УДК 539.3

ДИНАМИЧЕСКОЕ ОСЕСИММЕТРИЧНОЕ РАСТЯЖЕНИЕ ТОНКОГО КРУГЛОГО ИДЕАЛЬНО ЖЕСТКОПЛАСТИЧЕСКОГО СЛОЯ

© 2023 г. И. М. Цветков^{а,*}

^а Московский государственный университет им. М.В. Ломоносова, Москва, Россия *e-mail: cvetkoviv@yandex.ru

> Поступила в редакцию 30.08.2022 г. После доработки 11.11.2022 г. Принята к публикации 17.11.2022 г.

Рассматривается напряженно-деформированное состояние, возникающее при динамическом растяжении однородного круглого слоя из несжимаемого идеально жесткопластического материала, подчиняющегося критерию Мизеса–Генки. Верхнее и нижнее основания свободны от напряжений, на боковой границе задана радиальная скорость. Учитывается возможность утолщения либо утоньшения слоя, что моделирует шейкообразование и дальнейшее развитие шейки. Выявлено два характерных режима растяжения — один связан с достаточно большой скоростью удаления боковой границы слоя от центра, второй с ускорением. Во втором случае проведен анализ с использованием метода асимптотического интегрирования, позволяющий приближенно найти параметры напряженно-деформированного состояния.

Ключевые слова: идеальная пластичность, предел текучести, круглый слой, растяжение, шейка, квазистатика, динамика, скорость деформации, напряжение, асимптотические разложения

DOI: 10.31857/S0572329922600682, EDN: QWQFKO

Интерес к динамическим задачам пластического течения возникает в самых разных областях [1, 2] — оптимизация быстрых производственных процессов, поведение грунтов при внезапных приложениях нагрузок, безопасность строений подверженных ударам или авариям. Локализация деформаций, шейкообразование — результат неустойчивости пластического течения и часто является предвестником разрушения конструкции.

В [3, 4] проведен анализ задач о динамическом растяжении идеально жесткопластических стержня и бесконечного листа в осесимметричной и плоской постановках соответственно. На основе метода асимптотического интегрирования, в случае когда ускорение торцов достаточно высоко, получены приближенно параметры напряженно-деформированного состояния, в том числе аппроксимация границы области квадратичным трехчленом.

Настоящая работа посвящена задаче об осесимметричном растяжении идеально жесткопластического слоя. С использованием метода асимптотического интегрирования, показано, что при переходе от квазистатики к динамическому деформированию прослеживается два характерных сценария растяжения. Каждый из них связан с достижением некоторой безразмерной функцией времени определенного порядка малости по отношению к малому геометрическому параметру, характеризующую форму слоя. Одна из этих функций представляет собой обратное число Эйлера, другая зависит от ускорения, с которым боковая поверхность удаляется от центра. При реализа-

ции режима связанного с достижением ускорения своих критических значений, приближенно вычислены параметры напряженно-деформированного состояния, в частности получена аппроксимация формы границы слоя, позволяющая моделировать шейкообразование.

1. Постановка задачи о динамическом растяжении круглого слоя. Рассмотрим деформирование во времени круглого слоя из однородного несжимаемого идеально жесткопластического материала, подчиняющегося критерию пластичности Мизеса—Генки с плотностью ρ и пределом текучести σ_s . Область Ω_t в \mathbb{R}^3 , занятая слоем в момент t, симметрична относительно оси z, имеет неизменный во времени объем $|\Omega|$ и в цилиндрической системе координат, связанной с осью симметрии слоя, имеет вид

$$\Omega_t = \left\{ (r, \theta, z) \mid 0 \le r \le R(t), 0 \le \theta \le 2\pi, -h(t, r) \le z \le h(t, r) \right\}$$
(1.1)

$$|\Omega| = 4\pi \int_{0}^{R(t)} rh(t, r)dr = 2\pi R^{2}(t)h^{*}(t)$$
(1.2)

Средняя высота слоя h^* определяется в (1.2) таким образом, чтобы объем слоя цилиндрической формы радиуса R(t) и высоты $2h^*(t)$ равнялся $|\Omega|$.

Верхнее и нижнее основания слоя $z = \pm h(r, t)$ свободны от напряжений, а на боковой поверхности r = R(t) задана радиальная скорость:

$$r = R(t): v_r = V(t), V(t) > 0$$
(1.3)

Итак, рассматривается растяжение слоя с заданной кинематикой движения его боковой поверхности. Функции R(t) и $h^*(t)$ являются соответственно монотонно возрастающей и монотонно убывающей. Ограничимся рассмотрением поля вектора скорости следующего вида: $v(x,t) = (v_r(r,z,t), 0, v_z(r,z,t))$. Это порождает тензор скоростей деформации v с ненулевыми компонентами, где запятая в индексе обозначает дифференцирование по соответствующей переменной

$$v_{rr} = v_{r,r}, \quad v_{\theta\theta} = \frac{v_r}{r}, \quad v_{zz} = v_{z,z}, \quad v_{rz} = \frac{1}{2}(v_{r,z} + v_{z,r})$$
 (1.4)

В силу несжимаемости $tr_V = 0$.

Представим симметричный тензор напряжений $\underline{\sigma}(\mathbf{x},t)$ как сумму шаровой и девиаторной частей: $\underline{\sigma} = -p\underline{I} + \underline{s}$, где p – давление, \underline{I} – единичный тензор второго ранга, tr $\underline{s} = 0$. Определим интенсивности скоростей деформаций v_u и напряжений σ_u :

$$v_u = \sqrt{\underline{v}:\underline{v}}, \quad \sigma_u = \sqrt{\underline{s}:\underline{s}}$$
 (1.5)

Векторные определяющие соотношения идеально жесткопластической среды

$$v_u \underline{s} = \sigma_u \underline{v} \tag{1.6}$$

тензорно линейны, следовательно ненулевыми у девиатора <u>s</u> будут те же компоненты, что и у тензора <u>y</u>. Выражая $s_{\theta\theta} = -s_{rr} - s_{zz}$, оставим у девиатора независимыми компоненты s_{rr} , s_{rz} , s_{zz} . Тогда определяющее соотношение $\sigma_u = \sigma_s$, являющееся условием пластичности Мизеса–Генки, запишется следующим образом:

$$s_{rr}^2 + s_{zz}^2 + s_{rr}s_{zz} + s_{rz}^2 = \tau_s^2$$
(1.7)

Исключая интенсивности σ_u и v_u , из соотношений (1.6) можно образовать независимые пропорции $s_{rr}v_{zz} = s_{zz}v_{rr}$, $s_{rz}v_{rr} = s_{rr}v_{rz}$, которые с учетом связей (1.4) преобразуются к виду:

$$s_{rr}v_{z,z} = s_{zz}v_{r,r}, \quad s_{rr}(v_{r,z} + v_{z,r}) = 2s_{rz}v_{r,r}$$
 (1.8)

Выпишем условие несжимаемости, а также два уравнения движения в осесимметричном случае:

$$v_{r,r} + \frac{v_r}{r} + v_{z,z} = 0 \tag{1.9}$$

$$-p_{,r} + s_{rr,r} + s_{rz,z} + \frac{1}{r}(2s_{rr} + s_{zz}) = \rho(v_{r,t} + v_r v_{r,r} + v_z v_{r,z})$$
(1.10)

$$-p_{,z} + s_{rz,r} + s_{zz,z} + \frac{s_{rz}}{r} = \rho(v_{z,t} + v_r v_{z,r} + v_z v_{z,z})$$
(1.11)

Нелинейная система шести уравнений (1.7)–(1.11) замкнута относительно шести функций v_r , v_z , p, s_{rr} , s_{rz} , s_{zz} зависящих от r, z и t в области Ω_t с заранее неизвестной частью границы $z = \pm h(r, t)$, которая характеризуется нормалью **n**:

$$n_r = -\frac{\partial h/\partial r}{\sqrt{1 + (\partial h/\partial r)^2}}, \quad n_z = \pm \frac{1}{\sqrt{1 + (\partial h/\partial r)^2}}$$

На этих частях границы выполнены условия равенства нулю двух компонент вектора напряжений:

$$z = \pm h(r,t): (p - s_{rr})\frac{\partial h}{\partial r} \pm s_{rz} = 0, \quad -s_{rz}\frac{\partial h}{\partial r} \pm (-p + s_{zz}) = 0$$
(1.12)

Также, выполняется кинематическое граничное условие на боковой границе слоя (1.3).

Для строгой постановки начально краевой задачи, рассматриваемой при t > 0, необходимо задать функцию $h(r,0) \equiv h_0(r), 0 \le r < r_0$, удовлетворяющую интегральному условию

$$\frac{|\Omega|}{4\pi} = \int_{0}^{r_0} rh_0(r)dr$$

Из симметричности области Ω вытекает, что функции s_{rz} , v_z антисимметричны по z.

2. Квазистатический режим растяжения. Квазистатическая постановка задачи о растяжении идеально жесткопластического слоя отличается от динамической тем, что в правых частях уравнений (1.10), (1.11) стоят нули, т.е. время t становится параметром, входящим в решения неявно через V, h и R. Уравнения (1.10) и (1.11) превращаются в уравнения равновесия.

Аналитическое решение квазистатической задачи несложно получить, если в начальный момент времени слой имел цилиндрическую форму, т.е. $h_0^* = \text{const.}$ Будем обозначать параметры этого решения верхним индексом "qs". Имеем:

$$v_r^{qs} = \frac{Vr}{R}, \quad v_z^{qs} = -2\frac{Vz}{R} \tag{2.1}$$

$$s_{rz}^{qs} = 0, \quad s_{rr}^{qs} = s_{\theta\theta}^{qs} = \frac{\tau_s}{\sqrt{3}}, \quad s_{zz}^{qs} = p^{qs} = -\frac{2\tau_s}{\sqrt{3}}$$
 (2.2)

Напряженное состояние (2.2) однородно и не зависит от заданной скорости V.

Интегрируя задачу Коши

$$\frac{dr}{dt} = v_r^{qs}(r), \quad \frac{dz}{dt} = v_z^{qs}(z); \quad r|_{t=0} = r_0, \quad z|_{t=0} = z_0$$

найдем лагранжев закон движения частиц (при интегрировании полагаем, что V и R постоянны):

$$r^{qs} = r_0 \exp\left(\frac{Vt}{R}\right), \quad z^{qs} = z_0 \exp\left(-2\frac{Vt}{R}\right)$$

Траектории частиц – семейство гипербол $r^2 z = r_0^2 z_0$. Независимость r^{qs} от z_0 и z^{qs} от r_0 свидетельствует о том, что Ω_t представляет собой вытягивающийся со временем цилиндр.

Кинематика (2.1) обеспечивает отсутствие жестких зон в Ω_t , так как согласно (1.4) и (1.5) $v_u^{qs} = \sqrt{6} \frac{V}{R} > 0$ во всех точках слоя.

Исследуем далее вопрос о том, при каких соотношениях безразмерных параметров системы (или на каких временах) выписанное выше квазистатическое приближение является главным и им можно ограничиться в технологических расчетах, а когда инерционные эффекты, вызванные слагаемыми в правых частях уравнений (1.10) и (1.11), начинают играть соизмеримую роль в распределении напряжений и движении точек слоя.

3. Асимптотическое разложение. Обратимся к динамическим уравнениям (1.10), (1.11) и образуем три явно зависящих от времени безразмерных параметра:

$$\alpha(t) = \frac{h^*(t)}{R(t)} \ll 1, \quad \varepsilon_1 = \frac{\rho V^2(t)}{\tau_s}, \quad \varepsilon_2 = \frac{\rho \dot{V}(t)h^*(t)}{\tau_s}$$
(3.1)

Первый из них — малый геометрический параметр, второй — обратное число Эйлера. На разных интервалах процесса растяжения порядок малости α по отношению к ε_1 и ε_2 может меняться. От этого зависит вклад инерционных слагаемых в уравнениях движения.

Представим разложения шести неизвестных функций в виде регулярных асимтотических рядов по целым степеням малого асимптотического параметра α (в [3, 4] аналогичные по структуре разложения использовались при анализе растяжения осесимметричного стержня и бесконечного листа, в [5] разложения использовались в анализе задачи Прандтля):

$$v_{r}(r, z, t) = V(t) \sum_{n=0}^{\infty} \alpha^{n}(t) v_{\xi}^{\{n\}}(\xi, \zeta, \tau)$$

$$v_{z}(r, z, t) = V(t) \sum_{n=0}^{\infty} \alpha^{n}(t) v_{\zeta}^{\{n\}}(\xi, \zeta, \tau)$$

$$s_{(rr;rz;zz)}(r, z, t) = \tau_{s} \sum_{n=0}^{\infty} \alpha^{n}(t) s_{(\xi\xi;\xi\zeta\zeta)}^{\{n\}}(\xi, \zeta, \tau)$$

$$p(r, z, t) = \tau_{s} \sum_{n=0}^{\infty} \alpha^{n}(t) p^{\{n\}}(\xi, \zeta, \tau)$$

$$\xi = \frac{\alpha(t)r}{h^{*}(t)} = \frac{r}{R(t)}, \quad \zeta = \frac{z}{h^{*}(t)}, \quad \tau = \sqrt{\frac{\tau_{s}}{\rho}} \frac{t}{h^{*}(t)}$$
(3.2)
(3.2)
(3.2)
(3.2)

Безразмерные коэффициенты рядов (3.2) (с верхними индексами) зависят от новых безразмерных координат ξ , ζ и безразмерного времени τ . Область слоя Ω_t (1.1) в любой момент времени описывается неравенствами

$$\Omega_{\tau} = \left\{ (\xi, \theta, \zeta) \, \big| \, 0 \le \xi \le 1, \, 0 \le \theta < 2\pi, -\eta(\xi, \tau) \le \zeta \le \eta(\xi, \tau) \right\} \tag{3.4}$$

$$\eta(\xi,\tau) = \frac{h(r,t)}{h^*(t)}, \quad \int_0^1 \xi \eta(\xi,\tau) d\xi = \frac{1}{2}, \quad \frac{\partial h}{\partial r} = \alpha \frac{\partial \eta}{\partial \xi}$$
(3.5)

Отметим что порядок малости по α безразмерных производных $\partial h/\partial r$ и $\partial \eta/\partial \xi$ разный. Так как функция $\tau(t)$ монотонно возрастает, якобиан замены переменных $\partial(\xi, \zeta, \tau)/\partial(r, z, t)$ отличен от нуля, т.е. она невырождена.

Имеет место замена дифференциальных операторов:

$$\frac{\partial}{\partial r} = \frac{1}{R(t)} \frac{\partial}{\partial \xi} = \frac{\alpha(t)}{h^*(t)} \frac{\partial}{\partial \xi}, \quad \frac{\partial}{\partial z} = \frac{1}{h^*(t)} \frac{\partial}{\partial \zeta}$$
(3.6)

$$\frac{\partial}{\partial t} = -\frac{V\xi}{R}\frac{\partial}{\partial\xi} + \frac{2V\zeta}{R}\frac{\partial}{\partial\zeta} + \left(\sqrt{\frac{\tau_s}{\rho}}\frac{1}{h^*} + \frac{2V\tau}{R}\right)\frac{\partial}{\partial\tau}$$
(3.7)

Из определения малого параметра (3.1) и средней высоты слоя (1.2) следуют кинетические соотношения:

$$\dot{\alpha} = -\frac{3\alpha V}{R}, \quad \dot{h}^* = -2\frac{h^* V}{R} \tag{3.8}$$

Подставим ряды (3.2) в пять уравнений (1.7)–(1.11) и граничные условия (1.3), (1.12). С учетом формул (3.5)–(3.8) получим систему, состоящую из уравнений движения (1.10), (1.11)

условия несжимаемости (1.9), которое в силу линейности, может быть записано в виде рекуррентной цепочки (коэффициенты с отрицательными индексами далее всюду считаются равными нулю)

$$\sum_{n=0}^{\infty} \left(v_{\xi,\xi}^{\{n-1\}} + \frac{1}{\xi} v_{\xi}^{\{n-1\}} + v_{\zeta,\zeta}^{\{n\}} \right) \alpha^n = 0 \iff v_{\xi,\xi}^{\{n-1\}} + \frac{1}{\xi} v_{\xi}^{\{n-1\}} + v_{\zeta,\zeta}^{\{n\}} = 0, \quad n \ge 0$$
(3.11)

критерия Мизеса–Генки (1.7)

$$\left(\sum_{n=0}^{\infty} \alpha^{n} s_{\xi\xi}^{\{n\}}\right)^{2} + \left(\sum_{n=0}^{\infty} \alpha^{n} s_{\zeta\zeta}^{\{n\}}\right)^{2} + \left(\sum_{n=0}^{\infty} \alpha^{n} s_{\xi\xi}^{\{n\}}\right) \left(\sum_{n=0}^{\infty} \alpha^{n} s_{\zeta\zeta}^{\{n\}}\right) + \left(\sum_{n=0}^{\infty} \alpha^{n} s_{\xi\zeta}^{\{n\}}\right)^{2} = 1$$
$$\Leftrightarrow \left(s_{\xi\xi}^{\{0\}}\right)^{2} + \left(s_{\zeta\zeta}^{\{0\}}\right)^{2} + s_{\xi\xi}^{\{0\}} s_{\zeta\zeta}^{\{0\}} + \left(s_{\xi\zeta}^{\{0\}}\right)^{2} = 1, \tag{3.12}$$

$$\sum_{j=0}^{n} (s_{\xi\xi}^{\{j\}} s_{\xi\xi}^{\{n-j\}} + s_{\zeta\zeta}^{\{j\}} s_{\zeta\zeta}^{\{n-j\}} + s_{\xi\xi}^{\{j\}} s_{\zeta\zeta}^{\{n-j\}} + s_{\xi\xi}^{\{j\}} s_{\xi\zeta}^{\{n-j\}} + s_{\xi\zeta}^{\{j\}} s_{\xi\zeta}^{\{n-j\}}) = 0, \quad n \ge 1$$

условия соосности девиатора напряжений и тензора скоростей деформаций (1.8)

$$\left(\sum_{n=0}^{\infty} \alpha^{n} s_{\xi\xi}^{\{n\}}\right) \left(\sum_{n=0}^{\infty} \alpha^{n} v_{\zeta,\zeta}^{\{n\}}\right) = \left(\sum_{n=0}^{\infty} \alpha^{n} s_{\zeta\zeta}^{\{n\}}\right) \left(\sum_{n=0}^{\infty} \alpha^{n+1} v_{\xi,\xi}^{\{n\}}\right) \Leftrightarrow \\
\sum_{j=0}^{n} s_{\xi\xi}^{\{j\}} v_{\zeta,\zeta}^{\{n-j\}} = \sum_{j=0}^{n-1} s_{\zeta\zeta}^{\{j\}} v_{\xi,\xi}^{\{n-1-j\}}, \quad n \ge 0 \\
\left(\sum_{n=0}^{\infty} \alpha^{n} s_{\xi\xi}^{\{n\}}\right) \left(\sum_{n=0}^{\infty} \alpha^{n} v_{\xi,\zeta}^{\{n\}} + \sum_{n=0}^{\infty} \alpha^{n+1} v_{\zeta,\xi}^{\{n\}}\right) = 2 \left(\sum_{n=0}^{\infty} \alpha^{n} s_{\xi\zeta}^{\{n\}}\right) \left(\sum_{n=0}^{\infty} \alpha^{n+1} v_{\xi,\xi}^{\{n\}}\right) \Leftrightarrow \\
\sum_{j=0}^{n} s_{\xi\xi}^{\{j\}} v_{\xi,\zeta}^{\{n-j\}} + \sum_{j=0}^{n-1} s_{\xi\xi}^{\{j\}} v_{\zeta,\xi}^{\{n-1-j\}} = 2 \sum_{j=0}^{n-1} s_{\xi\zeta}^{\{j\}} v_{\xi,\xi}^{\{n-1-j\}}, \quad n \ge 0$$
(3.13)

Граничные условия (1.3) имеют вид:

$$\xi = 1: v_{\xi}^{\{0\}} = 1, \quad v_{\xi}^{\{n\}} = 0, \quad n \ge 1$$
(3.14)

Условия того, что верхнее и нижнее основания свободны от напряжений (1.12) следующие:

$$\zeta = \pm \eta(\xi, \tau): \sum_{n=0}^{\infty} \alpha^{n+1} (p^{\{n\}} - s^{\{n\}}_{\xi\xi}) \frac{\partial \eta}{\partial \xi} \pm \sum_{n=0}^{\infty} \alpha^n s^{\{n\}}_{\xi\zeta} = 0$$

$$-\sum_{n=0}^{\infty} \alpha^{n+1} s^{\{n\}}_{\xi\zeta} \frac{\partial \eta}{\partial \xi} \pm \sum_{n=0}^{\infty} \alpha^n (-p^{\{n\}} + s^{\{n\}}_{\zeta\zeta}) = 0$$
(3.15)

Безразмерные параметры $\varepsilon_1(t)$ и $\varepsilon_2(t)$ входят только в уравнения (3.9) и (3.10). На тех или иных временных интервалах порядок их малости по сравнению с $\alpha(t)$ может меняться. От этого зависит учет или неучет слагаемых в правых частях уравнений в процессе приравнивания коэффициентов при одинаковых степенях малого параметра.

4. Метод асимптотического интегрирования. Воспользуемся методом асимптотического интегрирования [3–6] задачи (3.9)–(3.15), заключающемся в последовательном решении замкнутых систем уравнений относительно $v_{\xi}^{\{n\}}$, $v_{\zeta}^{\{n\}}$, $s_{\xi\xi}^{\{n\}}$, $s_{\zeta\zeta}^{\{n\}}$, $p_{\zeta}^{\{n\}}$, где $n \ge 0$, в области Ω_{τ} с заранее неизвестной частью границы $\zeta = \pm \eta(\xi, \tau)$.

Обратимся к уравнению (3.11) при n = 0: $v_{\zeta,\zeta}^{\{0\}} = 0$. Отсюда следует, что $v_{\zeta}^{\{0\}} = v_{\zeta}^{\{0\}}(\xi, \tau)$, а с учетом требования антисимметричности по ζ получим $v_{\zeta}^{\{0\}} = 0$.

Из рекуррентной цепочки (3.11) при n = 1 и из второго условия (3.13) при n = 0 имеем

$$v_{\xi,\xi}^{\{0\}} + \frac{v_{\xi}^{\{0\}}}{\xi} + v_{\zeta,\zeta}^{\{1\}} = 0, \quad s_{\xi\xi}^{\{0\}} v_{\xi,\zeta}^{\{0\}} = 0$$
(4.1)

Перепишем первое уравнение (4.1) следующим образом и запишем следствие второго уравнения

$$\frac{1}{\xi}(\xi v_{\xi}^{\{0\}})_{,\xi} = -v_{\zeta,\zeta}^{\{1\}}, \quad v_{\xi}^{\{0\}} = v_{\xi}^{\{0\}}(\xi,\tau)$$

Таким образом, видно, что $v_{\zeta,\zeta}^{\{1\}}$ является функцией от ξ , τ . Обозначим $v_{\zeta,\zeta}^{\{1\}} = a(\xi, \tau)$, тогда, с учетом нечетности $v_{\zeta}^{\{1\}}$ по ζ , общий вид $v_{\xi}^{\{0\}}$ и $v_{\zeta}^{\{1\}}$ следующий

$$v_{\xi}^{\{0\}} = -\frac{1}{\xi} \left(\int_{0}^{\xi} a(u, \tau) u du - b(\tau) \right), \quad v_{\zeta}^{\{1\}} = a(\xi, \tau) \zeta$$
(4.2)

где $a(\xi, \tau)$ и $b(\tau)$ произвольные функции, удовлетворяющие граничному условию (3.14)

$$-\int_{0}^{1} a(u,\tau)udu + b(\tau) = 1$$

Из физических соображений $\lim_{\xi \to 0} v_{\xi}^{\{0\}} = 0$, откуда необходимо вытекает $b(\tau) \equiv 0$. Потребуем чтобы решение (4.2) совпало с квазистатическим для чего достаточно положить $a(\xi, \tau)$ константой, таким образом

$$v_{\xi}^{\{0\}} = \xi, \quad v_{\zeta}^{\{1\}} = -2\zeta$$
 (4.3)

Линейные зависимости (4.3) имеют место для любых соотношений порядков малости по α параметров $\varepsilon_1(t)$ и $\varepsilon_2(t)$. Рассмотрев первое уравнение в (3.12) и уравнения (3.13) при n = 1, выведем незамкнутую систему уравнений относительно $s_{\xi\xi}^{\{0\}}$, $s_{\xi\zeta}^{\{0\}}$, $s_{\zeta\zeta}^{\{0\}}$, $v_{\xi}^{\{1\}}$:

$$(s_{\xi\xi}^{[0]})^2 + (s_{\zeta\zeta}^{[0]})^2 + s_{\xi\xi}^{\{0\}} s_{\zeta\zeta}^{\{0\}} + (s_{\xi\zeta}^{\{0\}})^2 = 1, \quad -2s_{\xi\xi}^{\{0\}} = s_{\zeta\zeta}^{\{0\}}, \quad s_{\xi\xi}^{\{0\}} v_{\xi,\zeta}^{\{1\}} = 2s_{\xi\zeta}^{\{0\}}$$
(4.4)

Для замыкания системы (4.4) необходимо рассмотреть конкретный режим растяжения. Из (3.9) и (3.10) следует, что на временных интервалах, где одновременно $\varepsilon_1 \alpha^2 = o(1)$ и $\varepsilon_2 = o(1)$, после приравнивания нулю коэффициентов при α^0 в (3.9), с учетом (4.3), придем к следующей системе уравнений:

$$(s_{\xi\xi}^{\{0\}})^2 + (s_{\zeta\zeta}^{\{0\}})^2 + s_{\xi\xi}^{\{0\}}s_{\zeta\zeta}^{\{0\}} + (s_{\xi\zeta}^{\{0\}})^2 = 1, \quad -2s_{\xi\xi}^{\{0\}} = s_{\zeta\zeta}^{\{0\}}, \quad s_{\xi\zeta,\zeta}^{\{0\}} = 0$$

Из последнего уравнения имеем, что $s_{\xi\zeta}^{\{0\}} = s_{\xi\zeta}^{\{0\}}(\xi, \tau)$, а с учетом требования нечетности $s_{\xi\zeta}^{\{0\}}$ по ζ получаем

$$s_{\xi\zeta}^{\{0\}} = 0, \quad s_{\xi\xi}^{\{0\}} = \frac{1}{\sqrt{3}}, \quad s_{\zeta\zeta}^{\{0\}} = \frac{-2}{\sqrt{3}}$$

Таким образом пришли к напряженному состоянию, соответствующему квазистатическому растяжению слоя цилиндрической формы. Также, приравнивая коэффициенты при α^0 , из (3.10) следует, что $-p^{\{0\}}_{,\zeta} + s^{\{0\}}_{\zeta\zeta,\zeta} = 0$.

Итак, динамические эффекты начинают играть роль и вносить вклад в напряженно-деформированное состояние, сопоставимый с квазистатикой, если выполняется хотя бы одно из требований: а) параметр ε_1 становится порядка α^n , $n \ge -2$; б) параметр ε_2 становится порядка α^m , $m \ge 0$.

Остановимся в данной работе на случае, когда $\varepsilon_2 = O(1)$ и $\varepsilon_1 = o(\alpha^{-2})$. Рассмотрев коэффициенты при α^0 в (3.9) и (3.10) и, добавив полученные уравнения к (4.4), имеем замкнутую систему относительно $s_{\xi\xi}^{\{0\}}$, $s_{\xi\zeta}^{\{0\}}$, $s_{\xi\zeta}^{\{0\}}$, $v_{\xi}^{\{1\}}$:

$$s_{\xi\zeta,\zeta}^{\{0\}} = \varepsilon_2 \xi, \quad -p_{,\zeta}^{\{0\}} + s_{\zeta\zeta,\zeta}^{\{0\}} = 0$$
(4.5)

Первое уравнение (4.5) замыкает систему, а третье служит для определения давления $p^{\{0\}}$.

Решение системы (4.5) следующее:

$$s_{\xi\zeta}^{\{0\}} = \varepsilon_2 \xi\zeta, \quad s_{\xi\xi}^{\{0\}} = \frac{1}{\sqrt{3}} \sqrt{1 - \varepsilon_2^2 \xi^2 \zeta^2}, \quad s_{\zeta\zeta}^{\{0\}} = -\frac{2}{\sqrt{3}} \sqrt{1 - \varepsilon_2^2 \xi^2 \zeta^2}$$
$$v_{\xi}^{\{1\}} = -2\sqrt{3} \frac{\sqrt{1 - \varepsilon_2^2 \xi^2 \zeta^2}}{\varepsilon_2 \xi} + f(\xi, \tau)$$
(4.6)

где функция $f(\xi, \tau)$ определяется из последующих по α приближений. Заметим, что если формально устремить $\varepsilon_2 \to 0$, то компоненты девиатора (4.6) будут стремиться к квазистатическому решению.

Вид функции $v_{\xi}^{\{1\}}$ позволяет сделать следующие выводы:

1. Точно однородным граничным условиям на боковой границе слоя $\xi = 1$ удовлетворить не удается.

2. Когда $|\xi| \to 0$, т.е. при стремлении к центру слоя, $|v_{\xi}^{\{l\}}| \to \infty$. Это говорит о потере асимптотичности в смысле Пуанкаре вблизи точки $\xi = 0$ ряда (3.2) для радиальной скорости v_{ξ} .

Из этих выводов следует, что использование асимптотических рядов (3.2) вблизи боковой поверхности $\xi = 1$ слоя, т.е. в зоне краевого эффекта и в центре $\xi = 0$, где происходит перестройка течения, неправомерно. По своей геометрии область неприменимости асимптотического разложения напоминает задачу Прандтля [5].

5. Уравнение для определения формы границы слоя. Обратимся к граничным условиям (3.15) на неизвестной границе слоя $\zeta = \pm \eta(\xi, \tau)$. Порядок малости по α производной $\frac{\partial \eta}{\partial \xi}$ заранее неизвестен. Предположим сначала, что $\frac{\partial \eta}{\partial \xi} \sim 1$, т.е. $\frac{\partial h}{\partial r} \sim \alpha$. Тогда в главном по α приближении

$$\zeta = \pm \eta(\xi, \tau): p^{\{0\}} - s^{\{0\}}_{\zeta\zeta} = 0, \quad s^{\{0\}}_{\xi\zeta} = 0$$

Но согласно (4.6) компонента $s_{\xi\zeta}^{\{0\}}$ равна нулю только при $\xi = 0$ или при $\eta = 0$. Ни одно из этих уравнений форму границу описывать не может, что говорит о неправомерности предположения $\frac{\partial \eta}{\partial \xi} \sim 1$.

Пусть $\frac{\partial \eta}{\partial \xi} \sim \frac{1}{\alpha}$, т.е. $\frac{\partial h}{\partial r} \sim 1$. Тогда, в главном по α приближении, условия (3.15) имеют

вид

$$\zeta = \pm \eta(\xi, \tau): -\alpha s_{\xi\zeta}^{\{0\}} \frac{\partial \eta}{\partial \xi} \pm (-p^{\{0\}} + s_{\zeta\zeta}^{\{0\}}) = 0, \quad \alpha \frac{\partial \eta}{\partial \xi} (p^{\{0\}} - s_{\xi\xi}^{\{0\}}) \pm s_{\xi\zeta}^{\{0\}} = 0$$
(5.1)

Будем работать только с верхней частью границы $\zeta = \pm \eta(\xi, \tau) - \tau.к.$ нижнее основание получается отражением относительно плоскости $\zeta = 0$, то в уравнениях (5.1) оставим знак "+". Исключая $p^{\{0\}}$ из равенств (5.1) и подставляя из (4.6) компоненты девиатора напряжений, получаем нелинейное уравнение первого порядка для определения функции $\eta(\xi, \tau)$:

$$\sqrt{3}\alpha\sqrt{1-\varepsilon_2^2\xi^2\eta^2}\frac{\partial\eta}{\partial\xi} = \varepsilon_2\xi\eta\left(1-\alpha^2\left(\frac{\partial\eta}{\partial\xi}\right)^2\right)$$
(5.2)

Необходимо учесть также интегральное условие нормировки (3.5). Частную производную можно заменить на обыкновенную, т.к. время в уравнение входит как параметр через известную функцию ε_2 (3.1).

Для приближенного интегрирования уравнения заметим, что если положить $\varepsilon_2 = 0$, то с учетом (3.5) получим $\eta \equiv 1$, что соответствует слою цилиндрической формы в квазистатическом решении. Представим функцию $\eta(\xi, \tau)$ в виде ряда по ε_2 :

$$\eta(\xi,\tau) = 1 + \varepsilon_2 \eta_1 + \varepsilon_2^2 \eta_2 + \dots, \quad \varepsilon_2 < 1$$

и подставим в (5.2) и интегральное условие (3.5). В линейном приближении по ε_2 для η_1 будем иметь уравнение $\frac{d\eta_1}{d\xi} = \frac{\xi}{\sqrt{3\alpha}}$, откуда после интегрирования и нормировки следует параболическая зависимость

$$\eta = 1 + \frac{\varepsilon_2}{2\sqrt{3\alpha}} \left(\xi^2 - \frac{1}{2} \right)$$
(5.3)

моделирующая утоньшение слоя в центре и утолщение вблизи его боковой поверхности, т.е. шейкообразование при динамическом растяжении.

Найдем последний из неопределенных коэффициентов главного по α приближения (3.2) – давление $p^{\{0\}}$. Из второго уравнения (4.5) следует, что $-p^{\{0\}} + s_{\zeta\zeta}^{\{0\}}$ не зависит от ζ , а из первого граничного условия (5.1) то, что эта же комбинация на границе равна $\alpha s_{\zeta\zeta}^{\{0\}} \frac{\partial \eta}{\partial \xi}$. Следовательно всюду в области Ω_{τ} :

$$p^{\{0\}} = s^{\{0\}}_{\zeta\zeta} - \alpha s^{\{0\}}_{\xi\zeta} \frac{\partial \eta}{\partial \xi}\Big|_{\zeta=\eta} = -\frac{2}{\sqrt{3}}\sqrt{1 - \varepsilon_2^2 \xi^2 \zeta^2} - \alpha \varepsilon_2 \xi \eta \frac{\partial \eta}{\partial \xi}$$
(5.4)

куда из (4.6) подставлены компоненты $s_{\zeta\zeta}^{\{0\}}$, $s_{\xi\zeta}^{\{0\}}$ девиатора напряжений. В (5.4) входит функция удовлетворяющая дифференциальному уравнению (5.2). В качестве приближенного решения может быть использована аппроксимация квадратичным трехчленом (5.3).

Вернемся к размерным переменным зависящим от r, z, t:

$$v_{r} = \frac{Vr}{R} - \frac{2\sqrt{3}V\tau_{s}}{\rho\dot{V}r}\sqrt{1 - \frac{\rho^{2}\dot{V}^{2}r^{2}z^{2}}{\tau_{s}^{2}R^{2}} + Vf(r,t)\frac{h^{*}}{R} + O((h^{*}/R)^{2})}$$

$$v_{z} = -\frac{2Vz}{R} + O((h^{*}/R)^{2})$$

$$s_{rr} = \frac{\tau_{s}}{\sqrt{3}}\sqrt{1 - \frac{\rho^{2}\dot{V}^{2}r^{2}z^{2}}{\tau_{s}^{2}R^{2}}} + O(h^{*}/R), \quad s_{zz} = -\frac{2\tau_{s}}{\sqrt{3}}\sqrt{1 - \frac{\rho^{2}\dot{V}^{2}r^{2}z^{2}}{\tau_{s}^{2}R^{2}}} + O(h^{*}/R)$$

$$s_{rz} = \frac{\rho\dot{V}rz}{R} + O(h^{*}/R)$$
(5.5)

Аппроксимация границы h(r, t) квадратичным трехчленом:

$$h(r,t) = h^* \left(1 + \frac{\rho \dot{V}R}{2\sqrt{3}\tau_s} \left(\frac{r^2}{R^2} - \frac{1}{2} \right) \right), \quad \frac{\partial h}{\partial r} = \frac{\rho \dot{V}h^*r}{\sqrt{3}\tau_s R}$$
(5.6)

Используя эту аппроксимацию можем выписать давление p, где h и $\partial h/\partial r$ следует взять из (5.6):

$$p = -\frac{2\tau_s}{\sqrt{3}}\sqrt{1 - \frac{\rho^2 \dot{V}^2 r^2 z^2}{\tau_s^2 R^2}} - \frac{\rho \dot{V}r}{R}h\frac{\partial h}{\partial r} + O(h^*/R)$$

Заметим, что в отличие от квазистатики, все исследуемые компоненты тензора напря-

жений отличны от нуля, в частности, осевое напряжение σ_{zz} имеет вид $\sigma_{zz} \approx \frac{\rho \dot{V}r}{R} h \frac{\partial h}{\partial r}$.

6. Заключение. Таким образом, найдены условия, связывающие безразмерные параметры задачи, при которых необходим учет динамических эффектов. Показано, что переход от квазистатики к динамическому режиму растяжения круглого слоя, характеризующийся достижением ускорения \dot{V} своих критических значений, влечет за собой образование и рост шейки в его центральной части. Параметры напряженно-деформированного состояния и других инерционных эффектов точно или приближенно найдены выше.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ишлинский А.Ю., Ивлев Д.Д. Математическая теория пластичности. М.: Физматлит, 2001.
- 2. *Ильюшин А.А.* Труды. Т. 4. Моделирование динамических процессов в твердых телах и инженерные приложения. М.: Физматлит, 2009.
- 3. *Георгиевский Д.В.* Динамические режимы растяжения стержня из идеально жесткопластического материала // Прикладная механика и техническая физика. 2021. 62. № 5. С. 119–130.

https://doi.org/10.15372/PMTF20210513

- 4. Цветков И.М. Динамическое растяжение листа из идеально жесткопластического материала. // Вестник МГУ. Сер. 1. Математика, механика. 2022. № 6. С. 51–60.
- 5. *Georgievskii D.V., Müller W.H., Abali B.E.* Thin-layer inertial effects in plasticity and dynamics in the Prandtl problem // ZAMM. 2019. V. 99. № 12. P. 1–11. https://doi.org/10.1002/zamm.201900184
- 6. *Найфэ А.Х.* Введение в методы возмущений. М.: Мир, 1984. 535 с. = *Nayfeh A.H.* Introduction To Perturbation Techniques. N.Y.: Wiley, 1981.