед. ун-та им. И.Я. Яковлева. Сер.: Мех. пред. сост. 2012. № 4 (14). С. 133–139.
- 16. Себряков Г.Г., Коваленко М.Д., Меньшова И.В., Шуляковская Т.Д. Разложения Лагранжа по функциям Фадля—Папковича в краевой задаче теории упругости для полуполосы // Доклады академии наук. 2015. Т. 460. № 5. С. 540. https://doi.org/10.7868/S0869565215050126

- Петров В.В. Двухшаговый метод последовательного возмущения параметров и его применение к решению нелинейных задач механики твердого деформируемого тела // Проблемы прочности элементов конструкций под действием нагрузок и рабочих сред. Саратов: Сарат. гос. техн. ун-т, 2001. С. 6–12.
- Горяйнов В.В., Попов М.И., Чернышов А.Д. Решение задачи о напряжениях в остром клиновидном режущем инструменте методом быстрых разложений и проблема согласования граничных условий // Изв. РАН. МТТ. 2019. № 5. С. 113–130. https://doi.org/10.1134/S0572329919050088
- 19. Чернышов А.Д., Горяйнов В.В., Кузнецов С.Ф., Никифорова О.Ю. Применение быстрых разложений для построения точных решений задачи о прогибе прямоугольной мембраны под действием переменной нагрузки // Вестн. Томск. гос. ун-та. Мат. мех. 2021. № 70. С. 127– 142.

https://doi.org/10.17223/19988621/70/11

- Chernyshov A.D., Goryainov V.V., Danshin A.A. Analysis of the stress field in a wedge using the fast expansions with pointwise determined coefficients // IOP Conf. Ser.: J. Phys: Conf. Ser. 2018.
 V. 973. P. 012002. https://doi.org/10.1088/174265.
- 21. *Чернышов А.Д.* Метод быстрых разложений для решения нелинейных дифференциальных уравнений // Ж. выч. мат. физ. Т. 54. № 1. 2014. С. 13–24. https://doi.org/10.7868/S0044466914010062
- 22. Чернышов А.Д., Горяйнов В.В., Лешонков О.В., Соболева Е.А., Никифорова О.Ю. Сравнение скорости сходимости быстрых разложений с разложениями в классический ряд Фурье // Вестн. Воронеж. гос. ун-та. Сер.: Сист. анализ инф. технол. 2019. № 1. С. 27–34. https://doi.org/10.17308/sait.2019.1/1273
- 23. Чернышов А.Д., Горяйнов В.В., Чернышов О.А. Применение метода быстрых разложений для расчета траекторий космических кораблей // Изв. вузов. Авиац. техн. 2015. № 2. С. 41–47.
- 24. *Чернышов А.Д*. Решение нелинейного уравнения теплопроводности для криволинейной области с условиями Дирихле методом быстрых разложений // Инж.-физ. ж. 2018. Т. 91. № 2. С. 456–468.
- 25. *Чернышов А.Д.* Решение двухфазной задачи Стефана с внутренним источником и задач теплопроводности методом быстрых разложений // Инж.-физ. ж. 2021. Т. 94. № 1. С. 101–120.
- Briand T. Trigonometric polynomial interpolation of images // Image Processing on Line. 2019.
 V. 9. P. 291– 316. https://doi.org/10.5201/ipol.2019.273
- Поршнев С.В., Кусайкин Д.В. Восстановление периодических дискретных сигналов конечной длительности с помощью тригонометрической интерполяции // Изв. высш. учебн. завед. Приборостр. 2017. Т. 60. № 6. С. 504–512. https://doi.org/10.17586/0021-3454-2017-60-6-504-512
- 28. URL: https://docs.cntd.ru/document/554403082?marker=A840NF (дата обращения: 18.03.2022).
- 29. Писаренко Г.С., Можаровский Н.С. Уравнения и краевые задачи пластичности и ползучести. Киев: Наук. думка, 1981. 496 с.