УЛК 539.3

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ ОБ ИДЕНТИФИКАЦИИ УЗЛОВЫХ ТОЧЕК КВАДРАТУРНОГО ВКЛЮЧЕНИЯ

© 2023 г. А. В. Капцов^а, Е. И. Шифрин^{а,*}

^аИнститут проблем механики им. А.Ю. Ишлинского РАН, Москва, Россия *e-mail: shifrin@ipmnet.ru

Поступила в редакцию 14.03.2023 г. После доработки 22.03.2023 г. Принята к публикации 23.03.2023 г.

Рассматривается задача обнаружения и идентификации упругого включения в изотропной, линейно упругой плоскости. Предполагается, что на бесконечности заданы постоянные напряжения. Предполагается также, что на некоторой замкнутой кривой, содержащей внутри себя включение, известны действующие усилия и перемещения. В случае, когда область, занимаемая включением, является квадратурной, разработан метод идентификации ее узловых точек. Разработанный метод основан на применении принципа взаимности. Рассмотрены численные примеры.

Ключевые слова: упругость, плоская задача, квадратурная область, узловые точки, обратная задача

DOI: 10.31857/S0572329923600147, EDN: XOMURK

1. Введение. В случае, когда переопределенные данные (данные Дирихле и Неймана) известны на замкнутой кривой, охватывающей дефект (включение, полость или трещину), одним из наиболее эффективных методов его идентификации является метод, основанный на исследовании скачка в соотношении взаимности [1]. Этот метод был успешно применен к решению обратных задач статической теории упругости [2—8]. В указанных публикациях были решены задачи идентификации плоской трещины, эллипсоидального включения и нескольких эллипсоидальных включений в трехмерном упругом пространстве, а также множества прямолинейных трещин в упругой плоскости. Таким образом, в известных публикациях в основном решались задачи идентификации дефектов, имеющих каноническую форму. В настоящей публикации рассматривается задача идентификации некоторых характеристик областей, занимаемых дефектами не только канонической формы.

Поскольку ниже рассматриваются включения, занимающие квадратурные области, коротко напомним определение и основные свойства квадратурных областей. Ограничимся односвязными областями $D \subset R^2$, ограниченными гладкими, замкнутыми, жордановыми кривыми ∂D . Основы теории квадратурных областей были заложены в работах [9, 10]. Множество функций, голоморфных в области D и принадлежащих $L_1(D)$, обозначим $AL^1(D)$. Согласно [10] область D называется квадратурной если существует конечное число точек $z_1, z_2, \cdots, z_m, z_i \in D$ таких, что для любых функций $f(z) \in AL^1(D)$ имеет место следующее тождество

$$\int_{D} f(z) dS = \sum_{k=1}^{m} \sum_{i=0}^{n_{k}-1} a_{kj} f^{(j)}(z_{k})$$
(1.1)

Здесь Ox_1x_2 — декартовы координаты, $z = x_1 + ix_2$, a_{kj} — комплексные постоянные, не зависящие от функции f(z). Точки $z_k = x_{k1} + ix_{k2}$ называются узловыми точками.

Величина $n = \sum_{k=1}^{m} n_k$ называется порядком квадратурного тождества (1.1).

Имеются также другие, эквивалентные определения квадратурной области [9, 10]. Напомним их, поскольку они понадобятся ниже.

Область называется квадратурной если существует функция S(z), называемая функцией Шварца, которая удовлетворяет следующим условиям. S(z) — мероморфная функция в области D. Полюсы функции S(z) совпадают с узловыми точками z_k и порядки полюсов равны соответствующим величинам n_k . Кроме того, на границе ∂D имеет место следующее равенство

$$S(z) = \overline{z}, \quad \overline{z} = x_1 - ix_2, \quad z \in \partial D$$
 (1.2)

В случае, когда область D ограничена и односвязна, условие (1.1) эквивалентно следующим условиям. 1) Существует рациональная функция $\varphi(t)$, $t=t_1+it_2$, осуществляющая конформное отображение единичного диска U на область D. 2) Полюсы функции $\varphi(t)$ расположены в точках $\tau_k^*=1/\overline{\tau}_k$ и $\varphi(\tau_k)=z_k$, $\tau_k=\tau_{k1}+i\tau_{k2}$. Порядки полюсов τ_k^* равны соответствующим величинам n_k .

Важное свойство квадратурных областей было установлено в [11-13]. В упрощенной формулировке, достаточной для настоящей статьи, доказанное в [11-13] утверждение может быть сформулировано следующим образом.

Пусть D — односвязная область, ограниченная простой, замкнутой, C^{∞} кривой. В этом случае существует квадратурная область, конформно эквивалентная области D и сколь угодно близкая к ней в смысле C^{∞} .

Вопрос единственности для квадратурных областей, то есть вопрос о том, в какой степени равенство (1.1) определяет область D, до сих пор остается открытым. Здесь известны лишь частные результаты. Например, доказано, что квадратурная область порядка 1 ($m=1,\ n_1=1$) является кругом. Другие результаты, касающиеся проблемы единственности для квадратурных областей можно найти в [10, 14].

2. Математическая формулировка задачи. Предположим, что область $D \subset R^2$ занята изотропным, линейно упругим телом с модулем сдвига μ_I и коэффициентом Пуассона v_I . Как и выше, границу области D обозначаем ∂D . Предположим также, что область $S = R^2 \backslash D$ занята изотропным, линейно упругим телом с модулем сдвига μ_M и коэффициентом Пуассона v_M . Введем декартову систему координат Ox_1x_2 . Предположим, что на бесконечности заданы постоянные напряжения σ_{11}^{∞} , σ_{12}^{∞} и σ_{22}^{∞} . Будем помечать верхним индексом M напряженно деформированное состояние в матрице S: $\mathbf{u}^M(x)$ — вектор перемещений, $e_{\alpha\beta}^M(x)$ — тензор деформаций и $\sigma_{\alpha\beta}^M(x)$ — тензор напряжений. Уравнения плоской теории упругости в области S имеют вид:

$$e_{\alpha\beta}^{M}(x) = \frac{1}{2} (u_{\alpha,\beta}^{M}(x) + u_{\beta,\alpha}^{M}(x)), \quad \alpha = 1, 2, \quad \beta = 1, 2, \quad x = (x_{1}, x_{2}) \in S$$

$$\sigma_{\alpha\beta}^{M}(x) = 2\mu_{M} \left(\frac{v_{M^{*}}}{1 - 2v_{M^{*}}} \theta^{M}(x) \delta_{\alpha\beta} + e_{\alpha\beta}^{M}(x) \right), \quad \theta^{M}(x) = \sum_{k=1}^{2} e_{kk}^{M}(x)$$

$$\sigma_{\alpha\beta\beta}^{M}(x) = 0$$
(2.1)

Здесь $\delta_{\alpha\beta}$ — символ Кронекера, $\nu_* = \nu$ в случае плоской деформации и $\nu_* = \nu/(1+\nu)$ в случае плоского напряженного состояния.

Упругое поле во включении D будем помечать верхним индексом I: $\mathbf{u}^I(x)$ — вектор перемещений, $e^I_{\alpha\beta}(x)$ — тензор деформаций и $\sigma^I_{\alpha\beta}(x)$ — тензор напряжений. Уравнения плоской теории упругости в области D имеют вид:

$$e_{\alpha\beta}^{I}(x) = \frac{1}{2} (u_{\alpha,\beta}^{I}(x) + u_{\beta,\alpha}^{I}(x)), \quad \alpha = 1, 2, \quad \beta = 1, 2, \quad x = (x_{1}, x_{2}) \in D$$

$$\sigma_{\alpha\beta}^{I}(x) = 2\mu_{I} \left(\frac{\nu_{I^{*}}}{1 - 2\nu_{I^{*}}} \theta^{I}(x) \delta_{\alpha\beta} + e_{\alpha\beta}^{I}(x) \right), \quad \theta^{I}(x) = \sum_{k=1}^{2} e_{kk}^{I}(x)$$

$$\sigma_{\alpha\beta,\beta}^{I}(x) = 0$$
(2.2)

Между матрицей и включением предполагается полное сцепление.

$$\mathbf{u}^{M}(x^{*}) = \mathbf{u}^{I}(x^{*}), \quad \sigma_{\alpha\beta}^{M}(x^{*}) N_{\beta}(x^{*}) = \sigma_{\alpha\beta}^{I}(x^{*}) N_{\beta}(x^{*}), \quad x^{*} \in \partial D$$
 (2.3)

Здесь $\mathbf{N}(x^*) = (N_1(x^*), N_2(x^*))$ — единичная нормаль к границе ∂D включения D в точке x^* .

Пусть $D \subset \Omega$, где Ω — односвязная, ограниченная область с кусочно-гладкой границей $\partial\Omega$. Предполагается, что на границе $\partial\Omega$ известны действующие усилия и перемещения.

$$\sigma_{\alpha\beta}^{M}(x') n_{\beta}(x') = t_{\alpha}^{0}(x'), \quad x' \in \partial\Omega$$
 (2.4)

$$\mathbf{u}^{M}(x') = \mathbf{u}^{0}(x'), \quad x' \in \partial\Omega$$
 (2.5)

Здесь $n(x') = (n_1(x'), n_2(x'))$ — единичная внешняя нормаль к границе $\partial \Omega$ в точке x'.

В общем случае задача заключается в идентификации включения D с помощью имеющихся данных. В настоящей статье рассматривается более скромная задача — идентификация узловых точек квадратурного включения D.

3. Функционал скачка в соотношении взаимности. Упругие поля, удовлетворяющие уравнениям (2.1) во всей плоскости, будем называть регулярными упругими полями и помечать верхним индексом r: $\mathbf{u}^r(x)$ — вектор перемещений, $e^r_{\alpha\beta}(x)$ — тензор деформаций, $\sigma^r_{\alpha\beta}(x)$ — тензор напряжений, $x \in \mathbb{R}^2$. Рассмотрим функционал, определенный на пространстве регулярных упругих полей

$$RG(\mathbf{u}^{r}) = \int_{\partial\Omega} \left(t_{\alpha}^{0}\left(x'\right)u_{\alpha}^{r}\left(x'\right) - t_{\alpha}^{r}\left(x'\right)u_{\alpha}^{0}\left(x'\right)\right)dl, \quad t_{\alpha}^{r}\left(x'\right) = \sigma_{\alpha\beta}^{r}\left(x'\right)n_{\beta}\left(x'\right)$$
(3.1)

Из принципа взаимности следует, что в случае, когда область Ω не содержит неоднородностей, равенство $RG(\mathbf{u}^r)=0$ имеет место для любых регулярных полей $\mathbf{u}^r(x)$. Из равенств (2.1), (2.4), (2.5) и (3.1) следует, что в случае, когда область Ω содержит внутри включение D, функционал $RG(\mathbf{u}^r)$ может быть записан в виде

$$RG(\mathbf{u}^r) = \int_{\partial D} \left(t_{\alpha}^M \left(x^* \right) u_{\alpha}^r \left(x^* \right) - t_{\alpha}^r \left(x^* \right) u_{\alpha}^M \left(x^* \right) \right) dl$$

$$t_{\alpha}^M \left(x^* \right) = \sigma_{\alpha\beta}^M \left(x^* \right) N_{\beta} \left(x^* \right)$$
(3.2)

Из равенства (3.2) и условий полного сцепления (2.3) имеем

$$RG(\mathbf{u}^{r}) = \int_{\partial D} \left(t_{\alpha}^{I}(x^{*}) u_{\alpha}^{r}(x^{*}) - t_{\alpha}^{r}(x^{*}) u_{\alpha}^{I}(x^{*}) \right) dl, \quad t_{\alpha}^{I}(x^{*}) = \sigma_{\alpha\beta}^{I}(x^{*}) N_{\beta}(x^{*})$$
(3.3)

Из равенства (3.3), формулы Грина и уравнений (2.2) следует

$$RG(\mathbf{u}^r) = \int_{D} \left[\left(\lambda_I - \lambda_M \right) \Theta^I \Theta^r + 2 \left(\mu_I - \mu_M \right) e_{\alpha\beta}^I e_{\alpha\beta}^r \right] dx \tag{3.4}$$

Здесь $\lambda_I = 2\mu_I \nu_{I^*}/\left(1-2\nu_{I^*}\right), \ \lambda_M = 2\mu_M \nu_{M^*}/\left(1-2\nu_{M^*}\right)$ — постоянные Ламе, $\theta^r(x) = \sum_{k=1}^2 e_{kk}^r(x)$.

4. Вид функционала на некотором подмножестве регулярных упругих полей. Регулярные упругие поля плоской теории упругости представляются с помощью двух голоморфных функций [15]

$$2\mu_{M}(u_{1}^{r}+iu_{2}^{r}) = \varkappa_{M}\varphi_{r}(z) - z\varphi_{r}^{r}(z) - \overline{\psi_{r}(z)}$$

$$\sigma_{11}^{r} + \sigma_{22}^{r} = 4\operatorname{Re}\left[\Phi_{r}(z)\right], \quad \sigma_{22}^{r} - \sigma_{11}^{r} + 2i\sigma_{12}^{r} = 2[\overline{z}\Phi_{r}^{r}(z) + \Psi_{r}(z)]$$

$$(4.1)$$

Здесь $\kappa_M = 3 - 4\nu_M$ в случае плоского деформированного состояния и $\kappa_M = (3 - \nu_M)/(1 + \nu_M)$

+ \vee_{M}) в случае плоского напряженного состояния, $\Phi_{r}(z) = \varphi_{r}'(z), \Psi_{r}(z) = \psi_{r}'(z).$

Рассмотрим подмножество регулярных упругих полей, удовлетворяющих условию $\Phi_r(z) = 0$. Из (4.1) следует, что для упругих полей из данного подмножества справедливы равенства

$$\theta^r = 0, \quad \sigma_{\alpha\beta}^r = 2\mu_M e_{\alpha\beta}^r \tag{4.2}$$

Из (3.4) и (4.2) имеем

$$RG(\mathbf{u}^r) = \frac{(\mu_I - \mu_M)}{\mu_M} \int_D e_{\alpha\beta}^I \sigma_{\alpha\beta}^r dx \tag{4.3}$$

Рассмотрим регулярное упругое поле \mathbf{u}^r , построенное с помощью голоморфных функций $\Phi_r(z) = 0$ и $\Psi_r(z) = \mu_M H(z)$. Из (4.1) и (4.3) следует

$$RG(\mathbf{u}^{r}) = (\mu_{I} - \mu_{M}) \int_{D} [(e_{22}^{I} - e_{11}^{I}) \operatorname{Re} H + 2e_{12}^{I} \operatorname{Im} H] dx$$
 (4.4)

Пометим верхним индексом ρ регулярное упругое поле, отвечающее голоморфным функциям $\Phi_{\rho}(z) = 0$ и $\Psi_{\rho}(z) = i\mu_{M}H(z)$. Из (4.1) и (4.3) получим

$$RG(\mathbf{u}^{\rho}) = (\mu_I - \mu_M) \int_D [(e_{11}^I - e_{22}^I) \operatorname{Im} H + 2e_{12}^I \operatorname{Re} H] dx$$
 (4.5)

Из равенств (4.4) и (4.5) следует

$$RG(\mathbf{u}^{r}) - iRG(\mathbf{u}^{\rho}) = (\mu_{I} - \mu_{M}) \int_{D} [(e_{22}^{I} - e_{11}^{I}) - 2ie_{12}^{I}]H dx$$
 (4.6)

Выражение (4.6) может быть рассмотрено как функционал, определенный на пространстве голоморфных функций $H(z) \in AL^1(D)$. Введем следующее обозначение для этого функционала

$$RG(\mathbf{u}^r) - iRG(\mathbf{u}^\rho) = P(H(z)) \tag{4.7}$$

Учитывая равенства (2.2) и обозначение (4.7), равенство (4.6) может быть записано в виде

$$P(H) = \frac{(\mu_I - \mu_M)}{2\mu_I} \int_D [(\sigma_{22}^I - \sigma_{11}^I) - 2i\sigma_{12}^I] H(z) dx$$
 (4.8)

5. Свойства функционала **P(H)** и различные формы его представления. *Лемма* 1. Справедливо следующее равенство

$$P(H'(z)) = \frac{(\mu_I - \mu_M)}{2\mu_I} \int_D [(\sigma_{22}^I - \sigma_{11}^I) - 2i\sigma_{12}^I]H'(z) dx =$$

$$= -\frac{(\mu_I - \mu_M)}{2\mu_I} \int_{\partial D} H(z)(t_1^I + it_2^I) dI$$
(5.1)

где $t^I = (t_1^I, t_2^I)$ — определенные в (3.3) усилия, действующие на границу включения ∂D .

Доказательство. Преобразуем правую часть равенства (5.1) с помощью формулы Гаусса—Остроградского и уравнения равновесия.

$$-\frac{\left(\mu_{I}-\mu_{M}\right)}{2\mu_{I}}\int_{\partial D}H\left(z\right)\left(\sigma_{1\beta}^{I}n_{\beta}+i\sigma_{2\beta}^{I}n_{\beta}\right)dl=-\frac{\left(\mu_{I}-\mu_{M}\right)}{2\mu_{I}}\int_{D}H_{,\beta}\left(z\right)\left(\sigma_{1\beta}^{I}+i\sigma_{2\beta}^{I}\right)dx\tag{5.2}$$

Равенство (5.1) следует из (5.2) и равенств $H_{,1} = H'(z)$, $H_{,2} = iH'(z)$.

В случае, когда область D односвязна, напряженное состояние во включении может быть представлено двумя голоморфными функциями, аналогично (4.1), см. [15]

$$2\mu_{I}(u_{1}^{I} + iu_{2}^{I}) = \kappa_{I}\phi_{I}(z) - z\overline{\phi_{I}'(z)} - \overline{\psi_{I}(z)}$$

$$\sigma_{11}^{I} + \sigma_{22}^{I} = 4\operatorname{Re}\left[\Phi_{I}(z)\right], \quad \sigma_{22}^{I} - \sigma_{11}^{I} + 2i\sigma_{12}^{I} = 2[\overline{z}\Phi_{I}'(z) + \Psi_{I}(z)]$$
(5.3)

где $\Phi_I(z) = \varphi_I(z)$, $\Psi_I(z) = \psi_I(z)$, $\varkappa_I = 3 - 4 \nu_I$ в случае плоской деформации, $\varkappa_I = (3 - \nu_I)/(1 + \nu_I)$ в случае плоского напряженного состояния.

Функцию Эри для напряженного состояния во включении обозначим $U^I(x_1, x_2)$.

$$\sigma_{11}^{I} = \frac{\partial^{2} U^{I}}{\partial x_{2}^{2}}, \quad \sigma_{22}^{I} = \frac{\partial^{2} U^{I}}{\partial x_{1}^{2}}, \quad \sigma_{12}^{I} = -\frac{\partial^{2} U^{I}}{\partial x_{1} \partial x_{2}}$$

$$(5.4)$$

В соответствии с [15] введем функцию

$$f_I(x_1, x_2) = \frac{\partial U^I}{\partial x_1} + i \frac{\partial U^I}{\partial x_2}$$
 (5.5)

В [15] показано, что функция, определенная в (5.5), выражается через введенные выше голоморфные функции следующим образом

$$f_I(x_1, x_2) = \varphi_I(z) + z\varphi_I'(z) + \overline{\psi_I(z)}$$
 (5.6)

Из результатов [15] также следует, что на границе включения справедливо равенство

$$t_1^I(x') + it_2^I(x') = -i\frac{\partial f_I(x')}{\partial I}$$
(5.7)

Из (5.1) и (5.7) следует

$$P(H'(z)) = \frac{i(\mu_I - \mu_M)}{2\mu_I} \int_{\partial D} H(z) \frac{\partial f_I}{\partial l} dl$$
 (5.8)

Интегрируя в правой части (5.8) по частям, получим

$$P(H'(z)) = -\frac{i(\mu_I - \mu_M)}{2\mu_I} \int_{\partial D} H'(z) f_I(x_1, x_2) dz$$

$$(5.9)$$

Поскольку любые голоморфные функции в односвязной области D являются производными от некоторых других голоморфных функций, равенство (5.9) может быть записано в виде

$$P(H(z)) = -\frac{i(\mu_I - \mu_M)}{2\mu_I} \int_{\partial D} H(z) f_I(x_1, x_2) dz$$
 (5.10)

Из (5.6), (5.10) и того факта, что интеграл от голоморфной функции по замкнутому контуру равен нулю, следует

$$P(H(z)) = -\frac{i(\mu_I - \mu_M)}{2\mu_I} \int_{\partial D} H(z)(z\overline{\varphi_I'(z)} + \overline{\psi_I(z)})dz$$
 (5.11)

Используя равенства (5.11) и (5.3), можно выразить функционал P(H) через перемещения на границе включения

$$P(H(z)) = i(\mu_I - \mu_M) \int_{\partial D} H(z)(u_1^I + iu_2^I) dz$$
 (5.12)

6. Представление функционала P(H) в виде линейной комбинации дельта-функций и их производных. Поскольку усилия, действующие на границу включения ∂D самоуравновешены, напряженное состояние в матрице $S = R^2 \setminus D$ выражается с помощью двух голоморфных функций аналогично (4.1) и (5.3)

$$2\mu_{M}(u_{1}^{M} + iu_{2}^{M}) = \kappa_{M}\phi_{M}(z) - z\overline{\phi'_{M}(z)} - \overline{\psi_{M}(z)}$$

$$\sigma_{11}^{M} + \sigma_{22}^{M} = 4\operatorname{Re}\left[\Phi_{M}(z)\right], \quad \sigma_{22}^{M} - \sigma_{11}^{M} + 2i\sigma_{12}^{M} = 2[\overline{z}\Phi'_{M}(z) + \Psi_{M}(z)]$$
(6.1)

где $\Phi_M(z) = \varphi'_M(z), \Psi_M(z) = \psi'_M(z).$

Кроме того, согласно [15], справедливо следующее представление

$$\phi_M(z) = \Gamma z + \phi_M^0(z), \quad \psi_M(z) = \Gamma' z + \psi_M^0(z), \quad \phi_M^0(\infty) = \psi_M^0(\infty) = 0$$
(6.2)

Постоянные Γ и Γ' выражаются через напряжения, заданные на бесконечности

$$\Gamma = \frac{1}{4}(\sigma_{11}^{\infty} + \sigma_{22}^{\infty}), \quad \Gamma' = \frac{1}{2}(\sigma_{22}^{\infty} - \sigma_{11}^{\infty} + 2i\sigma_{12}^{\infty})$$
 (6.3)

Аналогично (5.6), рассмотрим функцию

$$f_M(x_1, x_2) = \varphi_M(z) + z\varphi_M'(z) + \overline{\psi_M(z)}$$
(6.4)

В терминах введенных функций условия полного сцепления между матрицей и включением (2.3) имеют вид [15]

$$f_{I}(x_{1}, x_{2}) = \varphi_{I}(z) + z\varphi'_{I}(z) + \overline{\psi_{I}(z)} = f_{M}(x_{1}, x_{2}) = \varphi_{M}(z) + z\varphi'_{M}(z) + \overline{\psi_{M}(z)}$$

$$\frac{1}{2\mu_{I}} [\varkappa_{I}\varphi_{I}(z) - z\varphi'_{I}(z) - \overline{\psi_{I}(z)}] = \frac{1}{2\mu_{M}} [\varkappa_{M}\varphi_{M}(z) - z\varphi'_{M}(z) - \overline{\psi_{M}(z)}]$$

$$(6.5)$$

$$(x_{1}, x_{2}) \in \partial D$$

Обозначим D' область, симметричную области D относительно вещественной оси. Пусть g(z) — голоморфная функция в области D. Определим голоморфную функцию в области D' [9]

$$\overline{g}(z) = \overline{g(\overline{z})}, \quad z \in D'$$
 (6.6)

Нетрудно видеть [9], что справедливо следующее равенство

$$\overline{g}(\overline{z}) = \overline{g(z)}, \quad z \in D$$
 (6.7)

Принимая во внимание равенство (6.7), условия сопряжения (6.5) могут быть записаны в виде

$$\varphi_{I}(z) + z\overline{\Phi}_{I}(\overline{z}) + \overline{\psi}_{I}(\overline{z}) = \varphi_{M}(z) + z\overline{\Phi}_{M}(\overline{z}) + \overline{\psi}_{M}(\overline{z})
\varkappa_{I}\varphi_{I}(z) - z\overline{\Phi}_{I}(\overline{z}) - \overline{\psi}_{I}(\overline{z}) = \gamma \left[\varkappa_{M}\varphi_{M}(z) - z\overline{\Phi}_{M}(\overline{z}) - \overline{\psi}_{M}(\overline{z})\right], \quad z \in \partial D$$
(6.8)

Здесь $\gamma = \frac{\mu_I}{\mu_M}$. Введем обозначения

$$\varphi_{M}(z) = x, \quad z\overline{\Phi}_{I}(\overline{z}) + \overline{\psi}_{I}(\overline{z}) = y, \quad \varphi_{I}(z) = a,
z\overline{\Phi}_{M}(\overline{z}) + \overline{\psi}_{M}(\overline{z}) = b, \quad z \in \partial D$$
(6.9)

Используя условия полного сцепления (6.8), выразим величины x и y через величины a и b. В результате получим

$$x = \frac{\left(\varkappa_I + 1\right)a + \left(\gamma - 1\right)b}{\gamma\varkappa_M + 1}, \quad y = \frac{\left(\varkappa_I - \gamma\varkappa_M\right)a + \gamma\left(\varkappa_M + 1\right)b}{\gamma\varkappa_M + 1} \tag{6.10}$$

Определим аналитические функции двух переменных

$$Q_{1}(z,\zeta) = \varphi_{I}(z) + z\overline{\Phi}_{I}(\zeta) + \overline{\psi}_{I}(\zeta), \quad z \in D, \quad \zeta \in D$$

$$(6.11)$$

$$Q_{2}(z,\zeta) = \frac{1}{\gamma \varkappa_{M} + 1} \left[(\varkappa_{I} + 1) \varphi_{I}(z) + \gamma (\varkappa_{M} + 1) \left(z \overline{\Phi}_{M}(\zeta) + \overline{\psi}_{M}(\zeta) \right) \right]$$

$$z \in D, \quad \zeta \notin \overline{D}$$
(6.12)

Здесь \overline{D} — замыкание области D.

Пусть S(z) — мероморфная функция Шварца в замкнутой области \overline{D} . Определим мероморфную функцию

$$Q(z) = \begin{cases} Q_1(z, S(z)), & z \in D, \quad S(z) \in D \\ Q_2(z, S(z)), & z \in D, \quad S(z) \notin \overline{D} \end{cases}$$

$$(6.13)$$

Из (5.6), (6.4), (6.5), (6.7) и (6.9)—(6.12) имеем

$$Q_{1}(z, S(z)) = Q_{2}(z, S(z)) = f_{1}(x_{1}, x_{2}), \quad z \in \partial D$$
(6.14)

Предположим для простоты, что полюсы функции Шварца в области D — простые. Обозначим эти полюсы z_1, z_2, \cdots, z_n . Таким образом, в окрестности точки z_k функция S(z) имеет вид

$$S(z) = \frac{R_k}{z - z_k} + g_k(z) \tag{6.15}$$

где $g_k(z)$ — голоморфная функция в некоторой окрестности точки z_k .

Учитывая поведение упругого поля $\mathbf{u}^M = (u_1^M, u_2^M)$ на бесконечности (6.2), получим асимптотику функции $Q_2(z, S(z))$ при $z \to z_k$.

$$Q_2(z, S(z)) = \frac{\gamma(\varkappa_M + 1)\overline{\Gamma} R_k}{(\gamma \varkappa_M + 1)(z - z_k)} + G_k(z)$$
(6.16)

Здесь $G_k(z)$ — голоморфная функция в окрестности точки z_k .

Из (6.13) и (6.16) следует, что Q(z) — мероморфная функция в области D, простые полюсы которой расположены в точках z_1, z_2, \dots, z_n . Из (5.10), (6.13) и (6.14) получим

$$P(H(z)) = -\frac{i(\mu_I - \mu_M)}{2\mu_I} \int_{\partial D} H(z)Q(z)dz$$
(6.17)

Интеграл в (6.17) равен сумме вычетов подынтегральной функции в точках z_k

$$P(H(z)) = \sum_{k=1}^{n} A_k H(z_k)$$
(6.18)

где
$$A_k = \frac{\pi (\mu_I - \mu_M) \gamma (\varkappa_M + 1) \overline{\Gamma} R_k}{\mu_I (\gamma \varkappa_M + 1)}.$$

Принимая во внимание выражение для у, имеем

$$A_{k} = \frac{\pi \left(\mu_{I} - \mu_{M}\right) \left(\varkappa_{M} + 1\right) \overline{\Gamma}' R_{k}}{\left(\mu_{I} \varkappa_{M} + \mu_{M}\right)}$$

$$(6.19)$$

7. Определение узловых точек квадратурного включения. Рассмотрим последовательность голоморфных функций $H_m\left(z\right)=\left(\frac{z}{L}\right)^m$, где L — некоторый линейный размер, m=0, 1,2,... Обозначим

$$P(H_m(z)) = b_m (7.1)$$

Из (6.18) и (7.1) получим систему уравнений

$$\sum_{k=1}^{n} A_k w_k^m = b_m, \quad w_k = \frac{z_k}{L}$$
 (7.2)

Уравнения (7.2) содержат 2n неизвестных: A_k и w_k , $k=1,\cdots,n$. Методы нахождения этих неизвестных с помощью известных значений b_m , $m=0,\cdots,2n-1$ хорошо разработаны [16—18]. В соответствии с [16], рассмотрим ганкелевы матрицы

$$\mathbf{H}_{0} = \begin{pmatrix} b_{0} & b_{1} & \cdots & b_{n-1} \\ b_{1} & b_{2} & \cdots & b_{n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n-1} & b_{n} & \cdots & b_{2n-2} \end{pmatrix}, \quad \mathbf{H}_{1} = \begin{pmatrix} b_{1} & b_{2} & \cdots & b_{n} \\ b_{2} & b_{3} & \cdots & b_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & b_{n+1} & \cdots & b_{2n-1} \end{pmatrix}$$
(7.3)

Искомые величины w_k являются собственными значениями обобщенной задачи на собственные значения

$$\mathbf{H}_1 \mathbf{a} = w \mathbf{H}_0 \mathbf{a} \tag{7.4}$$

Здесь a — собственный вектор, соответствующий собственному значению w.

После определения неизвестных w_k , $k=1,\dots,n$, коэффициенты A_k определяются из системы линейных, алгебраических уравнений (7.2) для $m=0,1,\dots,n-1$.

Число узловых точек, соответствующих области D, заранее неизвестно. В связи с этим, необходимо решать последовательность задач в предположении, что имеется $n=1,2,\cdots$ узловых точек. В случае, когда предполагаемое количество узловых точек n превосходит действительное количество узловых точек области D, некоторые из полу-

ченных собственных значений w_k являются паразитными. Для исключения паразитных решений ниже используется следующий критерий.

Обозначим $A_{n\max} = \max_{k=1,\cdots,n} |A_k|$. Собственные значения w_k , для которых соответствующие коэффициенты A_k удовлетворяют неравенству $|A_k|/A_{n\max} < \varepsilon_{cr}$, где ε_{cr} некоторая малая величина, рассматриваются как паразитные и исключаются из рассмотрения. В численных примерах, рассмотренных ниже, принимается $\varepsilon_{cr} = 0.01$.

8. Численные примеры. В представленных выше теоретических результатах предполагается, что упругое тело безгранично. В рассмотренных ниже примерах упругое тело ограничено, однако характерные размеры дефекта много меньше размеров тела, что дает возможность использовать полученные результаты. Во всех примерах предполагается, что упругое тело занимает квадратную область $\Omega = \{x = (x_1, x_2) : |x_i| \le L, i = 1, 2\}, L = 10$ см. В качестве упругих постоянных материала приняты: модуль Юнга $E_M = 68.5$ ГПа, коэффициент Пуассона $v_M = 0.36$. Такие упругие постоянные соответствуют алюминию. Во всех примерах рассматривается плоское напряженное состояние и предполагается, что усилия, приложенные к границе тела $\partial\Omega$, соответствуют одноосному растяжению в направлении оси x_2 .

$$\mathbf{t}^{0}\left(x'\right) = \left(0, \sigma n_{2}\left(x'\right)\right), \quad x' \in \partial\Omega \tag{8.1}$$

гле $\sigma = 100 \text{ M}\Pi a$.

Используемые в примерах переопределенные данные (перемещения внешней границы тела $\partial\Omega$) получены путем численного решения прямой задачи для тела с неоднородностью при заданных граничных условиях (8.1) на внешней границе $\partial\Omega$.

Наиболее известным примером квадратурной области является круг. В случае, когда область D является кругом с центром в точке z_0 , из теоремы о среднем следует, что для любой голоморфной функции f(z) справедливо равенство

$$\int_{D} f(z) dS = |D| f(z_0)$$
(8.2)

где |D| — площадь круга.

Из (8.2) следует, что круг — квадратурная область порядка 1. Единственная узловая точка расположена в центре круга.

Отметим, что также справедливо и обратное утверждение. Если порядок квадратурной области равен 1, то эта область является кругом, центр которого совпадает с узловой точкой [10].

Напомним, что функция Шварца для круга с центром в точке z_0 и радиусом r_0 имеет вид [9].

$$S_{\rm circ}(z) = \frac{r_0^2}{z - z_0} + \overline{z}_0$$
 (8.3)

Пример 1. В этом примере в качестве неоднородности рассматривается круговая полость с центром в точке $(x_{01}, x_{02}) = (4,3)$ и радиусом $r_0 = 1$, см. рис. 1. Здесь все величины даны в сантиметрах.

Узловые точки были определены при различных предположениях о количестве узловых точек n. Величина n варьировалась от 1 до 10. В результате использования сформулированного выше критерия оказалось, что для всех рассмотренных значений n определяется только одна узловая точка. Проиллюстрируем это на примере, в котором ожидаемое количество узловых точек n=10. В табл. 1 представлены координаты полученных узловых точек $z_k=L\cdot w_k$ и соответствующие им нормированные коэффициенты $\alpha_k=|A_k|/A_{n\max}$.

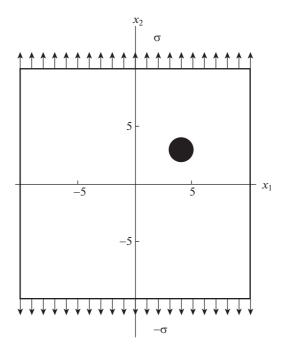


Рис. 1. Квадратная пластина с круговой полостью.

Как видно из табл. 1, для 9 из 10 полученных узловых точек выполнено неравенство $\alpha_k < \epsilon_{cr} = 0.01$. Отметим, что значения α_k для этих девяти точек много меньше выбранного критериального значения. Таким образом, согласно сформулированному в предыдущем разделе критерию, эти девять точек должны быть исключены и остается только одна узловая точка, имеющая в табл. 1 номер 6. Координаты оставшейся точки, как и ожидалось, с точностью до двух десятичных знаков совпадают с координатами центра круга.

Зависимость координат установленной узловой точки от предполагаемого количества узловых точек n представлена в табл. 2.

Из табл. 2 следует, что с точностью до трех десятичных знаков, координаты определяемой узловой точки не зависят от предполагаемого значения n и совпадают с координатами центра круга с очень высокой точностью.

Таблица 1. Узловые точки и нормированные коэффициенты для круговой полости в случае n=10 и параметров круга $z_0=4+3i$, $r_0=1$

k	1	2	3	4	5
α_k	5.29×10^{-14}	4.04×10^{-10}	1.14×10^{-9}	2.15×10^{-10}	3.82×10^{-7}
z_k	-15.79 + 4.9i	-9.47 - 9.39i	-7.18 - 6.47i	-6.51 + 7.61i	3.55 + 4.99i
k	6	7	8	9	10
α_k	1	3.9×10^{-5}	1.28×10^{-8}	4.8×10^{-9}	1.13×10^{-9}
z_k	4 + 3i	4.3 + 2.68i	8.41 - 6.76i	9.68 - 9.43i	10.37 - 3.02i

n	1	2	3	4	5
z_0	4.0025 + 3.0024i	4.0024 + 3.0023i	4.0024 + 3.0022i	4.0024 + 3.0022i	4.0024 + 3.0022i
n	6	7	8	9	10
z_0	4.0024 + 3.0022i	4.0024 + 3.0023i	4.0024 + 3.0022i	4.0024 + 3.0022i	4.0024 + 3.0022i

Таблица 2. Зависимость координат установленной узловой точки от величины n

Поскольку в данном примере установлено, что имеется только одна узловая точка, то, как указано выше, отсюда следует, что искомая неоднородность является кругом [10]. Если предположить, что неоднородность является полостью, то радиус круга также может быть определен.

Из (7.2) следует, что в случае, когда имеется единственная узловая точка, справедливо равенство $A_1 = b_0$. Следовательно, из формулы (6.19), предполагая, что дефект является полостью ($\mu_I = 0$), имеем

$$-\pi \left(\varkappa_M + 1\right) \overline{\Gamma}' R_1 = b_0 \tag{8.4}$$

В случае одноосного растяжения вдоль оси x_2 , из (6.3) получим

$$\Gamma' = \frac{\sigma}{2} \tag{8.5}$$

Из (6.15) и вида функции Шварца (8.3) следует

$$R_1 = r_0^2 (8.6)$$

Наконец, из формул (8.4)—(8.6) получим

$$r_0^2 = \frac{-2b_0}{\pi(\kappa_M + 1)\sigma} \tag{8.7}$$

В результате вычислений было получено $b_0 = -(486.1754 + 1.4725i) \, {\rm Mna \cdot cm^2}.$ Отметим, что из-за погрешностей вычислений величина b_0 оказалась комплексной, однако мнимая часть числа на несколько порядков меньше его вещественной части. Если пренебречь мнимой частью и подставить вещественную часть в формулу (8.7), получим $r_0 \approx 1.026$. Таким образом, радиус круговой полости вычисляется с достаточно высокой точностью.

Замечание. Параметры круговой полости с помощью переопределенных данных на всей внешней границе тела можно также определить с помощью метода, описанного в [3]. Однако, в методе [3] нужно априори предполагать, что полость имеет форму круга. В представленном здесь методе тот факт, что полость имеет форму круга, не предполагается, а устанавливается.

Пример 2. В этом примере дефект D также является круговой полостью, центр которой расположен в точке $(x_{01}, x_{02}) = (-6, -4)$, а радиус равен $r_0 = 0.5$. Как и в примере 1, количество предполагаемых узловых точек n варьировалось от 1 до 10. Вычисления показали, что при всех рассмотренных значениях n после исключения паразитных решений оставалась только одна узловая точка. Проиллюстрируем этот результат в случае n = 10. Координаты всех десяти узловых точек z_k и соответствующие им нормированные коэффициенты α_k представлены в табл. 3.

Таблица 3 показывает, что согласно сформулированному выше критерию остается только одна узловая точка под номером 3. Остальные узловые точки являются паразитными. Координаты установленной узловой точки с точностью до нескольких десятичных знаков совпадают с координатами центра круга. Точность определения коор-

	1 1 13 00 1 17 0							
k	1	2	3	4	5			
α_k	9.69×10^{-9}	2.67×10^{-10}	1	1.24×10^{-4}	9.92×10^{-8}			
z_k	-9.62 - 9.71i	-8.77 + 7.93i	-6 - 4i	-5.61 - 4.2i	-5.52 - 8.16i			
k	6	7	8	9	10			
α_k	2.25×10^{-7}	4.25×10^{-8}	1.19×10^{-10}	9.66×10^{-16}	1.68×10^{-8}			
z_k	0.42 - 5.05i	6.99 - 8.05i	7.65 + 9.23i	9.25 + 21.5i	9.45 - 9.63i			

Таблица 3. Узловые точки и нормированные коэффициенты для круговой полости в случае n=10 и параметров круга $z_0=-6-4i$, $r_0=0.5$

Таблица 4. Зависимость координат установленной узловой точки для круговой полости с параметрами $z_0 = -6 - 4i$ и $r_0 = 0.5$ от числа предполагаемых узловых точек n

n	1	2	3	4	5
z_0	-6.0006 - 4.0002i	-6.0006 - 4.0002i	-6.0006 - 4.0002i	-6.0004 - 4.0003i	-6.0006 - 4.0002i
n	6	7	8	9	10
z_0	-6.0005 - 4.0002i	-6.0006 - 4.0002i	-6.0007 - 4.0003i	-6.0006 - 4.0003i	-6.0006 - 4.0003i

динат центра круга иллюстрируется в табл. 4, где представлены координаты установленной узловой точки в зависимости от предполагаемого количества узловых точек n. Так как в этом примере радиус круговой полости меньше, чем в примере 1, центр круга определяется с более высокой точностью.

Полученная в результате вычислений величина b_0 оказалась равной $b_0 = -(117.9 + 0.1i)$ МПа · см². Пренебрегая мнимой частью, которая много меньше вещественной части, и подставив вещественную часть в формулу (8.7), получим $r_0 = 0.505$. Таким образом, погрешность в определении радиуса круговой полости составляет один процент.

Пример 3. В этом примере неоднородность представляет собой жесткое круговое включение, занимающее ту же область, что и круговая полость в примере 2. Проведенные вычисления показали, что и в данном примере обнаруживается единственная узловая точка. В табл. 5 представлены координаты полученных узловых точек z_k и соответствующие им нормированные коэффициенты α_k для случая, когда предполагаемое количество узловых точек n=10.

Из табл. 5 следует, что согласно принятому критерию остается только одна узловая точка, идущая под номером 5. Координаты этой точки совпадают с координатами центра круга.

Таблица 5. Узловые точки и нормализованные коэффициенты для жесткого кругового включения

k	1	2	3	4	5
α_k	4.37×10^{-9}	1.11×10^{-9}	4.46×10^{-13}	2.42×10^{-4}	1
z_k	-9.43 - 9.38i	-8.43 + 8.02i	-7.47 + 15.69i	-6.19 - 4.01i	-6.00 - 4.00i
k	6	7	8	9	10
α_k	1.86×10^{-7}	9.25×10^{-9}	9.73×10^{-9}	2.40×10^{-10}	3.72×10^{-9}
z_k	-3.19 + 0.52i	2.30 + 5.19i	6.75 - 7.55i	8.87 + 8.62i	9.45 – 9.56 <i>i</i>

Вычисления показали, что при любом предполагаемом количестве узловых точек n от n=1 до n=10 координаты оставшейся после исключения паразитных решений узловой точки отличаются от координат центра круга только начиная с четвертого десятичного знака после запятой. Например, в случае n=10 полученные координаты узловой точки $z_0=-5.9998-3.9999i$.

Чтобы определить радиус жесткого кругового включения перейдем к формуле (6.19) к пределу при $\mu_I \to \infty$. В результате получим

$$A_{1} = b_{0} = \frac{\pi(\kappa_{M} + 1)\overline{\Gamma}' R_{1}}{\kappa_{M}}$$
 (8.8)

Из (8.8), учитывая (8.3) и (8.5), получаем

$$r_0^2 = \frac{2\varkappa_M b_0}{\pi (\varkappa_M + 1)\sigma} \tag{8.9}$$

В результате вычислений было получено $b_0 = 58.9 - 0.0334i$ МПа · см². Можно видеть, что мнимая часть b_0 много меньше вещественной части. Пренебрегая мнимой частью и подставив вещественную часть b_0 в формулу (8.9), получим $r_0 = 0.497$, что с достаточно высокой точностью совпадает с радиусом рассматриваемого, жесткого, кругового включения

Пример 4. Пусть полость D имеет форму кардиоиды. Напомним, что кардиоида является квадратурной областью, которая может быть получена путем сдвига и поворота области, чья граница описывается следующими уравнениями

$$x_{1}(t) = a\left(\cos t + \frac{1}{2}\cos 2t\right)$$

$$x_{2}(t) = a\left(\sin t + \frac{1}{2}\sin 2t\right), \quad 0 \le t < 2\pi$$
(8.10)

3десь a — параметр.

В примере рассматривается случай, когда кардиоида D определяется параметром a=0.5 и сдвинута на вектор $(x_{01},x_{02})=(4,3)$. Рассматриваемая кардиоида представлена на рис. 2.

Согласно [19], для любой функции $f(z) \in AL^1(D)$, в случае, когда область D задается уравнениями (8.10) и сдвинута на вектор z_0 , справедливо равенство

$$\int_{D} f(z) dS = \frac{3\pi a^{2}}{2} f(z_{0}) + \frac{\pi a^{3}}{2} f'(z_{0})$$
(8.11)

где $z_0 = x_{01} + ix_{02}$.

Из (8.11) следует, что кардиоида имеет единственную узловую точку z_0 порядка 2. Вследствие этого функция Шварца имеет один полюс в точке z_0 порядка 2.

Расчеты показали, что, начиная с n=2, обнаруживаются две простые узловые точки, весьма близкие к кратной узловой точке, отвечающей рассматриваемой кардиои-де. Координаты получаемых узловых точек и соответствующие им нормированные коэффициенты в случае n=10 представлены в табл. 6.

Как видно из табл. 6, согласно принятому критерию, остаются только две узловые точки под номерами 6 и 7, координаты которых очень близки к точным координатам двойной узловой точки.

Устойчивость результатов по отношению к количеству предполагаемых узловых точек n иллюстрируется в табл. 7.

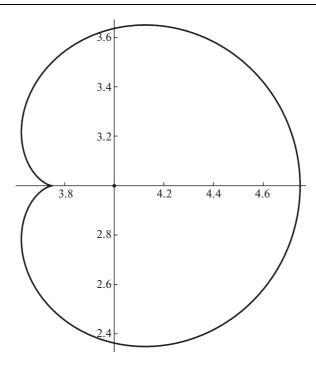


Рис. 2. Полость, имеющая форму кардиоиды.

Пример 5. Еще одним известным примером квадратурной области является овал Неймана. Овалом Неймана называется область, которая может быть получена путем сдвига и поворота области, чья граница описывается следующей кривой

$$x_1(t) = \sqrt{a^2 + 4\varepsilon^2 \cos^2(t)} \cos t, \quad x_2(t) = \sqrt{a^2 + 4\varepsilon^2 \cos^2(t)} \sin t, \quad 0 \le t < 2\pi$$
 (8.12)

Здесь a и ε — постоянные.

Согласно [9], функция Шварца для овала Неймана, граница которого описывается уравнениями (8.12), имеет вид

$$S(z) = \frac{z(a^2 + 2\varepsilon^2) + z\sqrt{a^4 + 4(a^2 + z^2)\varepsilon^2}}{2(z^2 - \varepsilon^2)}$$
(8.13)

Из (8.13) следует, что функция Шварца для овала Неймана имеет два простых полюса в точках $z=\pm \epsilon$.

Таблица 6. Узловые точки и нормированные коэффициенты для полости, имеющей форму кардиоиды в случае n=10

k	1	2	3	4	5
α_k	1.04×10^{-19}	6.61×10^{-10}	1.89×10^{-9}	2.07×10^{-10}	5.21×10^{-9}
z_k	-27.00 - 27.25i	-9.37 - 9.45i	-6.50 - 6.81i	-5.92 + 7.69i	-0.39 + 5.74i
k	6	7	8	9	10
α_k	0.77	1	1.04×10^{-8}	4.09×10^{-9}	3.27×10^{-16}
z_k	3.97 + 3.00i	4.02 + 3.00i	7.45 - 6.79i	9.52 - 9.42i	25.13 - 4.90i

DDIX 1	вых то тек для полости в виде кардионды							
n	1	2	3	4	5			
z_1, z_2	4.1877 + 3.0003i	3.9601 + 2.9927i	3.9739 + 3.0060i	3.9716 + 2.9999i	3.9710 + 3.0002i			
		4.0278 + 3.0057i	4.0177 + 2.9958i	4.0192 + 3.0006i	4.0196 + 3.0004i			
n	6	7	8	9	10			
z_1, z_2	3.9712 + 2.9997i	3.9709 + 2.9999i	3.9707 + 2.9994i	3.9707 + 2.9995i	3.9707 + 2.995i			
	4.0194 + 3.0008i	4.0197 + 3.0006i	4.0198 + 3.0010i	4.0198 + 3.0010i	4.0198 + 3.0009i			

Таблица 7. Зависимость положения обнаруженных узловых точек от числа предполагаемых узловых точек для полости в виде кардиоиды

В рассматриваемом примере взяты следующие значения параметров овала Неймана: a=0.3, $\epsilon=0.25$, описываемый в (8.13) овал Неймана сдвинут на вектор $z_0=1+2i$ и повернут на угол $\pi/2$, см. рис. 3. Таким образом, координаты узловых точек полости расположены в точках $z_1=1+1.75i$ и $z_2=1+2.25i$. Рассматриваемая полость изображена на рис. 3.

Проведенные численные расчеты показали, что, начиная с n = 2, после применения принятого выше критерия остается ровно две узловых точки. Проиллюстрируем это

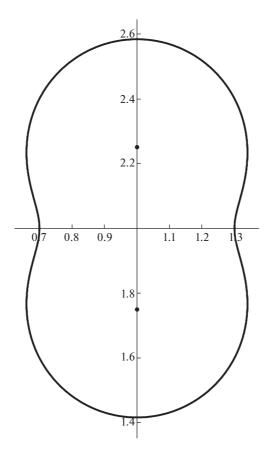


Рис. 3. Полость, имеющая форму овала Неймана.

	10								
k	1	2	3	4	5				
α_k	2.42×10^{-9}	2.21×10^{-9}	6.98×10^{-8}	2.96×10^{-7}	0.98				
z_k	-12.38 + 3.57i	-11.19 + 11.60i	-9.75 - 9.98i	-7.8 - 7.40i	0.998 + 1.717i				
k	6	7	8	9	10				
α_k	1.0	8.46×10^{-5}	2.22×10^{-7}	9.18×10^{-8}	1.74×10^{-9}				
z_k	0.998 + 2.276i	2.83 + 0.72i	7.21 - 7.64i	9.4 - 9.65i	11.34 + 10.91i				

Таблица 8. Узловые точки и нормированные коэффициенты для полости, имеющей форму овала Неймана, в случае n=10

Таблица 9. Зависимость положения установленных узловых точек от числа предполагаемых узловых точек для полости в виде овала Неймана

n	1	2	3	4	5
z_1, z_2	1 + 2i	0.998 + 1.716i	1.0 + 1.722i	1.0 + 1.719i	1.0 + 1.721i
		0.998 + 2.274i	1.0 + 2.281i	0.988 + 2.277i	1.0 + 2.278i
n	6	7	8	9	10
z_1, z_2	0.999 + 1.719i	1.0 + 1.721i	0.999 + 1.718i	1.0 + 1.717i	0.998 + 1.717i
	1.0 + 2.277i	1.0 + 2.278i	0.997 + 2.277i	1.0 + 2.276i	0.998 + 2.276i

результатом расчетов для случая n=10. В табл. 8 представлены все 10 узловых точек z_k , отвечающих n=10, и соответствующие им нормированные коэффициенты α_k .

Из табл. 8 следует, что согласно принятому критерию остаются только две узловые точки под номерами 5 и 6. Координаты этих точек достаточно близки к точным координатам. Погрешность в определении узловых точек менее 2%.

Устойчивость получаемых результатов по отношению к количеству предполагаемых узловых точек n иллюстрируется в табл. 9.

Таблица 9 показывает исключительную устойчивость результатов.

Пример 6. Здесь рассматривается случай полости, имеющей форму квадратурной области третьего порядка. Рассматриваемая квадратурная область строится следующим образом. Три узловые точки расположены в вершинах равностороннего тре-

угольника: $z_1 = \frac{R}{2} + \frac{R\sqrt{3}}{2}i$, $z_2 = -R$, $z_3 = \frac{R}{2} - \frac{R\sqrt{3}}{2}i$. Граница области получается путем пересечения окружностей радиуса R с центрами в начале координат и в указанных узловых точках [14], см. рис. 4. Рассматриваемая область ограничена внешними частями дуг окружностей.

В примере принято R=0.4. В этом случае координаты узловых точек, с учетом приближенного значения величины $\sqrt{3}$, равны: $z_1=0.2+0.3464i$, $z_2=-0.4$, $z_3=0.2-0.3464i$. Соответствующая область изображена на рис. 5.

Из проведенных численных расчетов следует, что, начиная с n=3, из всех получающихся узловых точек остается ровно 3 простые узловые точки. В табл. 10 представлены все полученные узловые точки z_k и соответствующие им нормированные коэффициенты α_k для случая n=10 предполагаемых узловых точек.

Согласно принятому критерию, из десяти узловых точек таблицы 10 остается только три точки с номерами 4, 5 и 6. Эти три точки достаточно близки к указанному выше точному расположению узловых точек. Погрешности составляют порядка 10%. Устойчивость определяемых положений узловых точек по отношению к количеству предпо-

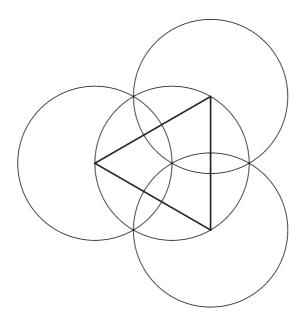


Рис. 4. Построение квадратурной области третьего порядка.

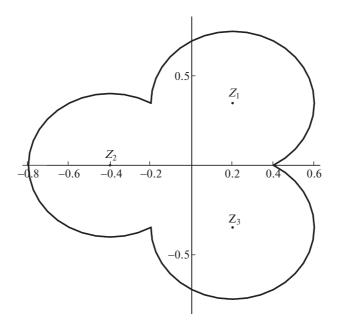


Рис. 5. Полость в виде квадратурной области третьего порядка.

KDu,	вадратурной области третвего порядка, в слу наст							
k	1	2	3	4	5			
α_k	3.76×10^{-8}	3.41×10^{-8}	9.50×10^{-8}	0.995	1			
z_k	-9.55 - 9.63i	-8.11 + 8.31i	-7.56 - 7.96i	-0.38 - 0.009i	0.203 - 0.305i			
k	6	7	8	9	10			
α_k	0.924	1.96×10^{-7}	7.00×10^{-8}	1.42×10^{-10}	2.78×10^{-8}			
z_k	0.226 + 0.309i	2.932 + 3.503i	7.583 - 8.102i	8.996 + 8.182i	9.552 - 9.655i			

Таблица 10. Узловые точки и нормированные коэффициенты для полости, имеющей форму квадратурной области третьего порядка, в случае n=10

Таблица 11. Зависимость положений установленных узловых точек от числа предполагаемых узловых точек для полости в виде квадратурной области третьего порядка

n	3	4	5	6	7
$\overline{z_1, z_2, z_3}$	-0.4522 - 0.0831i	$\begin{array}{c} 0.3776 + 0.3055i \\ -0.4325 - 0.1637i \\ 0.0451 - 0.2219i \end{array}$	-0.3789 - 0.0102i	-0.3988 - 0.0213i	
n	8	9	10	11	12
$\overline{z_1, z_2, z_3}$	-0.4086 - 0.0263i	$\begin{array}{c} 0.2208 + 0.3105 \\ -0.3781 - 0.0055i \\ 0.2071 - 0.3083i \end{array}$	-0.3801 - 0.0091i	-0.3789 - 0.0073i	-0.3782 - 0.0065i
n	13	14	15		
z_1, z_2, z_3	-0.3775 - 0.0043i	0.2184 + 0.3093i $-0.3784 - 0.0031i$ $0.2104 - 0.3079i$	-0.3784 - 0.0032i		

лагаемых узловых точек n иллюстрируется в табл. 11. В этой таблице представлены полученные координаты узловых при различных значениях n.

Результаты, представленные в табл. 11, показывают, что хотя то, что имеются 3 узловые точки определяется с n=3, их координаты начинают устанавливаться с n=5. Окончательная стабилизация результатов происходит начиная с n=9. Установленные координаты узловых точек достаточно близки к точным значениям, но содержат систематическую ошибку порядка 10%. Такая ошибка, вероятно, связана с неточностью в исходных данных, часть из которых определяется путем решения прямой задачи. Решение прямой задачи для тела с полостью столь сложной, невыпуклой формы содержит некоторую погрешность.

Пример 7. В предыдущих примерах неоднородности представляли собой квадратурные области. Цель данного примера выяснить, что дает разработанный метод в случае, когда область, занимаемая дефектом, не является квадратурной. Известно, что эллипс, согласно данному выше определению, не является квадратурной областью. Для эллипса, ограниченного кривой

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1, \quad a > b > 0$$
 (8.14)

функция Шварца имеет вид [9]

$$S(z) = \frac{a^2 + b^2}{c^2} - \frac{2ab}{c^2} \sqrt{z^2 - c^2}$$
 (8.15)

aac r	ac n = 3								
k	1	2	3	4	5				
α_k	2.48×10^{-9}	8.08×10^{-7}	0.536	1	0.472				
z_k	-9.17 - 10.30i	-1.58 - 0.48i	3.38 + 2.76i	4.03 + 2.99i	4.66 + 3.23i				

Таблица 12. Узловые точки и нормированные коэффициенты для эллиптической полости в случае n=5

Таблица 13. Узловые точки и нормированные коэффициенты для эллиптической полости в случае n=10

k	1	2	3	4	5
α_k	2.22×10^{-9}	8.46×10^{-11}	5.61×10^{-9}	6.34×10^{-8}	0.444
z_k	-9.53 - 9.58i	-8.75 + 8.39i	-7.46 - 7.71i	-2.57 - 1.02i	3.30 + 2.74i
k	6	7	8	9	10
α_k	1	0.825	0.266	3.05×10^{-9}	6.52×10^{-10}
z_k	3.81 + 2.92i	4.37 + 3.13i	4.77 + 3.28i	9.31 + 8.39i	10.33 - 9.44i

Злесь
$$c = \sqrt{a^2 - b^2}$$
.

Отсюда следует, что для любой голоморфной в эллиптической области D функции f(z) справедливо равенство [9]

$$\int_{D} f(z) dS = \frac{2ab}{c^{2}} \int_{-c}^{c} f(x) \sqrt{c^{2} - x^{2}} dx$$
 (8.16)

Таким образом, интеграл от голоморфной функции по эллиптической области выражается через интеграл по отрезку, соединяющему два фокуса. Поскольку, по определению, интеграл от голоморфной функции по квадратурной области должен выражаться с помощью линейной комбинации значений функции и их производных в конечном числе точек, эллиптическая область не является квадратурной.

Пусть полость D имеет форму эллипса с полуосями $a_1 = 1$, $a_2 = 0.25$. Предположим, что центр эллипса расположен в точке (4,3) и большая ось эллипса наклонена к оси x_1 под углом 20° . Проведенные расчеты показали, что с увеличением числа предполагаемых узловых точек n количество определяемых узловых точек постепенно увеличивается. Все определяемые узловые точки находятся вблизи большой оси эллипса между его фокусами. В табл. 12 приведены значения определяемых узловых точек z_k и соответствующих им нормированных коэффициентов α_k в случае n=5.

Согласно принятому критерию остаются три узловые точки под номерами 3, 4 и 5. Точка z_4 близка к центру эллипса. Нетрудно видеть, что фокусы эллипса расположены в точках $F_1=3.09+2.67i$ и $F_2=4.91+3.33i$. Уравнение прямой, проходящей через фокусы и центр эллипса имеет вид

$$x_2 = 0.364x_1 + 1.545 (8.17)$$

Точки z_3 и z_5 расположены очень близко к прямой (8.17) и находятся между фокусами. Эллиптическая полость с установленными тремя узловыми точками изображена на рис. 6.

В случае n=10 обнаруживаются 4 узловые точки. Значения определяемых узловых точек z_k и соответствующих им нормированных коэффициентов α_k в случае n=10 приведены в табл. 13.

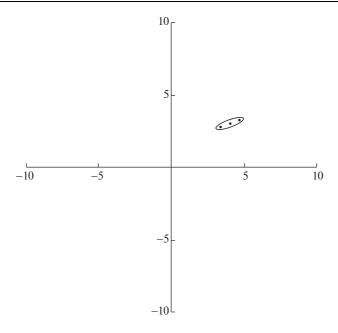


Рис. 6. Эллиптическая полость с узловыми точками, отвечающими n = 5.

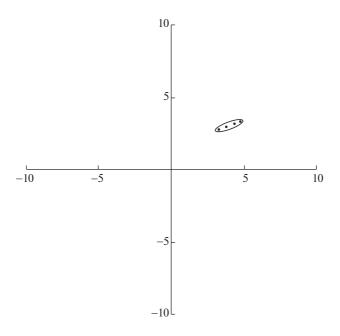


Рис. 7. Эллиптическая полость с узловыми точками, отвечающими n=10.

Из табл. 13 видно, что, согласно принятому критерию, остаются только 4 узловые точки z_5, \dots, z_8 . Эти точки расположены очень близко к прямой (8.17) и находятся между фокусами эллипса. Изображение эллиптической полости и обнаруженных четырех узловых точек представлено на рис. 7.

9. Заключение. Рассмотрена плоская задача теории упругости об идентификации неоднородности (полости или включения) в упругом теле. Разработан метод, позволяющий в случае, когда неоднородность занимает квадратурную область, определять ее узловые точки, представляющие собой полюсы функции Шварца. Рассмотрен ряд численных примеров, иллюстрирующих полученные теоретические результаты. Представлен также пример, в котором область, занимаемая неоднородностью, не является квадратурной и множество особых точек функции Шварца занимает некоторую кривую. В этом случае получаемый с помощью разработанного метода дискретный набор особенностей принадлежит особому множеству функции Шварца и с увеличением числа искомых особенностей начинает аппроксимировать множество особенностей функции Шварца.

Часть из представленных в статье результатов в краткой форме изложена в публикации [20].

Работа выполнена по теме государственного задания (№ госрегистрации 123021700050-1).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Andrieux S., Ben Abda A.* Identification of planar cracks by complete overdetermined data: inversion formulae // Inverse Probl. 1996. V. 12. P. 553–563.
- 2. Andrieux S., Ben Abda A., Bui H. Reciprocity principle and crack identification // Inverse Probl. 1999. V. 15. P. 59–65.
- 3. Goldstein R.V., Shifrin E.I., Shushpannikov P.S. Application of invariant integrals to the problems of defect identification // Int. J. Fract. 2007. V. 147. P. 45–54. https://doi.org/10.1007/978-1-4020-6929-1 6
- 4. *Шифрин Е.И.* Идентификация эллипсоидального дефекта в упругом теле по результатам одного испытания на одноосное растяжение (сжатие) // Изв. РАН. МТТ. 2010. № 3. С. 131—142.
- 5. Shifrin E.I., Shushpannikov P.S. Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional // Inverse Probl. 2010. V. 26. 055001. https://doi.org/10.1088/0266-5611/26/5/055001
- 6. Shifrin E.I., Shushpannikov P.S. Identification of an ellipsoidal defect in an elastic solid using boundary measurements // Int. J. Solids Struct. 2011. V. 48. № 7–8. P. 1154–1163. https://doi.org/10.1016/j.ijsolstr.2010.12.016
- 7. *Shifrin E.I.*, *Shushpannikov P.S*. Identification of small well-separated defects in an isotropic elastic body using boundary measurements // Int. J. Solids Struct. 2013. V. 50. № 22–23. P. 3707–3716. https://doi.org/10.1016/j.ijsolstr.2013.07.009
- 8. Shifrin E.I., Kaptsov A.V. Identification of multiple cracks in 2D elasticity by means of the reciprocity principle and cluster analysis // Inverse Probl. 2018. V. 34. 015009. https://doi.org/https://doi.org/10.1088/1361-6420/aa9d74
- 9. *Davis P.J.* The Schwarz function and its applications. The Carus Mathematical Monographs 17. Mathematical Association of America. 1974.
- 10. Aharonov D., Shapiro H.S. Domains on which analytic functions satisfy quadrature identities // J. d'Analyse Math. 1976. V. 30. P. 39–73.
- 11. Gustafsson B. Quadrature identities and the Schottky double // Acta Appl. Math. 1983. V. 1. P. 209–240.
- 12. Bell S.R. Quadrature domains and kernel function zipping // Arkiv mat. 2005. V. 43. P. 271–287.
- 13. *Bell S.R.* Density of quadrature domains in one and several complex variables // Complex Var. Elliptic Equ. 2009. V. 54. № 3–4. P. 165–171.

- 14. *Ameur Y., Helmer M., Tellander F.* On the uniqueness problem for quadrature domains // Comput. Methods Funct. Theory. 2021. V. 21. P. 473–504. https://doi.org/10.1007/s40315-021-00373-w
- 15. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 708 с.
- 16. *Golub G.H.*, *Milanfar P.*, *Varah J.* A stable numerical method for inverting shape from moments // SIAM J. Sci. Comput. 1999. V. 21. № 4. P. 1222–1243. https://doi.org/10.1137/S1064827597328315
- 17. *El Badia A., Ha-Duong T.* An inverse source problem in potential analysis // Inverse Probl. 2000. V. 16. № 3. P. 651–663. https://doi.org/10.1088/0266-5611/16/3/308
- 18. *Kang H., Lee H.* Identification of simple poles via boundary measurements and an application of EIT // Inverse Probl. 2004. V. 20. № 6. P. 1853–1863. https://doi.org/10.1088/0266-5611/20/6/010
- 19. Lee S.-Y., Makarov N.G. Topology of quadrature domains // J. Am. Math. Soc. 2016. V. 29. P. 333—369.
- Шифрин Е.И., Капцов А.В. Идентификация узловых точек упругого включения в упругой плоскости // Доклады РАН. Математика, информатика, процессы управления. 2023. Т. 509. С. 77–82.

https://doi.org/10.31857/S268695432370011X