УДК 532

УСТАНОВИВШАЯСЯ АМПЛИТУДА НЕЛИНЕЙНЫХ КОЛЕБАНИЙ ГАЗОВОГО ПУЗЫРЬКА В ЖИДКОСТИ ПОД ДЕЙСТВИЕМ ПЕРИОДИЧЕСКОГО ВНЕШНЕГО ДАВЛЕНИЯ ПРИ РЕЗОНАНСЕ

© 2023 г. А. Г. Петров

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, Россия E-mail: petrovipmech@gmail.com Поступила в редакцию 09.03.2023 г. После доработки 13.05.2023 г. Принята к публикации 06.06.2023 г.

Исследуются вынужденные нелинейные колебания газового пузырька в жидкости, когда частота колебаний внешнего давления жидкости равна собственной частоте колебаний пузырька (резонанс). Методом осреднения выведена простая формула зависимости амплитуды колебаний газового пузырька от амплитуды внешнего давления и теплофизических характеристик газа и вязкости жидкости. Показано ее хорошее согласие с численными расчетами до значения амплитуды колебаний радиуса пузырька, сравнимого с его равновесным значением.

Ключевые слова: газовые пузырьки, вынужденные нелинейные колебания, резонанс, гомобаричность, жидкость

DOI: 10.31857/S1024708423600161, EDN: WOOMFM

Задача о колебаниях газового пузырька в жидкости под действием периодически меняющегося давления имеет долгую историю. К настоящему времени этот раздел механики жидкости и газа является классическим и представлен в сотнях статей и ряде монографий [1–4]. Миннаерт [5] экспериментально и теоретически изучил зависимость частоты свободных колебаний газового пузырька в жидкости. Им получена формула, связывающая частоту свободных колебаний пузыря с плотностью жидкости, давлением, радиусом пузыря в равновесном состоянии и показателем адиабаты газа γ. В [6] исследованы вынужденные колебания пузыря под воздействием внешних пульсаций давления в линейном приближении. При этом предполагалось, что давление внутри пузыря однородно (допущение о гомобаричности). В [7, 8] учитывается следующее за линейным (квадратичное) приближение, а также теплофизические свойства жидкости и газа. В [9, 10] обсуждаются правомерность условия гомобаричности и влияние теплофизических свойств жидкости на колебание пузырьков в жидкости.

Наибольшая сложность для анализа амплитуды колебаний пузырька представляет собой резонансный случай, когда частота внешних пульсаций давления равна частоте Миннаерта. В [11] отмечается, что линейное приближение дает для амплитуды в разы большее значение, чем численное ее значение, определенное из точного нелинейного уравнения. Даже учет квадратичных членов в уравнении дает значение, существенно отличающееся от точного. Ниже методом осреднения выведена простая формула зависимости амплитуды колебаний газового пузырька от амплитуды внешнего давления и теплофизических характеристик газа и жидкости. Показано ее хорошее согласие с численными расчетами до значения амплитуды колебаний радиуса пузырька, сравнимого с его равновесным значением.

1. УРАВНЕНИЕ НЕЛИНЕЙНЫХ КОЛЕБАНИЙ

Уравнение изменения радиуса пузырька *R*, как функции времени *t*', можно получить из закона изменения энергии [11, 12]:

$$\frac{dE}{dt'} + \left[p_0 \left(1 - \left(\frac{R_0}{R}\right)^{3\gamma} \right) + p_1 \cos \omega t' \right] 4\pi R^2 \frac{dR}{dt'} + 16\pi \mu R \left(\frac{dR}{dt'}\right)^2 = 0, \quad E = 2\pi \rho R^3 \left(\frac{dR}{dt'}\right)^2,$$

ПЕТРОВ

где E — кинетическая энергия жидкости, p_0 — невозмущенное давление жидкости, p_1 — амплитуда колебаний давления в жидкости, γ — показатель адиабаты газа внутри пузырька. Частота колебаний внешнего давления принимается равной собственной частоте пузырька (резонанс).

В диссипативном члене приведенного уравнения учитывается только вязкость жидкости μ . В линейном приближении амплитуда свободных колебаний за один период убывает в ехр(Λ) раз, где Λ – декремент затухания выражается через вязкость жидкости: $\Lambda = 4\pi\mu/(\rho R_0^2\omega)$. Для учета тепловой (и других видов) диссипации удобно заменить μ на эффективную вязкость, выразив ее через декремент затухания $\mu = \rho R_0^2 \omega \Lambda/(4\pi)$, где ω – частота свободных колебаний пузырька (Минаерта). Как известно [1–4], для воздушных пузырьков в воде, радиусы которых меняются в диапазоне $R_0 \in (10^{-4}, 10^{-1})$ см, поверхностное натяжение практически не дает вклада в собственную частоту, а декремент затухания меняется в интервале $\Lambda \in (0.1, 0.16)$. Для малых пузырьков $R_0 < 10^{-4}$ см декремент обусловлен, главным образом, вязкостью воды, а для пузырьков большего размера – тепловыми эффектами. Разделив уравнение на $4\pi R^3 \dot{R}$, получим

$$\rho\left(\frac{3}{2}\frac{\dot{R}^{2}}{R} + \ddot{R}\right) + \frac{p_{0}}{R}\left(1 - \left(\frac{R_{0}}{R}\right)^{3\gamma}\right) + \frac{p_{1}}{R}\cos\omega t + 4\mu\frac{\dot{R}}{R^{2}} = 0, \quad \dot{R} = \frac{dR}{dt'}, \quad \ddot{R} = \frac{d^{2}R}{dt'^{2}}$$

Сделаем замену $t' = t/\omega$, $R = R_0(1 + z(t))$, $p_0 = \frac{\rho R_0^2}{3\gamma} \omega^2$, $p_1 = A\rho R_0^2 \omega^2$, $\mu = \frac{1}{4} \epsilon \rho R_0^2 \omega$ и разделим

уравнение на размерный множитель $\omega^2 R_0 \rho$, приведя его к безразмерному виду

$$\frac{A\cos(t)}{(1+z)} + \ddot{z} + g(z) + \frac{3\dot{z}^2}{2(1+z)} + \varepsilon \frac{\dot{z}}{(1+z)^2} = 0, \quad \dot{z} = \frac{dz}{dt}, \quad \ddot{z} = \frac{d^2 z}{dt^2}, \quad \varepsilon = \Lambda/\pi$$

$$g(z) = \frac{1}{3\gamma(1+z)} \left[1 - \left(\frac{1}{1+z}\right)^{3\gamma} \right] = z - \frac{3}{2}(1+\gamma)z^2 + \frac{1}{6}(11+18\gamma+9\gamma^2)z^3 + O[z]^4$$
(1.1)

Здесь параметр є выражается через декремент затухания и учитывает все виды потерь энергии. В линейном приближении уравнение имеет вид $A\cos t + \ddot{z} + z + \varepsilon \dot{z} = 0$. Оно имеет точное решение

$$z = -\frac{A}{\varepsilon}\sin t + C\exp\frac{-\varepsilon t}{2}\sin\left(-t\sqrt{1-\frac{\varepsilon^2}{4}}\right), \quad \varepsilon = \frac{\Lambda}{\pi} = \frac{4\mu}{\rho R_0^2 \omega}.$$
 (1.2)

Первое слагаемое – это установившееся гармоническое колебание, а второе – возмущение, зависящее от начальных условий. Возмущение за период колебаний убывает в $\exp(\Lambda)$ раз. Декремент затухания учитывает все механизмы потерь энергии. При декременте затухания $\Lambda = 0.1$, $A = \varepsilon = \Lambda/\pi$ имеем значение установившейся амплитуды $A/\varepsilon = 1$. Тогда как согласно численному решению точных уравнений при этих же значениях параметров имеем зависимость z(t), изображенную сплошной линией на рис. 1 при $\gamma = 4/3$. Для нее установившаяся амплитуда вычисляется по формуле a = 0.5 (max $z(t) - \min z(t)$), $t \in (290, 300)$. Она равна 0.366, т.е. почти в 3 раза меньше. Решение построено при начальных условиях $z(0) = \dot{z}(0) = 0$ и приведено на отрезках времени: a) $t \in (0, 300)$, б) $t \in (290, 300)$.

На рис. 2 приведено сравнение численного решения точных уравнений z(t) (синяя линия) с решением линейного приближения (1.2) при $\Lambda = 0.1$, $\varepsilon = \Lambda/\pi$, $A = \varepsilon$ и $\gamma = 4/3$. Начальные условия обоих решений нулевые: $z(0) = \dot{z}(0) = 0$. Тогда в линейном приближении (1.2) следует подставить $c = -2A/(\varepsilon\sqrt{4-\varepsilon^2})$. Приведенный пример показывает, что вычисление амплитуды по линейному приближению не приемлемо.

Неприемлемо также и приближение уравнения (1.1), в котором в функции g(z) учитываются квадратичные и кубичные члены (кубическое приближение). Это видно из рис. 2, на котором приводится сравнение точной функции z(t) (синяя линия) с численным решением кубического приближения (желтая линия).

Цель дальнейшего изложения — найти установившуюся амплитуду колебаний в зависимости от входящих в уравнение безразмерных параметров γ , $\Lambda = \pi \epsilon$, A. Приведенные рис. 1–3 показы-

Puc. 1. Колебания относительного радиуса пузырька при $\gamma = 4/3$, $\Lambda = 0.1$, $A = \varepsilon = \Lambda/\pi$ и начальных условиях $z(0) = \dot{z}(0) = 0$ на отрезках времени: $t \in (0, 300)$, $t \in (290, 300)$.

Рис. 2. Сравнение линейного приближения (желтая кривая) и точного решения (синяя кривая) колебаний относительного радиуса пузырька при $\gamma = 4/3$, $\Lambda = 0.1$, $A = \varepsilon = \Lambda/\pi$ и начальных условиях $z(0) = \dot{z}(0) = 0$.

Рис. 3. Сравнение кубичного приближения (желтая кривая) и точного решения (синяя кривая) колебаний относительного радиуса пузырька при $\gamma = 4/3$, $\Lambda = 0.1$, $A = \varepsilon = \Lambda/\pi$ и начальных условиях $z(0) = \dot{z}(0) = 0$.

вают, что решение невозможно получить обычными методами возмущений. Аналогичные сравнения точного численного решения с решениями различных приближений, что с графической точностью решения начинают совпадать только после 15-го приближения. Это сильно осложняет аналитическое исследование поставленной нелинейной задачи. Тем не менее ниже оно будет выведено и проведено сравнение с численными расчетами в широком диапазоне параметров.

2. ОПРЕДЕЛЕНИЕ АМПЛИТУДЫ НЕЛИНЕЙНЫХ КОЛЕБАНИЙ МЕТОДОМ ОСРЕДНЕНИЯ

Записываем уравнение колебаний в виде

$$\ddot{z} + z = F(t, z, \dot{z}), \quad F = -\varepsilon \left(A_1 \frac{\cos t}{(1+z)} + \frac{\dot{z}}{(1+z)^2} \right) - \frac{3}{2} \frac{(\dot{z})^2}{(1+z)} - g(z) + z, \quad A = A_1 \varepsilon$$
(2.1)

Следуя методу осреднения (см. [13]), переменные z и \dot{z} выражаем через новые переменные r и φ .

$$z = r\cos\phi, \quad \dot{z} = -r\sin\phi \tag{2.2}$$

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 5 2023

ПЕТРОВ

Если z(t) – гармоническое колебание, то переменные r и φ имеют смысл амплитуды и фазы этого колебания. Эти названия сохраняем и для нелинейных колебаний, в которых переменные r и φ со временем медленно изменяются. Это одна из основных идей метода осреднения (см. [13]).

С помощью подстановок находим

$$\frac{dz}{dt} = \frac{dr}{dt}\cos\varphi - r\frac{d\varphi}{dt}\sin\varphi = -r\sin\varphi, \quad -\frac{d^2z}{dt^2} = \frac{dr}{dt}\sin\varphi - r\frac{d\varphi}{dt}\cos\varphi = r\cos\varphi - f, \quad (2.3)$$
$$f = F(t, r\cos\varphi, -r\sin\varphi)$$

Разрешаем систему относительно dr/dt и $rd\phi/dt$

$$\frac{dr}{dt} = -f\sin\varphi, \quad r\frac{d\varphi}{dt} = r - f\cos\varphi$$

Будем считать φ независимой переменной и рассмотрим функции $r(\varphi)$, $t(\varphi) = \varphi + \tau(\varphi)$, где $\tau(\varphi) -$ это сдвиг фазы. Для введенных функций получим следующие уравнения:

$$\frac{dr}{d\varphi} = f_1, \quad \frac{d\tau}{d\varphi} = \frac{d(t-\varphi)}{d\varphi} = f_2 \tag{2.4}$$

$$f_1 = \frac{-f\sin\phi}{1 - (f/r)\cos\phi}, \quad f_2 = \frac{1}{1 - (f/r)\cos\phi} - 1 = \frac{(f/r)}{1 - (f/r)\cos\phi}$$
(2.5)

Предполагая є малым параметром, введем замены

$$r(\varphi) = \varepsilon^{1/3} r_0(\varphi), \quad \tau(\varphi) = \varepsilon^{1/3} \tau_0(\varphi)$$
(2.6)

Оценим по параметру є правые части (2.5) уравнения (2.4). Сначала рассмотрим функцию F в (2.1). С помощью разложения (1.1), подстановки (2.2) и замены (2.6) оценим ведущее слагаемое в функции F

$$-g(z) + z = \frac{3}{2}(1+\gamma)z^{2} + ... \sim \varepsilon^{2/3}.$$

Отсюда и (2.3) получаем оценку $f \sim \epsilon^{2/3}$ и оценки для правых частей $f_1 \sim \epsilon^{2/3}$, $f_2 \sim \epsilon^{1/3}$. Таким образом, для новых переменных $r_0(\phi)$, $\tau_0(\phi)$ получим уравнения нормального вида с малыми параметрами в правых частях. По теореме Боголюбова можно приблизить решение уравнений решением уравнения с осредненными правыми частями.

В правые части (2.5) подставляем выражения (2.6), затем раскладываем их по параметру ε до членов порядка первой степени ε и найденные разложения осредняем по времени. Необходимые для этого преобразования проводятся в пакете Wolfram Mathematica. В главном по параметру ε осредненные уравнения имеют вид

$$\frac{dr_0}{d\varphi} = -\frac{1}{2}\varepsilon(A_1\tau_0 + r_0), \quad \frac{d\tau_0}{d\varphi} = \frac{\varepsilon^{1/3}((9\gamma^2 + 4)r_0^3 - 32A_1)}{64r_0}$$

Они описывают изменение переменных r_0 и τ_0 от заданных начальных значений до установившихся постоянных значений, при которых правые части равны нулю.

Приравнивая к нулю правые части, найдем установившееся решение

$$r_0 = \left(\frac{32A_1}{(4+9\gamma^2)}\right)^{1/3}, \quad \tau_0 = -\left(\frac{32A_1}{(4+9\gamma^2)}\right)^{1/3}\frac{1}{A_1}$$

Принимая во внимание замену (2.6), для амплитуды a = r и сдвига фазы t_0 получаем следующие асимптотические зависимости

$$a = \varepsilon^{1/3} r_0 = \left(\frac{32A_1\varepsilon}{(4+9\gamma^2)}\right)^{1/3}, \quad t_0 = \varepsilon^{1/3} \tau_0 = -\left(\frac{32A_1\varepsilon}{(4+9\gamma^2)}\right)^{1/3} \frac{1}{A_1}.$$
 (2.7)

Согласно полученным асимптотическим формулам при $t \to \infty$ устанавливается гармоническое колебание $z = a \cos(t - t_0)$ с амплитудой и фазой (2.1). При $\gamma = 4/3$, $\Lambda = 0.1$, $A_1 = 1$ это гармо-

Рис. 4. Сравнение относительных амплитуд численного и асимптотического решений для установившихся колебаний при $\gamma = 1.3$, $\Lambda \in (0.02, 0.22)$.

Рис. 5. Сравнение относительных амплитуд численного и асимптотического решений для установившихся колебаний при $\gamma = 1.4$, $\Lambda \in (0.02, 0.22)$.

ническое колебание изображено на рис. 1 штриховой линией. Оно имеет амплитуду a = 0.370, близкую к значению a = 0.366, которое найдено из численного решения точных уравнений. Как видно из рис. 1, амплитуда и фаза, определенные по асимптотическим формулам (2.1), удовлетворительно согласуются с точными значениями. Согласие улучшается по мере уменьшения параметра $\varepsilon = \Lambda/\pi$.

Формулу (2.1) для амплитуды удобно представить в виде

$$a = \left(\frac{32A}{(4+9\gamma^2)}\right)^{1/3} = \left(\frac{32p_1}{3\gamma(4+9\gamma^2)p_0}\right)^{1/3}, \quad A = \frac{p_1}{3\gamma p_0}$$
(2.8)

Эта формула показывает хорошее согласие с точными численными расчетами практически для всех физически реализуемых значений параметров γ , Λ и A и весьма больших амплитуд колебаний радиуса пузырька. Амплитуда может достигать значения $0.7R_0$ и с хорошей точностью определяться по формуле (2.8). Кроме того, численные расчеты подтверждают, что амплитуда колебаний пузырька практически не зависит от декремента затухания. Эти результаты иллюстрируются на рис. 4, 5 и 6, на которых изображены зависимости установившейся относительной амплитуды колебаний внешнего давления $A = p_1/(3\gamma p_0)$.

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 5 2023

Рис. 6. Сравнение относительных амплитуд численного и асимптотического решений для установившихся колебаний при $\gamma = 1.5$, $\Lambda \in (0.02, 0.22)$.

ЗАКЛЮЧЕНИЕ

Как показывают рис. 4, 5 и 6, формула (2.2) для установившейся относительной амплитуды $a = R_1/R_0$ при резонансной частоте зависит только от показателя адиабаты γ и отношения амплитуды колебаний внешнего давления p_1 к его равновесному значению p_0 . Эта зависимость хорошо подтверждается численными расчетами точных уравнений, как для малых амплитуд внешнего давления p_1/p_0 , так и для достаточно больших, при которых амплитуда радиуса достигает значения $0.7R_0$. Зависимость справедлива для большинства газов с показателями адиабаты γ от значения 1.3 до значения 1.5 и практически всех реально существующих декрементов затухания.

Однако полученная формула (2.2) не всегда применима. Следует исключить частоты, в два раза большие собственным частотам деформационных мод. Радиусы пузырьков R_0 , для которых выполнено условие резонанса с *n*-й деформационной модой, находятся согласно [14, 15]. Выражения для частоты ω радиальной моды и частоты ω_n *n*-й деформационной моды

$$\omega^{2} = \frac{3\gamma p_{0}}{\rho R^{2}} + \frac{2\sigma(3\gamma - 1)}{\rho R^{3}}, \quad \omega_{n}^{2} = \frac{2(n - 1)(n + 1)(n + 2)}{\rho R^{3}}\sigma$$

Затем из уравнения $\omega^2 / \omega_n^2 = 4$ находим радиусы пузырьков R_0 :

$$\frac{R_0}{R_{\sigma}} = \frac{2(n-1)(n+1)(n+2)+1}{3\gamma} - 1, \quad R_{\sigma} = \frac{2\sigma}{p_0},$$

где σ – коэффициент поверхностного натяжения.

Для воздушных пузырьков в воде имеем:

$$σ = 0.073 \text{ H/M}, \quad p_0 = 105 \Pi a, \quad γ = 1.4, \quad R_{\sigma} = 1.4 \text{ MK}$$

Значения радиусов пузырьков, удовлетворяющие такому резонансному условию, приведены в табл. 1. В этих случаях вся энергия радиальных колебаний перекачивается в деформационную моду, что приводит к многократному увеличению ее амплитуды и дроблению пузырька. Очевидно, что для радиусов пузырьков, близких к этим значениям, формула (2.2) не будет работать.

Таблица 1. Радиусы пузырьков *R*₀ в мм, для которых частота Миннаерта в два раза больше частоты *n*-й деформационной моды

Номер моды п	2	3	4	5	6	7	8	9	10
Радиус <i>R</i> ₀	0.07	0.026	0.0599	0.111	0.185	0.286	0.418	0.585	0.791

Отметим, что в [16] исследуются резонансы других порядков, но главным образом численно. Работы [17–19] посвящены исследованию в линейном приближении вынужденных колебаний пузырьков не только газовых, но и паровых.

Работа поддержана грантом РНФ № 22-21-00833.

СПИСОК ЛИТЕРАТУРЫ

- 1. Plesset M., Prosperetty A. Bubble Dynamics and Cavitation // Ann. Rev. Fluid Mech. 1977. V. 9. P. 145.
- 2. Leighton T. The Acoustic Bubble. London: Academic Press, 1994. 633 p.
- 3. Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987. Т. 1. 464 с.
- 4. Brennen C. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995. 254 p.
- 5. *Minnaert M*. Musical Air Bubbles and the Sounds of Running Water // Philosophical Magazine. 1933. V. 16. P. 235.
- 7. *Devin C*. Survey of Thermal, Radiation, and Viscous Damping of Pulsating Air Bubbles in Water // J. Acoust. Soc. Am. 1959. V. 31. P. 1654.
- 8. *Prosperetti Andrea*. The thermal behaviour of oscillating gas bubbles // Journal of Fluid Mechanics. 1991. V. 222. P. 587–616.
- Avdeev A.A. Gas bubble pulsations in an acoustic field (resonance and boundaries of the polytropic approximation) // High temperature. 2014. V. 52. P. 851–860.
- 10. *Khabeev N.S., Shagapov V.S.* Towards the problem of homobaricity in bubble dynamics // Int. J. of Math. Trends and Techn. (IJMTT).V. 66. P. 156–159.
- 11. *Голубятников А.Н., Украинский Д.В.* О динамике сферического пузырька в неньютоновских жид-костях // ИЗВ. РАН. МЖГ. 2021. № 4. С. 52–62.
- 12. Седов Л.И. Механика сплошной среды. Т. 2. М.: Наука, 1994. 560 с.
- 13. Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 326 с.
- 14. *Вановский В.В., Петров А.Г.* Колебания газового пузырька в жидкости при резонансе частот радиальной и произвольной осесимметричной моды колебаний 2: 1 // Доклады Академии наук. 2011. Т. 437. № 3. С. 331–335.
- 15. *Вановский В.В., Петров А.Г.* Резонансный механизм дробления газового пузырька в жидкости // Доклады Академии наук. 2012. Т. 444. № 4. С. 385–389.
- 16. *Crum L.A., Prosperetti A.* Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results // J. Acoust. Soc. Am. 1983. 73 (1).
- 17. Хабеев Н.С. Резонансные свойства паровых пузырьков // ПММ. 1981. Т. 45.
- Хабеев Н.С. К вопросу о резонансах пузырька, радиально пульсирующего в жидкости// ИФЖ. 2009. Т. 82. № 6.
- 19. Khabeev N. Resonance properties of soluble gas bubbles // Int. J. Heat Mass. Trans. 2006. V. 49. № 5–6.