УДК 532.5.031:532.591

ДЕЙСТВИЕ ПУЛЬСИРУЮЩЕГО ИСТОЧНИКА В ЖИДКОСТИ ПРИ НАЛИЧИИ СДВИГОВОГО СЛОЯ

© 2023 г. И.В. Стурова*

Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск, Россия *E-mail: sturova@hvdro.nsc.ru

> Поступила в редакцию 10.01.2023 г. После доработки 28.02.2023 г. Принята к публикации 28.02.2023 г.

Решена двумерная нестационарная задача о развитии волнового движения в двухслойной жидкости конечной глубины, ограниченной сверху свободной поверхностью. Рассмотрены случаи, когда в невозмущенном состоянии один из слоев покоится, а в другом (приповерхностном или придонном) горизонтальная скорость потока линейно меняется по глубине. Определены дисперсионные зависимости и групповые скорости трех волновых мод, возникающих при наличии сдвигового потока. Вычислены вертикальные смещения свободной поверхности, вызванные включением пульсирующего источника, расположенного в изначально неподвижном слое жидкости. Задача рассматривается в линейной постановке, жидкость предполагается идеальной и несжимаемой.

Ключевые слова: поверхностные волны, пульсирующий источник, сдвиговые течения **DOI:** 10.31857/S102470842360001X, **EDN:** WKLCAS

В линейной постановке достаточно полно исследованы процессы генерации, развития и распространения поверхностных волн, вызванных различными подводными возмущениями для покоящейся в невозмущенном состоянии среде или в потоке жидкости, текущей с постоянной по глубине скоростью [1–3]. Однако в реальных условиях часто имеет место изменение скорости и направления основного потока жидкости по глубине. Обзор исследований о взаимодействии поверхностных волн и сдвиговых течений дан в [4, 5]. Учет произвольного изменения скорости течения по глубине даже в двумерном случае является довольно сложной задачей. Одним из наиболее распространенных способов приближенного учета сдвигового течения является его кусочно-линейная аппроксимация с условием непрерывности скоростей на границе слоев. Большое число подобных исследований было выполнено в Морском гидрофизическом институте АН УССР [6].

Одним из наиболее простых примеров сдвигового течения с непостоянной завихренностью является двухслойная жидкость со свободной поверхностью, в верхнем слое которой имеется линейный сдвиговой поток, а нижний слой покоится. Исследование дисперсионных свойств волнового движения при бесконечно глубоком нижнем слое выполнено в [7], а для жидкости конечной глубины — в [8]. В [9] показано, что рассматриваемое течение становится неустойчивым для некоторой области волновых чисел при достаточно больших скоростях сдвигового течения на свободной поверхности.

В данной работе исследовано волновое движение, вызываемое включением пульсирующего источника, расположенного в слое первоначально покоящейся жидкости. Рассмотрено два варианта сдвигового потока: приповерхностный или придонный. Задача о развитии волнового движения при отсутствии сдвигового потока подробно исследована в [10, 11]. Показано, что при наличии сдвиговых потоков структура волнового движения существенно меняется.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим горизонтальный слой однородной невязкой несжимаемой жидкости постоянной глубины *H*, ограниченной сверху свободной поверхностью, а снизу ровным горизонтальным дном. В невозмущенном состоянии часть жидкости находится в покое, а в верхнем либо в ниж-

Рис. 1. Схема течения в невозмущенном состоянии для первого (а) и второго (б) случаев.

нем слое толщины *h* имеется сдвиговое течение с линейным профилем скорости (рис. 1). В первом случае (а) горизонтальная скорость в верхнем слое равна $U(y) = U_0 y/h$, а во втором случае (б) – в нижнем придонном слое $U(y) = -U_0(y + H_1)/h$. Система декартовых координат *x*, *y* введена так, что горизонтальная ось *x* в первом случае совпадает с невозмущенной границей между сдвиговым и покоящимся слоями, а во втором случае – с невозмущенной свободной поверхностью, ось *y* направлена вертикально вверх. Толщина покоящегося слоя равна H_1 , и полная глубина жидкости составляет $H = H_1 + h$.

Предполагается, что в покоящемся слое жидкости в момент времени t = 0 в точке x = 0, y = -l, $0 < l < H_1$, начинает работать точечный массовый источник, пульсирующий по гармоническому закону с мощностью $Q(t) = Q_0 \sin(\Omega t)$. Движение жидкости в первоначально покоящемся слое предполагается потенциальным всюду, кроме точки локализации источника.

Задача решается в линейной постановке, и далее случаи верхнего и нижнего сдвигового слоя будут рассматриваться отдельно.

1.1. Верхний сдвиговой слой

Линеаризованные уравнения Эйлера в сдвиговом слое имеют вид

$$\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right) \mathbf{v} + v \frac{d\mathbf{V}}{dy} + \frac{\nabla p_1}{\rho} = 0, \quad \text{div}\mathbf{v} = 0 \quad (|x| < \infty, 0 \le y \le h)$$
(1.1)

где $\mathbf{V} = (U(y), 0)$ – вектор скорости основного потока, $U(y) = U_0 y/h$, $\mathbf{v} = (u, v)$ – возникающие возмущения скорости жидкости, которые предполагаются малыми, p_1 – динамический добавок давления, ρ – плотность жидкости.

При наличии линейного сдвига продольной скорости основного течения компоненты волнового движения можно представить в виде [12]

$$u(x, y, t) = U(y) + \partial \phi_1 / \partial x, \quad v(x, y, t) = \partial \phi_1 / \partial y$$

где функция $\phi_1(x, y, t)$ удовлетворяет уравнению Лапласа

$$\partial^2 \phi_1 / \partial x^2 + \partial^2 \phi_1 / \partial y^2 = 0 \quad (|x| < \infty, 0 \le y \le h)$$
(1.2)

Кинематическое и динамическое условия на свободной поверхности жидкости имеют вид

$$\partial \eta / \partial t + U_0 \partial \eta / \partial x = v, \quad \rho g \eta = p_1 \quad (y = h)$$
 (1.3)

где $\eta(x,t)$ – вертикальное смещение свободной поверхности, g – ускорение свободного падения.

В слое первоначально покоящейся жидкости потенциал скорости возмущенного течения $\Phi(x, y, t)$ представим в виде, аналогичном [10]

$$\Phi(x, y, t) = \Phi_0(x, y, t) + \phi_2(x, y, t) \quad (|x| < \infty, -H_1 \le y \le 0)$$
(1.4)

где

$$\Phi_0(x, y, t) = \frac{Q(t)}{2\pi} \ln \sqrt{x^2 + (y+l)^2}$$
(1.5)

потенциал скорости течения, создаваемого точечным пульсирующим источником в безграничной жидкости. Функция $\phi_2(x, y, t)$ удовлетворяет уравнению Лапласа

$$\partial^2 \phi_2 / \partial x^2 + \partial^2 \phi_2 / \partial y^2 = 0 \quad (|x| < \infty, -H_1 \le y \le 0)$$
(1.6)

На границе раздела между верхним и нижним слоями выполняются условия непрерывности вертикальной скорости и давления

$$\partial \phi_1 / \partial y = \partial \Phi / \partial y, \quad p_1 = -\rho \partial \Phi / \partial t \quad (y = 0)$$
 (1.7)

а на ровном горизонтальном дне – условие непротекания

$$\partial \Phi / \partial y = 0 \quad (y = -H_1)$$
 (1.8)

В начальный момент времени волновые возмущения отсутствуют

$$\phi_1 = \phi_2 = 0, \quad \eta = \partial \eta / \partial t = 0 \quad (t = 0) \tag{1.9}$$

1.2. Придонный сдвиговой слой

В верхнем первоначально покоящемся слое жидкости потенциал скорости $\Psi(x, y, t)$ ищем в виде, аналогичном (1.4)

$$\Psi(x, y, t) = \Phi_0(x, y, t) + \psi_1(x, y, t) \quad (|x| \le \infty, -H_1 \le y \le 0)$$

где функция $\Phi_0(x, y, t)$ задана в (1.5), и функция $\psi_1(x, y, t)$ удовлетворяет уравнению Лапласа.

В нижнем слое ($-H \le y \le -H_1$), в котором имеет место сдвиговое течение $U(y) = -U_0(y+H_1)/h$, выполняются линеаризованные уравнения Эйлера, аналогичные (1.1) и компоненты скорости волнового движения ищем в виде

$$u(x, y, t) = U(y) + \partial \psi_2 / \partial x, \quad v(x, y, t) = \partial \psi_2 / \partial y$$

где функция $\psi_2(x, y, t)$ удовлетворяет уравнению Лапласа.

Граничные условия на свободной поверхности жидкости имеют вид

$$\partial \eta / \partial t = \partial \Psi / \partial y, \quad g \eta + \partial \Psi / \partial t = 0 \quad (y = 0)$$
 (1.10)

На границе раздела между слоями имеем

$$\frac{\partial \Psi}{\partial y} = \frac{\partial \Psi_2}{\partial y}, \quad \frac{\partial^2 \Psi}{\partial x \partial t} = \frac{\partial^2 \Psi_2}{\partial x \partial t} - \frac{U_0}{h} \frac{\partial \Psi_2}{\partial y} \quad (y = -H_1)$$
(1.11)

а на дне

$$\partial \psi_2 / \partial y = 0 \quad (y = -H)$$
 (1.12)

Начальные условия аналогичны (1.9).

2. МЕТОД РЕШЕНИЯ

Для решения начально-краевых задач, сформулированных в п. 1, используем преобразования Фурье и Лапласа в виде

$$\overline{\phi}_{1}(k, y, s) = \int_{0}^{\infty} e^{-st} \int_{-\infty}^{\infty} \phi_{1}(x, y, t) e^{-ikx} dx dt$$

Аналогичные преобразования вводятся для остальных искомых функций.

Функции $\phi_{1,2}(x, y, t)$ удовлетворяют уравнению Лапласа (1.2), (1.6), которое после преобразования Фурье принимает вид

$$\partial^2 \overline{\phi}_{1,2} / \partial y^2 - k^2 \overline{\phi}_{1,2} = 0$$

Аналогичное соотношение имеет место и для функций $\overline{\Psi}_{1,2}(k,y)$.

В случае 1 решения для функций $\overline{\phi}_1(k, y, s)$ и $\overline{\phi}_2(k, y, s)$ ищем в виде

$$\overline{\phi}_1 = C_1 \operatorname{sh}\left[|k|(h-y)\right] + D_1 \operatorname{ch}\left[|k|(h-y)\right] \quad (0 \le y \le h)$$
$$\overline{\phi}_2 = C_2 \operatorname{sh}\left(|k|y\right) + D_2 \operatorname{ch}\left(|k|y\right) \quad (-H_1 \le y \le 0)$$

а для случая 2 – в виде

$$\overline{\Psi}_{1} = C_{3} \mathrm{sh}(|k|y) + D_{3} \mathrm{ch}(|k|y) \quad (-H_{1} \le y \le 0)$$
(2.1)

$$\overline{\Psi}_2 = C_4 \mathrm{sh}[|k|(y+H_1)] + D_4 \mathrm{ch}[|k|(y+H_1)] \quad (-H \le y \le -H_1)$$
(2.2)

где функции $C_i(k,s)$, $D_i(k,s)$ (j = 1-4) являются неизвестными.

При вычислении преобразования Фурье для функции $\Phi_0(x, y, t)$ и ее производных по x и y использованы результаты [10]. Выполняя преобразование Лапласа для функции Q(t), получим

$$\int_{0}^{\infty} Q(t)e^{-st}dt = \frac{Q_0\Omega}{s^2 + \Omega^2}$$

В случае 1 неизвестные функции $\overline{\eta}(k,s)$, $C_j(k,s)$, $D_j(k,s)$ (j = 1,2) определяются из системы пяти алгебраических уравнений, вытекающих из граничных условий (1.3), (1.4), (1.7) и (1.8)

$$(s + ik U_0)\overline{\eta} + |k|C_1 = 0$$

$$g\overline{\eta} + i\gamma C_1 + (s + ik U_0)D_1 = 0$$

$$C_1 ch(|k|h) + D_1 sh(|k|h) + C_2 = -\Lambda e^{-|k|/l}$$

$$C_1 \left[(sh(|k|h) + \frac{i\gamma}{s} ch(|k|h) \right] + D_1 \left[ch(|k|h) + \frac{i\gamma}{s} sh(|k|h) \right] - D_2 = -\Lambda e^{-|k|/l}$$

$$C_2 ch(|k|H_1) - D_2 sh(|k|H_1) = \Lambda e^{-|k|(H_1 - l)}$$
(2.3)

где

$$\gamma = \frac{U_0}{h} \operatorname{sgn} k, \quad \Lambda = \frac{Q_0 \Omega}{2|k|(s^2 + \Omega^2)}$$
(2.4)

Решение системы уравнений (2.3) для $\overline{\eta}(k,s)$ имеет вид

$$\overline{\eta} = Q_0 \Omega \frac{[1 + e^{-2|k|(H_1 - l)}]e^{-|k|(l+h)}}{1 + e^{-2|k|H}} \frac{s(s + ikU_0)}{(s^2 + \Omega^2)P_1(k, s)}$$

Здесь $P_1(k, s)$ – полином третьей степени

$$P_1(k,s) = s^3 + ia_1s^2 + a_2s + ia_3$$
(2.5)

где

$$a_{1}(k) = 2kU_{0} + \gamma[b_{+} - \text{th}(|k|H)]$$
(2.6)

$$a_{2}(k) = g[k] \operatorname{th}([k]H) + \gamma[kU_{0}(\operatorname{th}([k]H) - 2b_{+}) + \gamma b_{-}] - k^{2}U_{0}^{2}$$
(2.7)

$$a_{3}(k) = \gamma [k U_{0}(\gamma b_{-} - k U_{0} b_{+}) + g |k| b_{-}]$$
(2.8)

$$b_{\pm}(k) = (1 \pm e^{-2|k|h}) \frac{1 - e^{-2|k|H_1}}{2(1 + e^{-2|k|H})}$$
(2.9)

Полином $P_1(k, s)$ представим в виде

$$P_1(k,s) = \prod_{n=1}^3 (s-s_n)$$

где $s_n(k)(n = 1 - 3)$ корни уравнения $P_1(k, s) = 0$.

СТУРОВА

После выполнения обратных преобразований Лапласа и Фурье получим решение для отклонения свободной поверхности от ее равновесного положения

$$\eta(x,t) = \frac{Q_0 \Omega}{\pi} \int_0^{\infty} \frac{1 + e^{-2k(H_1 - l)}}{1 + e^{-2kH}} e^{-k(l+h)} [A_1(k,t)\cos kx - B_1(k,t)\sin kx] dk$$
(2.10)

где $A_{l}(k,t)$ и $B_{l}(k,t)$ соответственно вещественная и мнимая части суммы $\sum_{n=1}^{3} \alpha_{n}(k) e^{s_{n}(k)t}$, $s_{4,5} = \pm i \Omega$.

Функции $\alpha_n(k)$ (n = 1-5) удовлетворяют равенству

$$\frac{s(s+ikU_0)}{(s^2+\Omega^2)P_1(k,s)} = \sum_{n=1}^{5} \frac{\alpha_n(k)}{s-s_n(k)}$$
(2.11)

и их определение сводится к решению системы пяти линейных алгебраических уравнений, получающихся из равенства числителей в левой и правой частях соотношения (2.11). При выводе (2.10) использовано свойство функций $s_n(k)$ (n = 1-3) и $\alpha_n(k)$ (n = 1-5), заключающееся в том, что их значения при k > 0 и k < 0 являются комплексно-сопряженными.

Аналогичным образом строится решение задачи и в случае 2. Используя для функций $\overline{\Psi}_{1}(k, v, s)$ и $\overline{\Psi}_{2}(k, v, s)$ представления (2.1) и (2.2), неизвестные функции $\overline{\eta}(k, s), C_{1}(k, s), D_{2}(k, s)$ (j = 3,4) определяются из системы уравнений, вытекающих из граничных условий (1.10) - (1.12)

$$s\overline{\eta} - |k|C_3 = |k|\Lambda e^{-|k|/l}$$

$$g\overline{\eta} + sD_3 = s\Lambda e^{-|k|/l}$$

$$C_3 \operatorname{ch}(|k|H_1) - D_3 \operatorname{sh}(|k|H_1) - C_4 = \Lambda e^{-|k|(H_1 - l)}$$

$$C_3 \operatorname{sh}(|k|H_1) - D_3 \operatorname{ch}(|k|H_1) + i\gamma C_4 / s + D_4 = -\Lambda e^{-|k|(H_1 - l)}$$

$$C_4 - D_4 \operatorname{th}(|k|h) = 0$$

где использованы обозначения (2.4). Решение этой системы уравнений для $\overline{\eta}(k,s)$ имеет вид

$$\overline{\eta} = Q_0 \Omega \frac{(1 + e^{-2|k|h})e^{-|k|l}}{1 + e^{-2|k|H}} \frac{s(cs+d)}{(s^2 + \Omega^2)P_2(k,s)}$$

где $P_{2}(k, s)$ — полином третьей степени

$$P_2(k,s) = s^3 + ib_1s^2 + b_2s + ib_3$$
(2.12)

$$b_1(k) = \gamma f_+, \quad b_2(k) = g|k| \text{th}(|k|H), \quad b_3(k) = g\gamma |k| f_-$$
 (2.13)

$$f_{\pm}(k) = (1 \pm e^{-2|k|H_1}) \frac{1 - e^{-2|k|h}}{2(1 + e^{-2|k|H})}$$
(2.14)

$$c(k) = \frac{1 + e^{-2|k|(H-l)}}{1 + e^{-2|k|h}}, \quad d(k) = 0.5i\gamma(1 + e^{-2|k|(H_1 - l)}) \operatorname{th}(|k|h)$$

Решение для возвышения свободной поверхности после выполнения обратных преобразований Лапласа и Фурье имеет вид

$$\eta(x,t) = \frac{Q_0 \Omega}{\pi} \int_0^{\infty} \frac{(1+e^{-2kh})e^{-kl}}{1+e^{-2kH}} [A_2(k,t)\cos(kx) - B_2(k,t)\sin(kx)]dk$$
(2.15)

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА <u>№</u> 4 2023 где $A_2(k,t)$ и $B_2(k,t)$ соответственно вещественная и мнимая части суммы $\sum_{n=1}^{3} \beta_n(k) e^{s_n(k)t}$. Функции

 $\beta_n(k)$ (n = 1-5) определяются из равенства

$$\frac{s(cs+d)}{(s^{2}+\Omega^{2})P_{2}(k,s)} = \sum_{n=1}^{5} \frac{\beta_{n}(k)}{s-s_{n}(k)}$$

после решения соответствующей системы линейных алгебраических уравнений.

3. ДИСПЕРСИОННЫЕ СООТНОШЕНИЯ

Полученные решения позволяют исследовать дисперсионные свойства волн, возникающих в рассматриваемых случаях. Дисперсионное соотношение устанавливает для каждой волны зависимость ее частоты ω от волнового числа k. Ранее достаточно подробно был исследован случай 1 [7-9], тогда как для случая 2 подобные исследования автору не известны.

Для случая 1 используем уравнение $P_1(k,s) = 0$, где функция $P_1(k,s)$ дана в (2.5). Вводя замену $\omega = is$, получим полином для определения дисперсионных соотношений каждой из трех волновых мод

$$\omega^{3} - a_{1}(k)\omega^{2} - a_{2}(k)\omega + a_{3}(k) = 0$$
(3.1)

где значения $a_n(k)$ (n = 1-3) даны в (2.6)–(2.8). Анализируя функции $a_n(k)$, легко видеть, что для каждой из трех волн выполняется равенство $\omega_n(k) = -\omega_n(-k)$.

Групповая скорость каждой волновой моды равна $c_g^{(n)} = d\omega_n/dk$. Используя (3.1), получим

$$c_{g}^{(n)} = \frac{a_{1}'\omega_{n}^{2} + a_{2}'\omega_{n} - a_{3}'}{3\omega_{n}^{2} - 2a_{1}\omega_{n} - a_{2}'}$$

где штрих означает дифференцирование по *k*.

В частном случае однослойной жидкости с линейным сдвиговым потоком h = H ($H_1 = 0$) функции $b_{\pm}(k)$ в (2.9) тождественно равны нулю, и уравнение (3.1) становится квадратным уравнением

$$\omega^2 - \overline{a}_1(k)\omega - \overline{a}_2(k) = 0$$

где

$$\overline{a}_{1}(k) = 2kU_{0} - \gamma \operatorname{th}(|k|H), \quad \overline{a}_{2}(k) = (g|k| + \gamma kU_{0})\operatorname{th}(|k|H) - k^{2}U_{0}^{2}$$

Следовательно, в этом случае существует только две волновые моды

$$\omega_{1,2} = \bar{a}_1 / 2 \pm \sqrt{(\bar{a}_1 / 2)^2 + \bar{a}_2}$$
(3.2)

Известно, что для кубического уравнения с вещественными коэффициентами (см., например, [13]) возможно существование двух сопряженных комплексных корня. Для уравнения (3.1) это возможно при условии, что значение *Q* положительное, где

$$Q = \left(\frac{r}{3}\right)^3 + \left(\frac{q}{2}\right)^2$$

$$r(k) = -\left(a_2(k) + \frac{a_1^2(k)}{3}\right), \quad q(k) = a_3(k) - 2\left(\frac{a_1(k)}{3}\right)^3 - \frac{1}{3}a_1(k)a_2(k)$$
(3.3)

Для случая 2 из уравнения $P_2(k,s) = 0$, используя соотношения (2.12)–(2.14), получим

$$\omega^{3} - b_{1}(k)\omega^{2} - b_{2}(k)\omega + b_{3}(k) = 0$$
(3.4)

В этом случае групповая скорости каждой волновой моды равна

$$c_{g}^{(n)} = \frac{b_{1}'\omega_{n}^{2} + b_{2}'\omega_{n} - b_{3}'}{3\omega_{n}^{2} - 2b_{1}\omega_{n} - b_{2}}$$
(3.5)

Рис. 2. (а) Дисперсионные зависимости $\overline{\omega}_n(\overline{k})$: 1, 2 – $U_0 = 0$; 3–5 – $\overline{U}_0 = 0.1$; 6–8 – $\overline{U}_0 = 0.5$. (б) Групповые скорости $\overline{c}_g^{(n)}(\overline{k})$: 1–3 – $\overline{U}_0 = 0.1$; 4–6 – $\overline{U}_0 = 0.5$.

В частном случае однослойной жидкости при h = H ($H_1 = 0$) получим аналогично случаю 1 квадратное уравнение

$$\omega^{2} - (\gamma \omega + g|k|) \operatorname{th}(|k|H) = 0$$

решение которого имеет вид

$$\omega_{1,2} = \gamma \mathrm{th}\left(|k|H\right)/2 \pm \sqrt{\left[\gamma \mathrm{th}\left(|k|H\right)/2\right]^2 + g|k|\mathrm{th}\left(|k|H\right)}$$

4. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ

Использованы значения исходных параметров работы [10]:

$$H = 1 \text{ M}, \quad \Omega = 2\pi c^{-1}, \quad Q_0 = 1 \text{ M}^2/c$$
 (4.1)

Ускорение свободного падения $g = 9.81 \text{ м/c}^2$.

4.1. Верхний сдвиговой слой

На рис. 2а представлены дисперсионные зависимости $\overline{\omega}_n(\overline{k})$ для случая 1 при h=0.3 м, $H_1=0.7$ м в безразмерном виде, где $\overline{\omega}_n = \omega_n \sqrt{h/g}$, $\overline{k} = kh$. Кривые 1, 2 соответствуют покоящейся жидкости в невозмущенном состоянии ($U_0 = 0$), для которой существуют только две волновые моды согласно (3.2)

$$\omega_{1,2} = \pm \sqrt{gkth(kH)}$$

Кривые 3–5 и 6–8 показывают дисперсионные зависимости $\bar{\omega}_n$ (n = 1-3) при $\bar{U}_0 = U_0/\sqrt{gh} = 0.1$, 0.5 соответственно. Нумерация корней полинома (3.1) производится по убыванию их вещественной части. Видно, что с ростом скорости U_0 увеличивается отклонение дисперсионных зависимостей от случая бессдвигового течения и возникает третья дополнительная волновая мода. Поведение групповых скоростей $\bar{c}_g^{(n)} = c_g^{(n)}/\sqrt{gh}$ (n = 1-3) показано на рис. 26 для $\bar{U}_0 = 0.1$ (штриховые кривые 1–3) и $\bar{U}_0 = 0.5$ (штрихпунктирные кривые 4–6).

С увеличением скорости U_0 появляются комплексные корни в уравнении (3.1) при некоторых значениях волнового числа k. Это означает, что возникающее волновое движение становится неустойчивым. Границы устойчивости на плоскости (U_0 , k) можно определить, используя нулевую изолинию функции Q в (3.3). На рис. За показаны нулевые изолинии функции Q при различных значениях толщины сдвигового слоя h = 0.3, 0.5, 0.7 м (кривые 1-3) соответственно. При увели-

Рис. 3. (а) Области неустойчивых значений волновых чисел в зависимости от скорости сдвигового потока U_0 при различных толщинах сдвигового слоя: 1-3 - h = 0.3, 0.5, 0.7 м. (б) Вещественные значения дисперсионных зависимостей $\overline{\omega}_n(\overline{k})$ при наличии неустойчивого диапазона волновых чисел. Номер кривых 1-3 соответствует номеру моды. На врезке показана зависимость мнимых значений $\overline{\omega}_n(\overline{k})$ при n = 2 и n = 3.

чении толщины сдвигового слоя область неустойчивых значений k уменьшается и полностью исчезает при h = H. Пример поведения дисперсионных зависимостей $\overline{\omega}_n(\overline{k})$ (n = 1-3) при наличии неустойчивого диапазона волновых чисел представлен на рис. Зб для h = 0.3 м и $\overline{U}_0 = 2$. На отрезке $1.095 < \overline{k} < 2.138$ значения $\overline{\omega}_2$ и $\overline{\omega}_3$ становятся комплексно-сопряженными и их мнимые значения показаны на врезке рис. Зб. Развитие волновых возмущений в этом случае надо исследовать на основе уравнений и граничных условий, учитывающих нелинейные члены.

Возвышения свободной поверхности $\eta(x,t)$ при h = 0.3 м, l = 0.2 м, t = 12 с определены в результате численного интегрирования (2.10) и представлены на рис. 4а,6 для $\overline{U}_0 = 0.1, 0.5$ соответственно. Использованы следующие безразмерные переменные: $\overline{\eta} = \eta \sqrt{gh}/Q_0$, $\overline{x} = x/h$. При отсутствии сдвигового течения ($U_0 = 0$) профили свободной поверхности для заданного момента времени представлены в [10]. В этом случае волновые возмущения являются четной функцией по x.

Зависимости групповой скорости волновых мод от волнового числа позволяют определить границы волновых фронтов возбуждаемых колебаний. Значение $c_g^{(n)}(0)$ показывает скорость распространения длинноволновых возмущений. В рассматриваемой задаче волновые движения порождаются периодическим источником, фиксированная частота которого Ω определяет волновой фронт распространения возмущений заданной частоты. Границы этого волнового фронта подробно изучены в [11] для случая бессдвигового течения. В рассматриваемой задаче для каждой дисперсионной зависимости $\omega_n(k)$ (n = 1-3) следует определить значение k_n , удовлетворяющее уравнению $\omega_n(k_n) = \Omega$. Скорость волнового фронта, который устанавливает границы профиля свободной поверхности с колебаниями заданной частоты Ω , определяется значением групповой скорости $c_g^{(n)}(k_n)$. При наличии сдвигового течения распространение волн вправо и влево от пульсирующего источника происходит с разными скоростями. Для рис. 4a $\overline{c}_g^{(1)}(0) = 1.84$, $\overline{c}_g^{(3)}(0) = -1.81$, $\overline{k_1} = 1.07$, $\overline{c}_g^{(1)}(\overline{k_1}) = 0.576$, $\overline{k_3} = 1.43$, $\overline{c}_g^{(3)}(\overline{k_3}) = -0.325$. Для заданного момента времени t = 12 с (в безразмерных переменных $\overline{t} = t\sqrt{g/h} = 68.62$) координаты волновых фронтов показаны вертикальными стрелками на рис. 4a: $X_0^+ = \overline{tc}_g^{(1)}(0) = 126.3$, $X_0^- = \overline{tc}_g^{(3)}(0) = -124.2$, $X_1 = \overline{tc}_g^{(1)}(\overline{k_1}) = 39.55$, $X_3 = \overline{tc}_g^{(3)}(\overline{k_3}) = -22.33$.

Рис. 4. Возвышения свободной поверхности при t = 12 с: (a, б) $-\overline{U}_0 = 0.1, 0.5$. Вертикальные стрелки указывают положения волновых фронтов для различных мод.

Для значения скорости $\overline{U}_0 = 0.5$ согласно рис. 2а (кривая 8) дисперсионная зависимость $|\overline{\omega}_3(\overline{k})| < \overline{\Omega}$ для всех значений \overline{k} , где $\overline{\Omega} = \Omega \sqrt{h/g} = 1.099$. Это означает, что при отрицательных значениях x второй волновой фронт отсутствует, так как не возникает колебаний свободной поверхности с частотой пульсирующего источника. Для рис. 46 $\overline{c}_g^{(1)}(0) = 1.92$, $\overline{c}_g^{(3)}(0) = -1.76$, $\overline{k}_1 = 0.795$, $\overline{c}_g^{(1)}(\overline{k}_1) = 1.0$, $X_0^+ = 131.8$, $X_0^- = -120.8$, $X_1 = 68.65$ и координаты волновых фронтов также показаны вертикальными стрелками. Рис. 46 подтверждает вывод работы [7] о том, что приповерхностный сдвиговой поток обладает свойствами волногасителя.

Рисунок 5 показывает смещения свободной поверхности жидкости в зависимости от времени $\overline{t} = t\sqrt{g/h}$ в двух фиксированных точках $\overline{x} = -50$ (рис. 5а,в) и $\overline{x} = 50$ (рис. 5б,г) для $\overline{U}_0 = 0.1$ (рис. 5а,б) и $\overline{U}_0 = 0.5$ (рис. 5в,г). Можно определить время прохождения волновых фронтов в рассматриваемых точках свободной поверхности. По аналогии с рис. 4 обозначим время прохождения фронта длинноволновых возмущений T_0^{\pm} и время прохождения второго фронта $T_{1,3}$. Эти моменты времени показаны на рис. 5 вертикальными стрелками: для рис. 5а $T_0^- = 27.62$, $T_3 = 153.85$, для рис. 56 $T_0^+ = 27.17$, $T_1 = 86.75$, для рис. 5в $T_0^- = 28.41$ и для рис. 5г $T_0^+ = 26.04$, $T_1 = 50$.

4.2. Нижний сдвиговой слой

Для случая 2 расчеты выполнены при значениях исходных параметров (4.1), толщине придонного сдвигового слоя $h = H - H_1 = 0.3$ м и отстоянии пульсирующего источника от свободной поверхности l = 0.5 м. На рис. 6 представлены дисперсионные зависимости и значения групповых скоростей для двух скоростей $\overline{U}_0 = 0.5$, 2.5. Кривые 1-3 соответствуют номеру волновой моды. На рис. 6а,б показаны зависимости $\overline{\omega}_n(\overline{k})$ (n = 1-3), определяемые как корни полинома в (3.4), а на рис. 6в,г – значения групповых скоростей для каждой волновой моды согласно (3.5).

Рис. 5. Возвышения свободной поверхности в зависимости от времени в фиксированных точках: $\bar{x} = -50$ (а, в) и $\bar{x} = 50$ (б, г) для $\bar{U}_0 = 0.1$ (а, б) и $\bar{U}_0 = 0.5$ (в, г). Вертикальные стрелки показывают время прохождения волновых фронтов для различных мод.

Рисунок ба, в соответствует скорости $\overline{U}_0 = 0.5$, а рис. 6б, г – скорости $\overline{U}_0 = 2.5$. Интересно отметить, что в рассматриваемом случае все возбуждаемые волновые моды являются устойчивыми, так как значение величины Q для полинома в (3.4) при рассматриваемых параметрах остается отрицательным для всех значений волнового числа k. Другой интересной особенностью рассматриваемого случая является то, что вторая волновая мода, которая при малых скоростях U_0 была значительно меньше двух других мод, с ростом этой скорости становится сопоставимой с двумя другими волновыми модами.

Поведение вертикальных смещений свободной поверхности, полученных в результате численного интегрирования (2.15), представлено на рис. 7 при фиксированном значении времени t = 12 с ($\overline{t} = 68.62$) и на рис. 8 при фиксированном значении продольной координаты $\overline{x} = -50$, 50. Использовано два значения скорости $\overline{U}_0 = 0.5$ (рис. 7a, 8a,6) и $\overline{U}_0 = 2.5$ (рис. 76, 8в,г).

Вертикальными стрелками показаны значения волновых фронтов аналогично рис. 4 и 5. Для значения скорости $\overline{U}_0 = 0.5$ согласно рис. 6а,в $\overline{c}_g^{(1)}(0) = 1.92$, $\overline{c}_g^{(3)}(0) = -1.76$, $\overline{k}_1 = 1.21$, $\overline{c}_g^{(1)}(\overline{k}_1) = 0.453$, $\overline{k}_3 = 1.21$, $\overline{c}_g^{(3)}(\overline{k}_3) = -0.459$. Для заданного момента времени координаты волновых фронтов по-казаны вертикальными стрелками на рис. 7a: $X_0^+ = 131.7$, $X_0^- = -121.0$, $X_1 = 31.12$, $X_3 = -31.53$.

Для значения скорости $\overline{U}_0 = 2.5$ согласно рис. 66,г $\overline{c}_g^{(1)}(0) = 2.96$, $\overline{c}_g^{(3)}(0) = -1.65$, $\overline{k}_1 = 0.822$, $\overline{c}_g^{(1)}(\overline{k}_1) = 0.308$, $\overline{k}_2 = 1.31$, $\overline{c}_g^{(2)}(\overline{k}_2) = 0.430$, $\overline{k}_3 = 1.21$, $\overline{c}_g^{(3)}(\overline{k}_3) = -0.464$. Для заданного момента времени $\overline{t} = 68.62$ координаты волновых фронтов на рис. 76 равны: $X_0^+ = 203.1$ (находится за пределами графика), $X_0^- = -113.4$, $X_1 = 21.13$, $X_2 = 29.52$, $X_3 = -31.82$.

На рис. 8 по аналогии с рис. 5 обозначены время прохождения фронта длинноволновых возмущений T_0^{\pm} и время прохождения фронтов $T_{1, 2, 3}$. Эти моменты времени показаны на рис. 8 вер-

Рис. 6. Дисперсионные зависимости $\overline{\omega}_n(\overline{k})$ (a, б) и групповые скорости $\overline{c}_g^{(n)}(\overline{k})$ (в, г) для волновых мод в случае придонного сдвигового слоя при $\overline{U}_0 = 0.5$ (а, в) и $\overline{U}_0 = 2.5$ (б, г). Номер кривой соответствует номеру волновой моды.

Рис. 7. Возвышения свободной поверхности при t = 12 с: (a,б) – $\overline{U}_0 = 0.5, 2.5$. Вертикальные стрелки указывают положения волновых фронтов для различных мод.

Рис. 8. Возвышения свободной поверхности в зависимости от времени в фиксированных точках: $\bar{x} = -50$ (а, в) и $\bar{x} = 50$ (б, г) для $\bar{U}_0 = 0.5$ (а, б) и $\bar{U}_0 = 2.5$ (в, г). Вертикальные стрелки показывают время прохождения волновых фронтов для различных мод.

тикальными стрелками: для рис. 8а $T_0^- = 28.3$, $T_3 = 108.8$, для рис. 8б $T_0^+ = 26.05$, $T_1 = 110.3$, для рис. 8в $T_0^- = 30.26$, $T_3 = 107.8$ и для рис. 8г $T_0^+ = 16.9$, $T_1 = 162.4$, $T_2 = 116.2$. На рис. 8г заметна модуляция волновых возмущений, так как вторая волновая мода становится сопоставимой с первой модой, что приводит к суперпозиции колебаний с различной длиной волны.

ЗАКЛЮЧЕНИЕ

Исследовано волновое движение, возникающее при включении пульсирующего источника в жидкости при наличии сдвиговых слоев. В рамках линейной теории волн построено интегральное представление решения, описывающего вертикальные смещения свободной поверхности. Показано, что, как в случае приповерхностного сдвигового слоя, так и в случае придонного слоя, колебания свободной поверхности существенно отличаются от тех, которые имели место при пульсациях источника в изначально покоящейся жидкости [10, 11]. В случае приповерхностного сдвигового слоя волновое движение становится неустойчивым с ростом скорости сдвигового потока. Для придонного сдвигового потока возникает суперпозиция колебаний с различными длинами волн. Это свидетельствует о том, что даже в простых случаях взаимодействие волн и течений приводит к большому разнообразию явлений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wehausen J.V., Laitone E.V. Surface waves. Handbuch der Physik. 1960. V. 9. P. 446-778.
- 2. Сретенский Л.Н. Теория волновых движений жидкости. М.: Наука, 1977. 815 с.
- 3. Черкесов Л.В. Гидродинамика волн. Киев: Наук.думка, 1980. 259 с.
- 4. Peregrine D.H. Interaction of water waves and currents // Adv. Appl. Mech. 1976. V. 16. P. 9–117.
- 5. Jonsson I.G. Wave-current interactions. The Sea. 1990. V. 9. P. 65-120.

СТУРОВА

- 6. Букатов А.Е., Власенко В.И., Пухтяр Л.Д., Суворов А.М. и др. Динамика поверхностных и внутренних волн. Киев: Наук. думка. 1988. 192 с.
- 7. *Taylor G*. The action of a surface current used as a breakwater // Proc. Royal Soc. Lond. A. 1955. V. 231. P. 466–478.
- 8. *Brevik I*. The stopping of linear gravity waves in currents of uniform vorticity // Phys. Norv. 1976. V. 8. № 3. P. 157–162.
- 9. *Brevik I., Sollie R.* Stable and unstable modes in a wave-current system having uniform vorticity // Phys. Scr. 1997. V. 55. P. 639–643.
- 10. *Павельева Е.Б., Савин А.С.* Установление волн от пульсирующего источника в жидкости конечной глубины // Изв. РАН. МЖГ. 2018. № 4. С. 12–22.
- 11. Ильичев А.Т., Савин А.С. Эволюция возмущений свободной поверхности от пульсирующего заглубленного источника в жидкости конечной глубины // Изв. РАН. МЖГ. 2021. № 6. С. 19–24.
- 12. *Стурова И.В.* Задача Коши–Пуассона для жидкости с ледяным покровом при наличии сдвигового течения (двумерный случай) // Изв. РАН. МЖГ. 2022. № 1. С. 47–56.
- 13. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1968. 720 с.