УДК 517.958:536.2

РАСЧЕТЫ СЖАТИЯ СФЕРИЧЕСКОЙ СЛОИСТОЙ СИСТЕМЫ УДАРНЫМИ ВОЛНАМИ С УЧЕТОМ ПЕРЕНОСА ТЕПЛОВОГО ИЗЛУЧЕНИЯ В КИНЕТИЧЕСКОЙ МОДЕЛИ

© 2023 г. С. А. Грабовенская^{*a*}, В. В. Завьялов^{*a*,*}, А. А. Шестаков^{*a*}

^а Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт технической физики им. акад. Е.И. Забабахина, Снежинск, Россия

> **e-mail: zvv68@vk.com* Поступила в редакцию 25.10.2022 г. После доработки 28.02.2023 г. Принята к публикации 28.02.2023 г.

В настоящее время численное моделирование является основным, а зачастую и единственным инструментом для детального описания некоторых физических явлений при исследовании процессов сжатия веществ ударными волнами. Изучение поведения ударных волн и волн разряжения на простейших модельных тестах помогает при анализе более сложных расчетов, например, задач инерциального термоядерного синтеза на лазерных установках. В работе рассмотрены сравнительные расчеты тестовой задачи, моделирующей сжатие ударными волнами сферической слоистой системы, состоящей из двух веществ.

Ключевые слова: слоистые системы, ударные волны, лучистый перенос **DOI:** 10.31857/S102470842260083X, **EDN:** WJWGBS

Одним из направлений работ при исследовании процессов имплозии на лазерных установках является развитие технологии проведения численного моделирования мишеней для оптимизации постановки экспериментов с целью достижения условий термоядерного зажигания мишеней и получения новых экспериментальных данных. Так как аналитическое описание нелинейных процессов взаимодействия лазерного излучения с плазмой в большинстве задач затруднено, большую роль в изучении этих процессов играет математическое моделирование процессов имплозии. Особое место в теории нелинейных процессов занимают режимы с обострением — задачи, допускающие неограниченные решения в течение конечного промежутка времени. Такие режимы рассматривались отдельно для теплопроводности или газодинамики и использовались для изучения поведения экстремальных решений [1]. К ним относятся безударное сжатие в газовой динамике, задачи теплового взрыва, процессы кумуляции ударных волн и др. Моделирование совместной системы переноса излучения с газодинамикой может существенно влиять на поведение решений таких задач, в частности, сделать неограниченные решения ограниченными, но с дельтаобразным поведением основных величин. Поэтому возникает интерес к процессам, близким к режимам с обострением, но с одновременным учетом переноса излучения и газодинамики.

В работе [2] для тестирования многомерных программ, описывающих процессы радиационной газовой динамики (РГД), была предложена задача, моделирующая сжатие простейшей сферической слоистой системы, состоящей из двух веществ, и названная в дальнейшем "пульсар". Особенностью задачи является резкое возрастание плотности при сжатии ударными волнами вещества в центре. При этом максимальная плотность достигается после прохождения третьей ударной волны. Такие режимы, когда средние плотности веществ вырастают на несколько порядков, по-видимому, можно отнести к задачам с обострением [1]. Задачи на сверхсильное сжатие, когда плотность вещества возрастает под воздействием ударных волн, называют сжатием с усилением [3], в отличие от задач, где максимальное сжатие вещества достигается после прохождения первой ударной волны с последующим затуханием амплитуды максимальной плотности.

Задача о сходящейся сферической ударной волне (УВ) была впервые решена немецким ученым Гудерлеем, работавшим в Лос-Аламосе в 1942 г. [4], и независимо от него Л.Д. Ландау и К.П. Станюковичем в 1944 г. [5]. В общей форме описание сферической УВ есть в книгах [6, 7]. В момент прихода УВ в центр происходит ее фокусировка и отражение от центра. При учете теп-

ГРАБОВЕНСКАЯ и др.

лопереноса вблизи фокусировки сходящейся УВ растут температурные градиенты, поэтому теплопроводность и излучение становятся ведущими механизмами диссипации энергии. Задача о сходящейся сферической УВ с учетом лучистой теплопроводности была решена Е.И. Забабахиным и В.А. Симоненко в 1965 г. [8], которые показали, что теплопроводность видоизменяет характер движения: вместо конечной плотности и бесконечной температуры возникают бесконечная плотность и конечная температура. За счет теплопроводности перед УВ появляется зона прогрева, в которой газ не только нагревается, но и начинает двигаться и уплотняться. Фронт этой зоны называют тепловым предвестником. Результаты этой работы были подтверждены численными расчетами, проведенными в работе [9], для сильной сходящейся сферической ударной волны с учетом нелинейной теплопроводности."

Неограниченную кумуляцию можно получить и другими способами. В работе [10] показано, что в слоистой системе из чередующихся легких и тяжелых плоских слоев можно получить возрастание плотности и давления. Описание движения УВ в слоистой системе намного сложнее, чем в однородной среде, поэтому моделирование таких систем проводится, в основном, численными методами. В сферической слойке степень кумуляции значительно выше, чем в плоской, поскольку УВ усиливается за счет суммы двух факторов: сферичности и слоистости.

В работе [3] рассмотрены задачи, моделирующие сжатие ударными волнами сферической слоистой системы, состоящей из нескольких веществ, при совместном счете лучистой теплопроводности и газодинамики. До выхода на стационарный режим основные газодинамические величины (температура, плотность, давление и скорости границ веществ) являются осциллирующими функциями. Возникающие под воздействием сильных ударных волн осцилляции всех величин очень резкие и для их качественного воспроизведения требуются достаточно прецизионные методы. В работе [3] приведены различные варианты задач с усилением при подвижной и неподвижной внешней границе, а также с вариацией граничных давлений и температур.

Данная статья посвящена решению одной из задач на сжатие с усилением из работы [3]. В отличие от [3], где она решалась в приближении лучистой теплопроводности, перенос излучения рассматривается в кинетической модели. Достоинством решаемой задачи является то, что при выходе на стационарный режим она имеет точное решение, а это позволяет сравнивать различные методики, моделирующие процессы РГД. Однако нестационарное точное решение данной задачи авторам не известно, поэтому вызывают интерес нахождение времен прихода ударной (SW – shock wave) и тепловой (HW – heat wave) волн в центр сферы и определение максимумов плотности и температуры, достигаемых при сверхсильном сжатии. Для нахождения максимальных значений плотности и температуры проведены расчеты на сгущающихся сетках.

Для сравнения в настоящей работе приведены результаты расчетов теста "пульсар" по трем схемам TVDR (Total Variation Diminishing Reconstruction), DDAD/St (Diamond Difference with the Artificial Dissipation) и St (Step). Хотя используемые разностные схемы построены на принципиально разных подходах, они, оставаясь в рамках Sn-метода, позволяют использовать экономичный алгоритм бегущего счета.

St-схема [11] является линейной положительной монотонной схемой первого порядка аппроксимации.

В TVDR-схеме [12, 13] методология TVD применяется для построения нелинейной реконструкции повышенного порядка аппроксимации (выше первого) по пространству искомой функции с сохранением положительности решения.

В DDAD/St-схеме предлагается улучшить монотонность схемы второго порядка аппроксимации по пространству за счет искусственной диссипации [14, 15]. Результаты по схеме DDAD/St для краткости в дальнейшем будем обозначать как DDAD.

Схемы повышенного порядка аппроксимации по пространству TVDR и DDAD позволяют получать удовлетворительные результаты на более грубых сетках, однако на осциллирующих решениях это может приводить к плохой сходимости итераций. Монотонные схемы первого порядка аппроксимации типа St-схемы, как правило, позволяют сделать итерационные процессы более устойчивыми. Для организации итерационного процесса применяется метод ВДЭПФ [15]. Аппроксимация по времени в применяемых схемах осуществляется с первым порядком точности.

Целями работы являются

1. нахождение максимальных значений плотностей и температур как в центре сферы, так и их средних значений по областям;

2. определение времен прихода ударной и тепловой волн в центр;

3. сравнение температуры вещества и радиационной температуры в центре.

1. СИСТЕМА УРАВНЕНИЙ РГД

Система уравнений РГД [7, 16] расщепляется по физическим процессам и на каждом шаге по времени моделируется в два этапа. На первом этапе решаются уравнения газовой динамики

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{u} = 0,$$

$$\rho \frac{d\mathbf{u}}{dt} + \nabla P = 0,$$

$$\rho \frac{dE}{dt} + P \nabla \cdot \mathbf{u} = 0.$$

Здесь t – время, ρ – плотность, **u** – вектор газодинамической скорости, $E(\rho, T)$ – удельная внутренняя энергия, T – температура вещества, $P = p + p_r$ – полное давление, $p(\rho, T)$ – газодинамическое давление, $p_r = \frac{\sigma T_r^4}{3}$ – давление излучения, $T_r = \sqrt[4]{\frac{1}{c\sigma_{\Omega}} Id\Omega}$ – радиационная температура, σ – постоянная Стефана-Больцмана, c – скорость света, $I(\mathbf{r}, \Omega, t)$ – интенсивность излучения в момент времени t в направлении Ω .

Газодинамическое движение рассчитывается в эйлерово-лагранжевой системе координат по методике [17].

На втором этапе решается система уравнений переноса теплового излучения для поглощающей и рассеивающей среды

$$\frac{\rho d}{c dt} \left(\frac{I}{\rho} \right) + \Omega \nabla I + \left(\alpha_c + \alpha_s \right) I = \frac{\alpha_c}{4\pi} B + \frac{\alpha_s}{4\pi} \int_{\Omega} I d\Omega,$$
$$\rho \frac{dE}{dt} = \alpha_c \left(\int_{\Omega} I d\Omega - B \right).$$

Здесь $\alpha_c(\rho, T)$ – коэффициент поглощения, $\alpha_s(\rho, T)$ – коэффициент рассеивания, $B(T) = c\sigma T^4$.

2. ПОСТАНОВКА ЗАДАЧИ

Шар радиусом $0 \le r \le R_2 = 0.6$ см состоит из 2 физических областей (табл. 1). Внутренняя область 1 ($0 \le r \le R_1 = 0.5$) состоит из вещества с плотностью $\rho_1 = 0.02$ г/см³, внешняя область 2 ($R_1 \le r \le R_2$) из вещества с плотностью $\rho_2 = 1$ г/см³. Уравнение состояния вещества E = 0.81 *T* и $P = 0.54\rho T$. Начальная температура всей системы T = 0.00001 кэВ, начальные скорости $\mathbf{u} = 0$. На внешней границе задано давление $P = 10^7$ Бар и температура T = 0.1 кэВ. В обоих областях –

$$\alpha_{c} = \frac{\rho}{5} \left[\left(1 + \frac{8.65}{\rho^{2/3} T^{2}} \right)^{3/2} - 1 \right] c m^{-1}, \alpha_{s} = \frac{\rho}{5} c m^{-1}.$$

До выхода на стационарный режим все величины являются осциллирующими функциями, и при $t \to \infty$ решение задачи выходит на постоянные значения

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Расчеты проводились по двумерной программе в цилиндрических координатах на сгущающихся по обоим направлениям сетках до времени достижения максимальной средней плотности в первой области t = 0.12 мкс. Константа сходимости итераций по температуре полагалась

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 4 2023

Номер области	1	2
Начальная плотность р ⁰	0.02	1
Конечная плотность ρ_{st}	1.851	1.851
Начальные радиусы <i>R</i> _{1,2}	0.5	0.6
Конечные радиусы $R_{1,2,st}$	0.11	0.37
Число ячеек на сетке N	25×8	100×8
Число ячеек на сетке 2N	50 × 15	200×15
Число ячеек на сетке 4N	100×30	400×30

Таблица 1. Состав системы

Схема	Сетка	$T_{\max}(t_{\max})$	$\Delta T_{\rm max}$	$\rho_{\max}(t_{\max})$	Δho_{max}	t _{HW}	Δt_{HW}	t _{SW}	Δt_{SW}
St	Ν	0.361 (1.105)	-11.3%	57.47 (1.171)	-40.9%	0.425	-34.4%	0.840	2.8%
St	2N	0.386 (1.143)	-5.2%	74.41 (1.175)	-7.5%	0.466	-28.1%	0.837	2.4%
St	4N	0.403 (1.137)	-0.93%	80.91 (1.175)	0.6%	0.490	-24.4%	0.825	0.98%
DDAD	Ν	0.409 (1.136)	0.49%	79.72 (1.171)	-0.9%	0.585	-12.8%	0.761	-6.9%
DDAD	2N	0.406 (1.133)	-0.25%	78.14 (1.170)	-1.7%	0.633	-2.3%	0.818	0.1%
DDAD	4N	0.407 (1.129)	0	79.69 (1.165)	-0.9%	0.651	0.46%	0.816	-0.1%
TVDR	Ν	0.408 (1.137)	0.25%	78.46 (1.172)	-2.4%	0.528	-18.5%	0.802	-1.8%
TVDR	2N	0.407 (1.132)	0	79.51 (1.168)	-1.1%	0.610	-5.9%	0.819	0.2%
TVDR	4N	0.407 (1.129)	0	80.42 (1.165)	0	0.648	0	0.817	0

Таблица 2. Результаты расчетов

равной 10^{-6} , квадратура по направлениям полета частиц — ES_{16} . Шаг по времени варьировался, исходя из поведения решения, но не превышал 1 пс.

С момента прихода первой ударной волны в центр сферы после лагранжева этапа на каждом временном шаге в области 1 строилась равномерная по радиусу сетка, на которую пересчитывались все термодинамические величины.

Максимальные значения основных газодинамических величин (температуры, давления и плотности) достигаются в центре области 1. Так как система является оптически плотной, температуры вещества и радиационной температуры по областям совпадают и их отличие наблюдается только в центре в моменты максимального сжатия.

Результаты расчетов, а именно, времена достижения максимумов *t*_{max} для средней температуры T_{\max} и средней плотности ρ_{\max} в области 1, времена прихода тепловой t_{HW} и ударной волн t_{SW} в центр сферы и их отличия Δ в процентах от результатов по схеме TVDR на сетке 4N приведены в табл. 2. Средняя плотность и температура вещества вычисляются по формулам $\rho =$

 $= \sum_{i=1}^{N} \rho_{i} V_{i} / \sum_{i=1}^{N} V_{i}, T = \sum_{i=1}^{N} T_{i} M_{i} / \sum_{i=1}^{N} M_{i},$ где N – число ячеек разностной сетки, ρ_{i}, T_{i} – величины в центре ячейки, V_{i}, M_{i} – объем и масса ячейки.

Из таблицы видно, что расчеты на сетке 4N показали достаточно хорошее согласие (менее 1%) по максимумам средних величин в схемах St, TVDR и DDAD. На этой же сетке времена прихода тепловой и ударной волн в схемах TVDR и DDAD дают отличие менее 0.5%. Наибольшие отличия наблюдаются во временах прихода тепловой волны в расчетах по St схеме. Даже на сетке 4N эти расчеты дают отличие более 20%.

На рис. 1, 2 приведены зависимости от времени средних по областям плотности и температуры. Результаты по схеме DDAD на этих рисунках не приводятся, так как они визуально не различимы со схемой TVDR.

2023

Рис. 1. Средняя температура по схемам St и TVDR на сетке 4N; 1 область: штрихпунктирная – St, сплошная – TVDR; 2 область: точечная – St, штриховая – TVDR.

Рис. 2. Средняя плотность по схемам St и TVDR на сетке 4N; 1 область: штрихпунктирная – St, сплошная – TVDR; 2 область: точечная – St, штриховая – TVDR.

Из рис. 1 видно, что наибольшее отличие наблюдается при прогреве первой области, где разница между схемами St и TVDR в момент времени t = 0.07 мкс достигает 20%. Однако в момент достижения максимума средней температуры разница уменьшается до 1%.

Из рис. 2 следует, что наибольшее отличие между схемами наблюдается в момент первого пика по плотности в первой области t = 0.1 мкс и достигает 30%. Максимальные температуры отличаются менее 1%.

Как показано в работе [3] рассматриваемая система является оптически плотной, поэтому средние по областям температуры вещества и излучения не отличаются на протяжении всего времени счета. Однако в отдельных точках, в частности, в центральной точке температуры могут отличаться очень сильно, т.е. происходит "отрыв" температур. "Отрыв" наблюдается во всех схемах в моменты прихода ударных волн в центр и представлен на рис. 3.

Из рис. 3 вытекает, что температура вещества практически мгновенно за время $\Delta t \approx 0.3$ нс вырастает на первом пике в центральной точке более чем в 10 раз с $T \approx 0.2$ кэВ до $T \approx 2.5$ кэВ и пре-

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 4 2023

Рис. 3. Температура вещества и радиационная температура в центре на сетке 4N по схеме TVDR: точечная – температура вещества, сплошная – радиационная температура.

Рис. 4. Температура вещества и радиационная температура в центре на сетке 4N по схемам St, TVDR и DDAD: сплошная – St, штриховая – TVDR, точечная – DDAD.

вышает радиационную температуру $T_r \approx 0.6$ кэВ более чем в 4 раза. Так как "отрыв" температур происходит в центре в нескольких точках и за очень короткий промежуток времени, он практически не сказывается на общий характер движения и средние по веществам величины.

Наиболее чувствительными к порядку аппроксимации схем являются времена прихода первых тепловой и ударной волн в центр системы. На рис. 4, 5 представлены зависимости от времени температуры и плотности вещества в центральной точке для сравнения времен прихода первых тепловой и ударной волн по схемам St, TVDR и DDAD.

Из рис. 4 видно, что тепловые волны, полученные по схемам TVDR и DDAD, немного отличаются (примерно на 0.1%), и тепловая волна, описываемая St-схемой, значительно опережает волны, полученные по схемам повышенного порядка аппроксимации. Для получения времени прихода по St-схеме, совпадающим с временем по схемам TVDR и DDAD, необходима разностная сетка на два порядка подробнее.

Из рис. 5 видно, что плотность вещества за время $\Delta t \approx 1$ нс вырастает в центральной точке более чем в 10⁴ раз с $\rho \approx 0.02$ г/см³ до $\rho \approx 350$ г/см³, и ударная волна, полученная с использованием

Рис. 5. Плотность вещества в центре на сетке 4N по схемам St, TVDR и DDAD: сплошная – St, штриховая – TVDR, точечная – DDAD.

Рис. 6. Средние по первой области радиационные температуры на сетках N, 2N, 4N по схеме TVDR: штриховая – сетка N, точечная – сетка 2N, сплошная – сетка 4N.

St схемы, демонстрирует значительное отставание. Для получения удовлетворительного результата по St схеме необходима более подробная разностная сетка.

На рис. 4, 5 можно наблюдать, что максимальные плотности и температуры в центре значительно более чувствительны к разностной сетке и точности схемы, чем их средние величины. Для примера на рис. 6, 7 приведены зависимости от времени радиационных температур в центре и средних по первой области на сгущающихся сетках по схеме TVDR.

Рисунок 6 демонстрирует, что средние температуры на сгущающихся сетках близки между собой, и дальнейшее увеличение числа ячеек разностной сетки не требуется.

Из рис. 7 можно сделать вывод, что температуры в центральной точке отличаются сильнее, чем средние величины больше всего в моменты прихода тепловой и ударных волн в центр сферы. Для их описания желательно использовать схемы повышенного порядка аппроксимации. При увеличении числа ячеек разностной сетки наступает сходимость по времени прихода и амплитудам тепловых и ударных волн во всех рассмотренных схемах.

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 4 2023

Рис. 7. Радиационные температуры в центре на сетках N, 2N, 4N по схеме TVDR: штриховая – сетка N, точечная – сетка 2N, сплошная – сетка 4N.

ЗАКЛЮЧЕНИЕ

В работе рассмотрена задача, моделирующая сжатие ударными волнами с учетом излучения сферической системы, состоящей из двух веществ. Приведены результаты расчетов по трем схемам на нахождение максимальных значений плотностей и температур как в центре сферы, так и их средних значений по областям, а также определение времен прихода ударной и тепловой волн в центр.

В данной задаче плотность вещества за промежуток времени $\Delta t \approx 1$ нс возрастает в центральной точке более чем в 10⁴ раз, а температура вещества за промежуток времени $\Delta t \approx 0.3$ нс увеличивается более чем в 10 раз, и превышает в точке максимума радиационную температуру примерно в 4 раза, т.е. происходит "отрыв" температур. Такие режимы с обострением, когда плотности веществ вырастают на несколько порядков, предъявляют к численным методикам очень высокие требования. В подобных задачах даже, если средние по веществам плотности и температуры достаточно близки между собой, плотности и температуры в отдельных точках при имплозии могут существенно отличаться, особенно в моменты прихода тепловой и ударных волн.

В работе приведены результаты сравнительных расчетов по схемам повышенного порядка аппроксимации TVDR и DDAD, а также монотонной St-схеме первого порядка. Из представленных расчетов следует, что схемы повышенного порядка аппроксимации по пространству TVDR и DDAD показали достаточно хорошее согласие на сгущающихся сетках по максимумам средних величин (менее 1%). Данные по времени прихода тепловой и ударной волн в схемах TVDR и DDAD дают отличие менее 0.5%. Существенно большие отличия наблюдаются во временах прихода тепловой волны в расчетах по St схеме. Для получения времени прихода тепловой волны в St схеме, согласованного со схемами TVDR и DDAD, необходима сетка на два порядка подробнее, что приводит к существенному увеличению времени счета и затрат по памяти на ЭВМ.

Несмотря на то что рассматриваемая система является оптически плотной, модель лучистой теплопроводности дает заметно отличающиеся результаты. Так для сетки 4N в момент максимального сжатия отличие средней плотности в области 1 в приближении лучистой теплопроводности достигает 9.5%, максимальной средней температуры — 1.8%. Отличие времени прихода тепловой волны от кинетической модели примерно 2 нс, по времени прихода ударной волны — примерно 0.7 нс.

Рассмотренная задача и ее модификации могут быть использованы для исследования процессов сжатия веществ ударными волнами и тестирования методик РГД.

СПИСОК ЛИТЕРАТУРЫ

1. Самарский А.А., Галактионов В.А., Курдюмов В.П., Михайлов В.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987. С. 477.

- Шестаков А.А. Об одной тестовой задаче сжатия слоистой системы с учетом переноса излучения в различных приближениях // ВАНТ. Сер. Математическое моделирование физических процессов. 2017. Вып. 4. С. 25–31.
- 3. Шестаков А.А. Тестовые задачи на сжатие сферических слоистых систем ударными волнами // Математическое моделирование. 2020. Т. 32. № 12. С. 29–42.
- 4. *Guderley K.G.* Strake kugelige und zylindrische Verdichtutungsstosse in der Nane des Kugelmittelpunktes bzw. der Zylinderachse // Luftfahrtforschung. 1942. B. 19. Lfg 9. P. 302–312.
- 5. Ландау Л.Д., Станюкович К.П. Об изучении детонации конденсированных ВВ // ДАН СССР. 1945. Т. 46. № 9. С. 399-402.
- 6. Станюкович К.П. Неустановившиеся движения сплошной среды. М.: Гостехиздат, 1955. 804 с.
- 7. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 686 с.
- 8. *Забабахин Е.И., Симоненко В.А.* Сходящаяся ударная волна в теплопроводном газе // ПММ. 1965. Т. 29. Вып. 2. С. 334–336.
- 9. *Махмудов А.А., Попов С.П.* Влияние теплопроводности на сходящуюся к центру симметрии сильную ударную волну // ИЗВ.РАН. Механика жидкости и газа. 1980. № 2. С. 167–170.
- 10. Забабахин Е.И., Забабахин И.Е. Явления неограниченной кумуляции. М.: Наука, 1988, 173 с.
- 11. Карлсон Б. Численное решение задачи кинетической теории нейтронов. В кн.: Теория ядерных реакторов. М.: Атомиздат, 1963. С. 243–258.
- 12. Гаджиев А.Д., Завьялов В.В., Шестаков А.А. Применение TVD-подхода к DSn-методу решения уравнения переноса теплового излучения // ВАНТ. Сер. Математическое моделирование физических процессов. 2009. Вып. 2. С. 37–48.
- 13. Шестаков А.А. TVDR-схемы для решения системы уравнений переноса теплового излучения // ВАНТ. Сер. Математическое моделирование физических процессов. 2019. Вып. 2. С. 17–36.
- 14. Гаджиев А.Д., Кондаков И.А., Писарев В.Н., Стародумов О.И., Шестаков А.А. Метод дискретных ординат с искусственной диссипацией (DDAD-схема) для численного решения уравнения переноса нейтронов// ВАНТ. Сер. Математическое моделирование физических процессов. 2003. Вып. 4. С. 13–24.
- 15. Гаджиев А.Д., Селезнев В.Н., Шестаков А.А. DSn-метод с искусственной диссипацией и ВДМ-метод ускорения итераций для численного решения двумерного уравнения переноса теплового излучения в кинетической модели нейтронов // ВАНТ. Сер. Математическое моделирование физических процессов. 2003. Вып. 4. С. 33–46.
- 16. Суржиков С.Т. Тепловое излучение газов и плазмы. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 544 с.
- 17. Бисярин А.Ю., Грибов В.М., Зубов А.Д., Неуважаев В.Е., Первиненко Н.В., Фролов В.Д. Комплекс ТИГР для расчета двумерных задач математической физики // ВАНТ. Сер. Математическое моделирование физических процессов.1984. Вып. 3. С. 34–41.