УДК 663.635:628.165

ИСПОЛЬЗОВАНИЕ БРОСОВОГО ТЕПЛА СИСТЕМЫ ОХЛАЖДЕНИЯ ДИЗЕЛЬНОЙ ЭЛЕКТРОСТАНЦИИ ДЛЯ ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ МЕТОДОМ МЕМБРАННОЙ ДИСТИЛЛЯЦИИ

© 2022 г. М. М. Агамалиев^{а, *}, Д. А. Ахмедова^а, О. О. Алиева^а

^аАзербайджанский государственный университет нефти и промышленности, Баку, 1000 Азербайджан

*e-mail: agamaliyevm@mail.ru Поступила в редакцию 23.07.2021 г. После доработки 05.10.2021 г. Принята к публикации 08.10.2021 г.

В статье исследуются вопросы повышения эффективности опреснения морской воды методом мембранной дистиллящии при использовании низкопотенциального (80–85°C) бросового тепла системы охлаждения дизельной электростанции и предотвращения образования накипи сульфата кальция на мембранах путем нанофильтрационного умягчения части исходной воды. Мембранный модуль интегрированный в систему охлаждения посредством промежуточного циркуляционного контура, подпитываемого смесью умягченной и исходной морской воды, обеспечивает выработку дистиллята и охлаждение теплоносителя. Исследования выполнены методом компьютерной симуляции расчетной модели системы, преобразованной в вычислительную программу, на примере вод Каспийского и Черного морей, с использованием мембранного модуля прямого контакта плоскорамной конструкции. Установлено, что каспийская вода характеризуется высоким потенциалом сульфатного накипеобразования и при подпитке промежуточного контура смесью умягченной и исходной воды в равном соотношении солесодержание питательной воды мембранного модуля не должно превышать 30 г/дм³, а в случае черноморской воды, даже без умягчения, этот показатель может быть повышен до 95 г/дм³. В обоих случаях достигается высокая конверсия подпиточной воды: 75-80%. Конверсия питательной воды мембранного модуля составляет 5.2-6.8%. Расход энергии связан только с работой насосов. На каждый мегаватт генерируемой электрической мощности приходится выработка 4.9–5.5 т/сут дистиллята (опресненной воды). Исследования носили расчетноаналитический характер, что делает необходимым дальнейшую экспериментальную проверку полученных результатов.

Ключевые слова: опреснение, бросовое тепло, мембранная дистилляция, нанофильтрация, расчетная модель, компьютерная симуляция

DOI: 10.1134/S2218117222010023

1. ВВЕДЕНИЕ

Экспоненциальный рост численности населения Земли, развитие промышленности, сельского хозяйства, а также ограниченность пресноводных источников (всего 2.5% от общих запасов, большая часть которых находится в виде недоступных ледников), а также ряд других причин привели к возрастающему дефициту пресной воды и обусловили актуальность решения этой проблемы путем опреснения практически неограниченных ресурсов (97.5%) соленых вод – морских, океанских и др. На примере многолетнего опыта таких стран, как Саудовская Аравия, Кувейт, Израиль, Испания и др. можно судить об успешности решения указанной проблемы с использованием различных методов опреснения, из которых наиболее широкое применение нашли мембранные

57

(обратный осмос — до 65%) и термические (многоступенчатое испарение — до 25%) методы [1].

Общий недостаток известных методов опреснения связан с достаточно высокой стоимостью опресненной воды, обусловленной высокими энергозатратами и капиталовложениями. Эти методы вошли в противоречие также с ужесточившимися экологическими требованиями, поскольку приводят к выбросам больших количеств парниковых газов и сточных вод. В этой связи возрастает актуальность разработки и освоение энергосберегающих, "зеленых" методов опреснения, основанных на использовании нетрадиционных источников энергии: бросового тепла различных производств, солнечной и геотермальной энергии. К числу таких методов опреснения относится метод мембранной дистилляции (МД), ставший в последние 10–15 лет предметом изучения многих исследователей [2].

МД – процесс опреснения, при котором молекулы водяного пара горячей опресняемой воды (40-90°С) переносятся через микропористую гидрофобную мембрану на ее холодную сторону из-за различия парциальных давлений паров воды на этих сторонах, обусловленного перепадом температур. В зависимости от условий конденсации паровой фазы на холодной стороне различают несколько разновидностей модулей мембранной дистилляции (ММД): с прямым контактом (МДПК) – конденсацией паров в результате контакта с холодным потоком пермеата, омывающего мембрану; с конденсацией в воздушном зазоре – в слое воздуха или пермеата, охлаждаемого специальным потоком холодной воды; с конденсацией в отдельном конденсаторе, куда отводится водяной пар путем создания вакуума на холодной стороне или отвод пара осуществляется посредством инертного газа [2].

Наряду с упомянутой возможностью использования низкопотенциального тепла отмечаются такие достоинства МД, как практически 100%-ая селективность мембран, позволяющая получать глубоко обессоленную воду, например, для питания котлов высокого давления без дополнительной обработки, в отличие от обратного осмоса; возможность опреснения вод даже с высоким солесодержанием (до 100-200 г/дм³); достоинства, характерные для мембранных технологий в целом модульность, компактность, легкость автоматизации, использование конструкционных материалов из пластмасс и др. К недостаткам, ограничивающим коммерциализацию технологии МД, относятся высокая стоимость мембран, их низкая удельная производительность, накипеобразование и риск смачивания мембран жидкой фазой, подверженность температурной и концентрационной поляризации, а в случае использования традиционных источников энергии также и очень высокие энергозатраты: от нескольких десятков до нескольких сотен кВт ч/м³, в зависимости от конкретных условий [3].

К настоящему времени выполнен ряд исследований по изучению различных аспектов МД опреснения с использованием бросового низкопотенциального тепла систем охлаждения (СО) энергоустановок. В работах [4–6] исследована возможность МД опреснения теплой продувочной воды СО с испарительными градирнями. В [4] предлагается опресненную воду использовать для подпитки системы, что позволит на 29.4% уменьшить расход исходной пресной воды. Согласно расчетам авторов, способ экономичен при стоимости пресной воды >1.067 USD/м³. О технологической осуществимости такого процесса свидетельствуют результаты экспериментальных исследований на модуле с прямой контактной мембранной дистилляцией плоско-рамного типа с полипропиленовой мембраной [5]. По данным этих исследований продувочная вода СО характеризовалась солесодержанием 4.7 г/л и при кратности концентрирования 3.7-4 на мембране образовывалась накипь, состоящая из Са- CO_3 , CaSO₄ и CaSiO₃. Селективность мембраны составила 99.95%. В пилотных исслелованиях [6] установлена возможность безнакипного концентрирования натуральной продувочной воды градирни в 4.5 раз и конверсии 78% продувочной воды, что позволяет сократить расход пресной воды на 37%. При этом расход электроэнергии в 3-4 раза меньше, чем при обратном осмосе. Из-за низкой температуры продувочной воды (35-45°С) в указанных исследованиях предусматривается дополнительный нагрев воды перед МД до 60°С.

Необходимость в предварительном нагреве отпадает при интегрировании МД в системы водяного охлаждения различного рода дизельных агрегатов, характеризующихся более высокими температурами нагретой воды: 65-85°С. В [7] предложен метод опреснения на ММД с использованием тепла из СО морского двигателя для бортовых судов. Расчетами показано, что может быть обеспечена выработка 15 м³/сут пресной воды. Оптимальный диапазон температуры горячей воды на входе в ММД – 65–70°С, охлаждающей воды на выходе – 40°С. По данным [8], на примере использования тепла охлаждающей воды дизельной электростанции (ДЭС) мощностью 5 МВт, разработана установка МД опреснения воды Средиземного моря с 12 модулями, общей производительностью 5 м³/сут. Температура опресняемой воды – 80°С, удельная электропроводность опресненной воды – 29 мкСм/см. Охлаждение ММД – прямоточное, с использованием морской воды. В аналогичных исследованиях [9], путем численного анализа системы МДПК, показана предпочтительность использования коротких мембран, поскольку при этом повышается массовый поток пермеата, а авторами [10], на примере одноступенчатых модулей МДПК, обоснована целесообразность рекуперации теплоты дистиллята путем использования специального теплообменника для предварительного нагрева исходной воды и даны рекомендации по использованию многоступенчатых установок.

Настоящая статья посвящена дальнейшим исследованиям технологии МД с использованием тепла охлаждающей воды ДЭС модульного типа на примере опреснения вод Каспийского и Черного морей. Часто такие ДЭС используются в приморских регионах как для децентрализованного электро- и теплоснабжения отдельных объектов, так и в составе компонента энергосистемы, поскольку характеризуются высокой маневренностью в плане обеспечения пиковых нагрузок. В частности, одна из таких ДЭС (18 модулей по 16 МВт) в

течении нескольких лет эксплуатируется на Апшеронском полуострове (Азербайджанская Республика). Охлаждение двигателя осуществляется дистиллятом, который циркулирует по замкнутому контуру: "рубашка" охлаждения двигателярадиаторная градирня. Каспийская вода характеризуется высоким потенциалом сульфатного накипеобразования. Поэтому, в отличие от ранее выполненных работ, исследуется возможность и условия решения сульфатной проблемы путем предварительного умягчения морской воды методом нанофильтрации, который успешно решает эту проблему в обычных системах опреснения океанской и некоторых других соленых вод [11]. В задачи исследований входили также вопросы сравнительного анализа и выбора мембраны, изучения влияния условий организации процесса на тепловую эффективность, удельную площадь поверхности мембраны и др.

Для осуществления процесса МД предусматривается использование модификации МД с прямой контактной конденсацией, как наиболее изученной и близкой к коммерческому применению.

2. МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

В типичных системах ДЭС тепло продуктов сгорания с температурой 400–500°С используется в котлах-утилизаторах для теплоснабжения прилегающих объектов, а отвод тепла из "рубашки" охлаждения двигателя осуществляется дистиллятом, который циркулирует в радиаторных градирнях, обдуваемых вентилятором (рис. 1*a*). Температурный график системы охлаждения двигателя (80–85°С – на выходе и 25–30°С – на входе) создает реальные предпосылки для использования этого низкопотенциального тепла СО с целью опреснения морской воды методом МД.

Согласно предлагаемой схеме (рис. 2) формируетсятрехконтурнаясистема. Впервомосуществляется отвод тепла из двигателя в теплообменник, во втором, промежуточном контуре – передача этоготепла к ММД посредством циркулирующей горячей питательной воды — G_{r} . В процессе термической дистилляции и теплопередачи в этом модуле достигается охлаждение питательной воды, часть которой отводится в виде продувки системы ($G_{\rm np}$). Для восполнения потерь в питательном контуре используется подпиточная вода (G_{пол}), состоящая из смеси исходной морской воды с долей "у" и умягченной в модуле НФ морской воды с долей (1 - y). На холодной стороне мембраны циркулирует дистиллят (G_x), охлаждаемый в охладителе дистиллята (рис. 2*a*), либо в воздушных радиаторах (рис. 2б) и, частично, отводимый в виде целевого продукта-дистиллята (G_n). Первая схема предпочтительна для проектирования новых систем, а вторая – для реконструкции действующих.

Рис. 1. Принципиальная схема ДЭС с радиаторными градирнями для охлаждения двигателя: Т – топливо; В – воздух; ДД – дизельный двигатель; ЭГ – электрический генератор; КУ – котел-утилизатор; ПС – продукты сгорания топлива; СОГВ – система отопления и горячего водоснабжения; В-Р – вентилятор; Р – радиатор.

Вобе системы подается морская вода ($G_{\rm MB}$), отводится концентрат модуля НФ – G_k , а в случае охлаждения дистиллята морской водой – также и сбросная вода – $G_{\rm c6.}$

Исследования были проведены путем компьютерной симуляции расчетной модели предложенной системы. На первом этапе была выбрана расчетная модель, состоящая из трех частей: модели нанофильтрационного умягчения морской воды, модели модуля МД и модели, отражающей условия предотвращения образования накипи CaSO₄ на поверхности мембраны. При моделировании процесса нанофильтрационного умягчения предусматривалось использование мембраны марки NF-90, характеризующейся высокой селективностью как по двухвалентным так и по одновалентным ионам. Эта стадия была исследована по компьютерной программе ROSA (Reverse Osmosis System Analysis) [12].

Исследование ММД выполнялось по модели, основанной на критериальном уравнении Нуссельта и соответствующей методике, приведенной в [13, 14]. Предусматривалось использование плоско-рамного модуля и четырех марок мембран (табл. 1), которые характеризуются высокой удельной производительностью.

Оценка условий выпадения накипи сульфата кальция проводилась на основании индекса Скилмана, по методике приведенной в [15].

Исследования были выполнены на примере каспийской и черноморской вод, ионные составы которых приведены в табл. 2.

Рис. 2. Схема интегрирования модуля МД в систему охлаждения ДЭС: *a*) охлаждение дистиллята морской водой, *δ*) охлаждение дистиллята воздухом. ТО – теплообменник; МД – модуль мембранной дистилляции; НΦ – модуль нанофильтрационного умягчения; ОД – охладитель дистиллята.

3. РАСЧЕТНАЯ МОДЕЛЬ СИСТЕМЫ

Расход питательной воды ММД (концентрата), циркулирующего в горячем контуре – G_{r} , кг/с:

$$G_{\rm r} = \alpha \left(1 - \eta_{\rm ext}\right) W_{\rm ext} \times 10^3 / \left(\eta_{\rm ext} \left(t_{\rm TO}^{"} - t_{\rm TO}^{'}\right) C_{\rm p}\right), \quad (1)$$

где α — доля бросового тепла на систему охлаждения; $\eta_{\scriptscriptstyle 3Л}$ — электрический КПД; $W_{\scriptscriptstyle 3Л}$ — электрическая мощность ДЭС, МВт; $t'_{\rm TO}$ и $t''_{\rm TO}$ — температура воды в входе и выходе ТО соответственно, °С; $C_{\rm p}$ — удельная теплоемкость воды, кДж/(кг °С).

Расход дистиллята — $G_{\rm d}$ и продувочной воды — $G_{\rm np}$, кг/с:

$$G_{\rm g} = \beta_{\rm пит} G_{\rm r} / 100, \qquad (2)$$

$$G_{\rm np} = G_{\rm g}(1/\beta_{\rm nog} - 1), \qquad (3)$$

где $\beta_{nит}$ и β_{nog} — коэффициенты конверсии горячей питательной воды модуля МД в циркуляционном контуре и подпиточной воды контура, в %-ах и долях соответственно:

$$\beta_{\text{под}} = G_{\text{д}}/G_{\text{под}} = G_{\text{g}}/(G_{\text{пр}} + G_{\text{g}}), \qquad (4)$$

где $G_{\text{пол}}$ — расход подпиточной воды, кг/с.

Кратность упаривания воды в циркуляционном контуре по отношению к подпиточной воде (K_y) и солесодержание питательной воды ММД – $S_{пит}$, мг/дм³:

$$K_{\rm y} = 1/(1 - \beta_{\rm nog}),$$
 (5)

$$S_{\text{пит}} = S_{\text{под}} K_{\text{y}}.$$
 (6)

Расход пермеата стадии НФ ($G_{\rm H\phi}$), составляющий (1 — y)-ую часть расхода подпиточной воды, кг/с:

$$G_{\rm H} = (1 - y)G_{\rm nog}/\beta_{\rm H}, \qquad (7)$$

где $\beta_{h\phi}$ — коэффициент конверсии питательной воды НФ, в долях.

Концентрация каждого иона (i) в подпиточной воде – S_i , мг/дм³:

$$S_{i} = yS_{i,MB} + (1 - y)S_{i,\Pi},$$
(8)

Фирма- производитель	Марка	Материал	Толщина δ, мкм	Радиус пор г, мкм	Пористость ε, %
Gelman	TF-450	PTFE/PP	60	0.225	80
Millipore	Durapore	PVDV	125	0.1	75
Gore	—	PTFE	77	0.225	89
Vladipor	ΜΦΦΚ-4	PTFE/PP	130	0.325	80

Таблица 1. Технические показатели мембран

Примечание: PTFE – Политетрафлорэтилен; PP – Полипропилен; PVDV – Поливинилденефлорид.

Моря	Ca ²⁺	Mg^{2+}	Na ⁺	Cl-	SO_4^{2-}	HCO ₃	Солесодержание
Каспийское	320.9	729.9	3174.9	5034.3	3264.0	244.0	12768
Черное	254.6	623.7	5748.6	10022.6	1440.0	79.3	18 169

Таблица 2. Ионные составы вод, мг/дм³

где $S_{i, MB}$ и $S_{i, n}$ – концентрации ионов в морской воде и пермеате НФ соответственно. При этом последние рассчитываются по программе "ROSA", как функции от $\beta_{h\phi}$.

Температура смеси в точке подвода подпиточной воды в циркуляционный контур, равная температуре на входе в ТО – t_{cM} , °С:

$$t_{\rm cM} = \left(\left(G_{\rm r} - G_{\rm d} - G_{\rm np} \right) t_{\rm n}'' + G_{\rm nod} t_{\rm nod} \right) / G_{\rm r} , \qquad (9)$$

где t''_{n} — температуры питательной воды стадии МД на выходе из модуля; t_{nod} — температура подпиточной воды контура, °C.

Степень пересыщенности воды в циркуляционном контуре по сульфату кальция может быть оценена по индексу Скилмана (SI), допустимым значением, которого является — SI \leq 1 [15]:

SI =
$$K_y S_{\text{Ca, nog}} / ((X^2 + 4K_{\text{sp}})^{0.5} - X) \times 1000 E_{\text{Ca}}),$$
 (10)

где $S_{\text{Са, под}}$ — концентрация ионов кальция в подпиточной воде, в мг/дм³; $E_{\text{Са}}$ — эквивалентная масса атома Са, мг/экв; X — избыточная концентрация превалирующего иона, мг/дм³; K_{sp} — произведение растворимости сульфата кальция.

$$X = |1.04S_{SO_4} - 2.5S_{Ca}|.$$
(11)

В температурном диапазоне $t = 20-90^{\circ}$ С и ионной силы раствора $\mu = 0.2-2.8$ величина $K_{\rm sp}$ может быть рассчитана по формуле, (моль/дм³)²:

$$K_{\rm sp} = (16.895\mu^{0.6785} + 0.033t - 5 \times 10^{-4}t^2) \times 10^{-4}.$$
 (12)

Удельный расход дистиллята (*J*) стадии МД, кг/(м² с), [14]:

$$J = B_{\rm M} \left(P_{\rm 1}(t_{\rm MT}) X_{\rm B} a_{\rm B} - P_{\rm 2}(t_{\rm MX}) \right) = B_{\rm M} \Delta P_{\rm A}, \qquad (13)$$

где $B_{\rm M}$ — коэффициент проницаемости мембраны, кг/(м² с Па); $P_1(t_{\rm MF})$ и $P_2(t_{\rm MX})$ — давление водяного пара над чистой водой при температуре горячей и холодной поверхности мембраны, Па; $\Delta P_{\rm g}$ — движущая сила процесса МД, Па; $X_{\rm B}$ — молярная доля воды в питающем концентрате; $a_{\rm B}$ коэффициент активности воды.

Величина $B_{\rm M}$ может быть определена по аналитическим зависимостям, учитывающим технологические показатели используемой мембраны и механизм диффузии паров воды через мембрану. Исходя из соотношения длины свободного пробега молекул воды и диаметра пор мембраны можно показать, что в рассматриваемом случае диффузия паров подчиняется смешанному кнудсено-молекулярному механизму и $B_{\rm M}$ может быть рассчитано по формуле [14]:

$$B_{\rm M} = \left[\frac{3\tau\delta}{2\varepsilon r} \left(\frac{\pi RT}{8M}\right)^{1/2} + \frac{\tau\delta}{\varepsilon} \frac{Pa}{PD} \frac{RT}{M}\right]^{-1},\qquad(14)$$

где є, r, δ – технологические показатели мембраны, приведенные в табл. 1; τ – извилистость пор мембраны, в долях; M – молярная масса воды, г/моль; R – универсальная газовая постоянная, Дж/(моль K); T – средняя температура мембраны, K; Pa – давление воздуха в порах, равное атмосферному давлению, Па; PD – произведение общего давления в порах мембраны на коэффициент диффузии, Па м^{2/с}:

$$\tau = 1/\epsilon, \tag{15}$$

$$PD = 1.895 \times 10^{-5} T^{2.072}.$$
 (16)

Давление пара на линии насыщения при известной температуре может быть рассчитано по формуле Антуана, Па [3]:

$$P = \exp(23.1964 - 3816.44/(T_{\pi} - 46.13)), \quad (17)$$

где $T_{\rm n}$ – температура пара на горячей и холодной поверхностях мембраны, К.

С учетом температурной поляризации температуры горячей и холодной поверхностей ($T_{\rm MF}$, $T_{\rm MX}$) могут быть рассчитаны по формулам, К [16]:

$$T_{\rm M\Gamma} = \frac{\kappa_{\rm M} \left(T_{\rm g, \pi} + \frac{h_{\rm K}}{h_{\rm m}} T_{\rm g, \kappa} \right) + \delta \left(h_{\rm K} T_{\rm g, \kappa} - J \Delta H \right)}{\left(\kappa_{\rm M} \right) + h_{\rm K} \left(\delta + \frac{\kappa_{\rm M}}{h_{\rm m}} \right)}, \quad (18)$$

$$T_{\rm MX} = \frac{\kappa_{\rm M} \left(T_{\rm s,\kappa} + \frac{h_{\rm m}}{h_{\rm K}} T_{\rm s,\pi} \right) + \delta \left(h_{\rm m} T_{\rm s,\pi} + J \Delta H \right)}{\left(\kappa_{\rm M} \right) + h_{\rm m} \left(\delta + \frac{\kappa_{\rm M}}{h_{\rm K}} \right)}, \quad (19)$$

где к_м — коэффициент теплопроводности мембраны, Вт/(м C); $T_{\text{я.д.}}, T_{\text{я.к.}}$ — средние температуры в ядрах потоков дистиллята на холодной и концентрата на горячей сторонах мембраны, К; $h_{\text{д.}}, h_{\text{к.}}$ — коэффициенты теплопроводности дистиллята и концентрата соответственно, Вт/(м² K); ΔH скрытая теплота парообразования при средней температуре горячей стороны мембраны, кДж/кг.

МЕМБРАНЫ И МЕМБРАННЫЕ ТЕХНОЛОГИИ том 12 № 1 2022

Расчет к_м, $h_{\rm d}$, $h_{\rm k}$, ΔH может быть выполнен по формулам, приведенным в [14, 16]:

$$\kappa_{\rm M} = (1 - \varepsilon)\kappa_{\rm MM} + \varepsilon \kappa_{\rm r}, \qquad (20)$$

$$h_{\rm m} = {\rm N} u_{\rm m} \kappa_{\rm m} / D_{\rm sk}, \qquad (21)$$

$$\Delta H = 2489.7 - 2.412 \left(T_{\rm MF} - 273.15 \right), \tag{22}$$

$$h_{\rm K} = {\rm Nu}_{\rm K} \kappa_{\rm K} / D_{\rm SK}, \tag{23}$$

где κ_{MM} и κ_{Γ} – коэффициенты теплопроводности материала мембраны и газов (воздуха, паров воды) в порах мембраны; D_{3K} – эквивалентный диаметр канала, м; Nu_{A} , Nu_{K} – соответствующие числа Нуссельта, зависящие от режима течения:

Ламинарный –
$$Nu = 0.097 Re^{0.73} Pr^{0.13}$$
, (24)

где Re и Pr – числа Рейнольдса и Прандтля, соответственно.

Капитальные затраты модуля МД зависят, в основном, от площади поверхности мембраны (F, M^2) или ее удельного значения (f, $M^2/(\kappa r/c)$), а тепловой эффективности - от коэффициента температурной поляризации (КТП), расхода электроэнергии на работу насосов (g_н, кВт ч/м³ полученного дистиллята), а также теплового КПД процесса. Причем последний может быть выражен в двух вариантах: как количество энергии, перешедшей от горячего к холодному потоку посредством массопередачи ($q_{\rm MII}$), поделенное в одном случае к суммарному количеству энергии, включая также теплопроводность мембраны ($q_{\text{тп}}$) – $\eta_{1. \text{мл}}$, %), а в другом — к снижению энергии горячего потока на мембранном модуле (Δq_{MM}) – ($\eta_{2,MR}$, %). Исходя из использования бросового тепла ДЭС для опреснения морской волы в число выходных технологических показателей предлагается ввести также такое понятие, как энергетический выход дистиллята, характеризующий количество дистиллята на каждый МВт вырабатываемой электроэнергии $- d_{w}$, т/(сут MBт):

$$F = G_{\rm \tiny MII}/J, \qquad (26)$$

$$f_{\rm M} = 1/J, \tag{27}$$

$$KT\Pi = (T_{g.K} - T_{M\Gamma}) / (T_{g.\Pi} - T_{MX}), \qquad (28)$$

$$\eta_{1.M,\Pi} = \frac{q_{M\Pi} \times 100}{q_{M\Pi} + q_{\Pi\Pi}} = \frac{J\Delta H \times 100}{J\Delta H + 0.001\kappa_{M}(T_{M\Gamma} - T_{MX})/\delta}, (29)$$

$$\eta_{2.MI} = \frac{q_{MII} \times 100}{\Delta q_{MM}} = \frac{J\Delta HF \times 100}{G_{\mu r}C_{p} (t'_{n}(1 - K_{\mu r})t''_{n}}, \qquad (30)$$

$$g_{\rm H} = V \Delta P_{\rm c} / (3600 G_{\rm g} \eta_{\rm H}), \qquad (31)$$

$$d_{\rm w} = 86.4G_{\rm g}/W_{_{\rm \Im J}},$$
 (32)

где $t'_{\rm n}$ и $t''_{\rm n}$ – температуры горячего питательного потока на входе и выходе мембранного модуля соответственно, °C; *V* – суммарный объемный расход потока питательной воды и дистиллята, м³/c; $\Delta P_{\rm c}$ – суммарные потери давления, Па; $\eta_{\rm H}$ – КПД насосов.

Следует отметить, что при выполнении компьютерной симуляции данной модели значения некоторых показателей, входящих в приведенные выражения или расчетных формул для их определения, принимались из литературных источников: $\kappa_{\text{мм}}$, $X_{\text{в}}$, $a_{\text{в}}$, а также кинематические вязкости и плотности горячего и холодного потоков для расчета чисел Рейнольдса и Прандтля.

Исследования проводились на примере ММД плоско-рамного типа с шириной мембраны *a* = = 0.5 м, шириной мембранного канала b = 0.002 м и высотой рабочей поверхности h = 1 м. В исследованиях варьировались: коэффициент конверсии питательной воды стадии НФ ($\beta_{\mu\phi} = 0.4 - 0.8$); доли исходной морской воды в подпиточной воде (y = 0.2 - 1), температура дистиллята МД на выходе из модуля ($t''_{II} = 40-70^{\circ}$ C), а также скорости движения питательной воды и дистиллята в камерах модуля МД (v = 0.1-0.3 м/с) и солесодержания питательной воды ($S_{\text{пит}} = 20 - 100 \text{ г/дм}^3$). Принимались фиксированными: доля бросового тепла на систему охлаждения ($\alpha = 0.3$), температура морской воды ($t_{\rm MB} = 20^{\circ}$ C), температура горячего концентрата на входе и выходе модуля МД – на 5°С меньше нормативных значений температуры дистиллята в "рубашке" охлаждения дизельного двигателя (80 и 25°С соответственно). Путем вычислительного эксперимента изучалось влияние варьируемых факторов на совокупность указанных выше выходных факторов.

Расчеты выполнялись итеративным методом. В первом приближении задавались температурами горячей и холодной поверхностей мембраны отличными от средних температур в ядрах потоков на 3°С, а также величиной конверсии питательной воды ($\beta_{пит}$) модуля МД – 6%. За критерий завершения расчетов принималось выполнение трех условий: расхождение между полученными и предыдущими значениями температуры поверхности мембраны – <0.1°С, величины $\beta_{пит} < 0.05\%$, а также $|\eta_{1.м.\pi} - \eta_{2.м.\pi}| < 0.1\%$.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ

Одна из главных особенностей настоящих исследований связана с анализом условий предотвращения сульфатного накипеобразования в модуле МД при нанофильтрационном умягчении части подпиточной воды питательного (горячего) контура МД. Как показали результаты расчетов, остаточные концентрации накипеобразующих ионов в пермеате стадии НФ зависят, в основном, от величины конверсии морской воды (выхода пермеата) – $\beta_{h\phi}$ (рис. 3).

Полученные данные хорошо согласуются с известными результатами исследований по НФ обработке океанской воды и подтверждают эффективность достаточно глубокого умягчения также и вод Каспийского и Черного морей. Так, содержание ионов Ca²⁺ снижается до: 10–22 и 8–18 мг/дм³ в пермеатах каспийской и черноморской вод соответственно. В этом же соответствии для наиболее типичных значений $\beta_{h\phi} = 0.7$ концентрации сульфат-ионов составляют 125 и 50 мг/дм³, а солесодержания пермеатов – 1.9 и 3.1 г/дм³.

Повышение остаточных концентраций ионов с увеличением $\beta_{\rm H\varphi}$ объясняется повышением содержания ионов в остаточном концентрате, часть которых и проникает через мембрану в камеру пермеата. Заметное ухудшение показателей наблюдается при $\beta_{\rm H\varphi} > 0.7$. Поэтому в дальнейших исследованиях эта величина была принята постоянной — 0.7.

Важно отметить, что по программе ROSA были определены не только прогнозируемые концентрации ионов Ca²⁺ и SO₄²⁻ в пермеате, но и всех остальных ионов, а также солесодержания пермеата – $S_{\rm n}$. Статистическая обработка полученных данных показала, что с учетом использования мембраны NF-90 все кривые зависимости концентрации компонентов от $\beta_{\rm hp}$, за исключением ионов HCO₃⁻, с коэффициентом детерминации $R^2 = 0.99-1$ могут быть аппроксимированы уравнением степенного вида, мг/дм³:

$$S_{\rm i} = a(1 - \beta_{\rm Hb})^b, \tag{33}$$

где *а* и *b* – коэффициенты, зависящие от природы иона и источника воды (табл. 3). Содержание ионов HCO₃⁻ оценивалось с учетом подкисления исходной воды. Поэтому его концентрация в пермеате слабо коррелируется с величиной $\beta_{h\phi}$ и согласно расчетам может быть принята: 8 и 5 мг/дм³ для каспийской и черноморской вод соответственно.

Эти данные представляют большой интерес и с точки зрения компьютерных исследований различных гибридных систем опреснения с нанофильтрационной предварительной очисткой обратный осмос, термическая дистилляция др.

Высокая эффективность нанофильтрационного умягчения морской и океанской воды в плане предотвращения накипи сульфата кальция и стремление снизить затраты на опреснение в целом, делают оправданным подпитку горячего контура МД смесью исходной воды и пермеата

Рис. 3. Графики зависимости солесодержания пермеата – $S_{\Pi}(1-I')$, остаточных концентраций Са – (2–2), SO₄ – (3–3) от величины конверсии: 1, 2, 3 – каспийская вода, I', 2, 3 – черноморская вода.

НФ, как показано на рис. 2. В этой связи на рис. 4 представлен график зависимости индекса Скилмана (SI) питательной воды МД в горячем контуре и величины конверсии подпиточной воды ($β_{под}$) от доли морской воды (*y*) и солесодержания питательной воды МД ($S_{пит}$).

Анализ графиков показывает, что более высоким потенциалом сульфатного накипеобразования характеризуется каспийская вода: значения SI < 1 достигаются лишь для небольшого диапазона изменения входных — $S_{\text{пит}} < 30$ г/дм³ и y < 0.4 (рис. 4*a*). Вместе с тем, даже при этих значениях входных факторов прогнозируются достаточно высокие значения конверсии подпиточной воды: 60—85% (прямая 5 при $S_{\text{пит}} = 20$ г/дм³ и 6 – при $S_{\text{пит}} = 50$ г/дм³). Согласно данным рис. 46, для черноморской воды вплоть до $S_{\text{пит}} = 100$ г/дм³ и y < 0.85отсутствует опасность сульфатного накипеобразования с достижением высоких значений конверсии: 82-94% (прямые 5' и 6'). Поэтому для области значений $S_{\text{пит}} \le 95 \text{ г/дм}^3$ нет необходимости в нанофильтрационном умягчении черноморской воды.

Таблица 3. Значения коэффициентов уравнения

Показатели	Каспийс	кое море	Черное море		
	а	b	а	b	
S _{Ca}	7.1	-0.719	5.6	-0.718	
$S_{ m Mg}$	17.6	-0.725	13.0	-0.716	
$S_{ m Na}$	354.2	-0.568	579.6	-0.586	
S _{Cl}	551.6	-0.568	940.4	-0.593	
S_{SO_4}	49.2	-0.792	19.3	-0.813	
S_{π}	0.985	-0.584	1.561	-0.6	

Примечание: При использовании мембраны марки NF-90.

Puc. 4. График зависимости индекса Скилмана питательной воды МД и конверсии подпиточной воды от доли морской воды и солесодержания питательной воды МД: *a*) каспийская вода, *b*) черноморская вода: $S_{\text{пит}} = 20$ (*I*), 30 (*2*), 40 (*3*), 50 (*4*), 40 (*I*'), 60 (*2*'), 80 (*3*'), 100 г/дм³ (*4*); $\beta_{\text{под}}$ при $S_{\text{пит}} = 20$ (*5*), 40 (*5*), 50 (6), 100 г/дм³ (*b*).

Первый этап исследований по мембранной дистилляции был посвящен сравнительному анализу четырех типов мембран по таким техническим параметрам, как толщина, радиус пор и пористость (табл. 1). Сравнение проводилось по коэффициенту проницаемости мембраны – В_м, кг/(м² с Па), который является универсальным технологическим показателем, поскольку характеризует удельный расход дистиллята через мембрану при разности давлений в один паскаль. В этих исследованиях при постоянных температурах питательной воды $t'_{\Pi} = 80^{\circ}$ С, $t''_{\Pi} = 30^{\circ}$ С и температуре дистиллята t_л = 25°С в интервале 40-70°С варьировалась температура дистиллята на выходе модуля МД (t_{π}) и по формуле (14) рассчитывались значения $B_{\rm M}$. Согласно полученным результатам, наибольшие значения $B_{\rm M}$ характерны для мембраны марки TF-450 фирмы Gelman: 1.638 × 10⁻⁶ кг/(м² с Па) при t'_{π} = 40°С и 1.663 × × 10^{-6} кг/(м² с Па) при $t'_{\mu} = 70^{\circ}$ С. Поэтому в дальнейших исследованиях предусматривалось использование именно этой мембраны. Следует отметить, что более корректный выбор марки мембраны должен учитывать и стоимостные показатели, что не рассматривалось в настоящих исследованиях. Не исключено, что учет этого фактора может повлиять на выбор предпочтительной марки мембраны.

О влиянии t_{π}'' на основные технологические показатели процесса МД можно судить по данным, полученным на каспийской воде (рис. 5). Как видно из рис. 5*a*, с увеличением температуры удельный расход дистиллята (*J*) уменьшается с 33

до 15 кг/(м² с), что объясняется уменьшением разности давлений паров воды на горячей и холодной поверхностях мембраны. Этот же фактор является причиной почти двукратного роста удельной поверхности мембраны (*f*) и повышения КПД (η) на 10% – до 66.4%. При этом величина конверсии питательной воды МД ($\beta_{пит}$) повышается с 5.5 до 6.2%, а выход дистиллята на каждый МВт вырабатываемой электроэнергии (d_w) – с 5 до 5.5 т/(сут МВт) – рис. 5*б*.

При исследовании влияния солесодержания питательной воды МД на технологические показатели исходили из ограничений по индексу Скилмана. Как следует из рис. 7*a*, в случае использования воды Каспийского моря повышение солесодержания питательной воды от 10 до 30 г/дм³ слабо влияет на выходные показатели: удельный расход дистиллята снижается примерно на 7%, на столько же увеличивается удельная поверхность мембраны при практически неизменном КПД – 67%.

Возможность варьирования солесодержания питательной воды в более широком диапазоне, в случае использования воды Черного моря, делает рассматриваемые зависимости более выраженными (рис. 7δ): удельный расход дистиллята снижается примерно на 50%, удельная поверхность мембраны увеличивается на 43%.

Такое влияние солесодержания питательной воды на удельный расход дистиллята и связанные с ним прочие показатели объясняется некоторым уменьшением молярной доли воды и, соответственно, парциального давления паров воды на горячей стороне мембраны. Так, с увеличением солесодержания питательной воды МД с 20 до

Рис. 5. График влияния температуры дистиллята на выходе модуля на: *a*) удельный расход дистиллята (*1*), удельную поверхность мембраны (*2*) и КПД процесса (*3*); *б*) конверсию питательной воды (*4*) и энергетический выход дистиллята (*5*); *S*_{пит} = 20 г/дм³, *v* = 0.15 м/с.

Рис. 6. Влияние солесодержания питательной воды МД на удельный расход дистиллята (1, 1'), удельную поверхность мембраны (2, 2') и КПД процесса (3, 3') при опреснении каспийской (*a*) и черноморской воды (*б*).

Рис. 7. Влияние солесодержания питательной воды МД на ее конверсию (1, 1') и удельный расход энергии (2, 2') при опреснении каспийской (a) и черноморской воды (δ) .

МЕМБРАНЫ И МЕМБРАННЫЕ ТЕХНОЛОГИИ том 12 № 1 2022

v, м/с	J, кг/(м ² с)	<i>f</i> , м²/(кг/с)	$\Delta P_{\rm д}$, Πα	$g_{\rm h}$, кВт ч/м ³	КТП	$\Delta T_{\rm mg}, ^{\circ}{\rm C}$	$\Delta T_{\rm MX}$, °C	Re	
0.1	$\frac{12.7}{8.9}$	$\frac{284}{403}$	<u>2122</u> 1435	$\frac{0.27}{0.17}$	$\frac{0.48}{047}$	$\frac{1.94}{2.05}$	$\frac{1.97}{1.91}$	$\frac{707}{644}$	
0.2	$\frac{16.3}{12.2}$	$\frac{220}{295}$	<u>2722</u> 1974	$\frac{0.70}{0.72}$	$\frac{0.6}{0.59}$	$\frac{1.48}{1.61}$	$\frac{1.50}{1.50}$	$\frac{1414}{1207}$	
0.3	$\frac{18.6}{14.5}$	$\frac{193}{249}$	$\frac{3111}{2355}$	$\frac{1.86}{2.19}$	$\frac{0.68}{0.67}$	$\frac{1.19}{1.30}$	$\frac{1.20}{1.21}$	$\frac{2263}{1930}$	

Таблица 4. Влияние скорости движения воды на технологические показатели

Примечание: числитель – Каспийское море, при y = 0.5, $S_{пит} = 30 \text{ г/дм}^3$, $t_{d} = 70^{\circ}\text{C}$, $\beta_{пит}$, % = 6.09 - 6.15; знаменатель – Черное море, без НФ (y = 1), $S_{пит} = 95 \text{ г/дм}^3$, $t_{d} = 70^{\circ}\text{C}$; $\beta_{пит} = 5.34 - 5.75$.

100 г/дм³ молярная доля молекул воды снижается на 2.7%, а коэффициент активности воды — на 2.1%.

Как следует из данных рис. 7, в случае опреснения каспийской воды повышение солесодержания питательной воды в циркуляционном контуре от 10 до 30 г/дм³, при y = 0.5 чему соответствует солесодержание подпиточной воды – 7.4 г/дм³, способствует трехкратному росту конверсии подпиточной воды – до 75%. При этом расход энергии, обусловленный работой насосов снижается до 0.42 кВт ч/м³. Еще более высокая конверсия (около 80%) характерна для черноморской воды, при использовании которой даже без предварительного умягчения (y = 1), в безнакипном режиме солесодержание питательной воды может быть повышено до 95 г/дм³ (рис. 7б). При этом отпадает необходимость стадии нанофильтрации, что упрощает технологию и снижает затраты на процесс опреснения. Для этой воды характерны также более низкие значения расхода энергии на работу насосов (0.23-0.36 кВт ч/м³) по причине отсутствия необходимости умягчения с соответствующим дополнительным расходом электроэнергии на стадию НФ.

Повышение скорости движения питательной воды и дистиллята в камерах модуля МД интенсифицирует процесс массо-теплопередачи из-за трехкратного повышения числа Рейнольдса – Re, (табл. 4). В результате снижаются разности температур в ядре потоков и на поверхности мембраны ($\Delta T_{\rm MF}, \Delta T_{\rm MX}$), что приводит к таким положительным результатам, как повышение коэффициента поляризации (КТП) до 0.67-0.68, а также движущей силы процесса (ΔP_{II}) — на 50—60%, с соответствующим повышением дельного расхода дистиллята (J) и снижением удельной поверхности мембраны (f). Вместе с тем, повышение скорости в рассматриваемых пределах обуславливает резкое повышение расхода электроэнергии на работу насосов (g_н): до 1.86-2.19 кВт ч/м³, что объясняется повышением гидравлического сопротивления.

Из обобщения результатов исследования влияния температуры дистиллята на выходе из моду-

ля МД $(t_n^{"})$, солесодержания питательной воды модуля МД $(S_{пит})$ и скорости движения питательной воды и дистиллята в камерах (v) следует, что повышение этих факторов оказывает противоположное действие на выходные показатели процесса опреснения, от которых зависят капитальные затраты (J, f) и энергетические затраты $(\eta_{\text{мд}}, g_{\text{н}})$. Это делает важным проведение в дальнейшем исследований оптимизационного характера.

5. ЗАКЛЮЧЕНИЕ

Повышения эффективности процесса опреснения морской воды методом мембранной дистилляции может быть достигнуто путем использования бросового тепла систем охлаждения дизельных электростанций модульного типа, а также предотвращением сульфатной накипи на мембранах за счет умягчения части морской воды методом нанофильтрации. Предложены технологические схемы, основанные на отмеченных положениях и на примере ДЭС с электрической мощностью 16.6 МВт, КПД равным 45%, на модуле с прямой контактной мембранной дистилляцией, оснащенной мембраной марки TF-450 фирмы Gelman, аналитическим методом исследованы некоторые количественные закономерности процессов опреснения вод Каспийского и Черного морей. Установлено, что при подпитке горячего контура МД смесью исходной и умягченной каспийской воды с равной долей, обеспечивается безнакипный режим работы модуля МД при солесодержании питательной воды до 30 г/дм³, а величина конверсии подпиточной воды достигает 75%. Вода Черного моря характеризуется низким потенциалом образования сульфатной накипи. Поэтому необходимость в умягчении возникает лишь при солесодержании питательной воды ≤95 г/дм³. Однако и при таком солесодержании достигается достаточно высокая величина конверсии – до 80%. Поэтому считаем нецелесообразным умягчение черноморской воды.

Можно прогнозировать величину конверсии питательной воды МД (выхода дистиллята), в среднем, 6.2 и 5.8% — для каспийской и черноморской воды соответственно. Удельный расход электроэнергии связан только с работой насосов и в этом же соответствии составляет 0.42 и 0.36 кВт ч/м³. При этом на каждый мегаватт вырабатываемой на ДЭС электрической мощности приходится в среднем 5.2 т/сут дистиллята (опресненной воды).

По данной технологии для опреснения морской воды и используется бросовое тепло системы охлаждения дизельного двигателя, удельный расход которого составляет 3.43 МДж/кг и 3.69 МДж/кг для каспийской и черноморской вод соответственно.

Считаем, что дальнейшие исследования должны быть направлены на экспериментальную проверку полученных результатов, выявление оптимальных условий организации процесса и оценку технико-экономических показателей при этих условиях.

6. ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

МД – мембранная дистилляция

СО – система охлаждения

ДЭС – дизельная электрическая станция

ММД – модуль мембранной дистилляции

МДПК – мембранная дистилляция с прямым контактом

НФ – нанофильтрация

SI – индекс Скилмана

- КТП коэффициент температурной поляризации β_{пит} – коэффициент конверсии горячей питательной воды
- β_{пол} коэффициент конверсии подпиточной воды

 $\beta_{{\scriptscriptstyle H}\varphi}-$ коэффициент конверсии питательной воды НФ

К_{sp} — коэффициент растворимости сульфата кальция

X — избыточная концентрация превалирующего иона, мг/дм³

 S_{Ca}, S_{Mg} — концентрации ионов кальция и магния в пермеате НФ, мг/дм³

 $S_{\rm п}$ – солесодержание пермеата НФ, г/дм³

 $B_{\rm M}$ — коэффициент проницаемости мембраны, кг/(м² с Па)

J – удельный расход дистиллята, кг/(м² с)

 $\Delta P_{\rm q}$ – движущая сила процесса МД, Па

 $\Delta P_{\rm c}$ — суммарные потери давления в камерах ММД, Па

Re – число Рейнольдса

 $T_{\rm MF}$ – температура горячей поверхности мембраны, °C

 $T_{\rm MX}-$ температура холодной поверхности мембраны, °C

 $\Delta T_{\rm MF}$ – разность температур в ядре потока концентрата и горячей стороне мембраны, °C

 $\Delta T_{\rm _{MX}}$ –разность температур на холодной стороне мембраны и ядре потока дистиллята, °C

F – площадь поверхности мембраны, м²

f – удельная поверхность мембраны, м²/(кг/с)

 $\eta_{\mbox{\tiny MD}}$ — коэффициент полезного действия процесса МД, %

*d*_w – энергетический выход дистиллята, т/(сут МВт)

 $g_{\rm H}$ — расход электроэнергии на работу насосов, кВт ч/м³

v — скорость движения воды в камерах ММД, м/с y — доля исходной морской воды в подпиточной воде ММД

δ – толщина мембраны, мкм

- r радиус пор мембраны, мкм
- ϵ пористость мембраны, %

СПИСОК ЛИТЕРАТУРЫ

- Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah // International J. Innovation Sciences and Research. 2015. V. 4. № 8. P. 402–422.
- González D. et al. // Renewable and Sustainable Energy Reviews 80. 2017. P. 238–259.
- Jantaporn Waritha et al. // Chemical Engineering Research and Design 128. 2017. P. 15–26. ISSN 0263-8762.
- 4. Jiaze Ma et al. // Ind. Eng. Chem. Res. 2018. V. 57. P. 31.
- 5. Xianguo Yu et al. // Desalination 323. 2013. P. 134–141.
- Koeman-Stein N.E. et al. // Water Resources and Industry 14. 2016. P. 11–17.
- 7. *Rubina Bahar et al.* // Sustainable Energy Technologies and Assessments. 2020. V. 42.
- 8. Schwantes R. et al. // Desalination. 2013. https://doi.org/10.1016/j.desal.2013.04.011
- 9. *Elnaz Norouzi, Chanwoo Park* // Desalination and Water Treatment. 2018. № 106. P. 40–50.
- 10. *Kofi S.S. et al.* // Environmental International. № 138. 2020.
- 11. Bassel A. Abdelkader, Mohammed A. Antar, Zafarulla Khan // Arabian. J. for Science Engineering. 2018. № 43.
- 12. www.rosa9.software.informer.com
- 13. *Рудобашта С.П., Махмуд С.Ю. //* Химия и химическая промышленность. 2012. Т. 55. С. 100–103.
- 14. *Khayt M.* // Adv.ColloidInterface Sci. 2011. № 164. P. 56–88.
- 15. *Al-Rawajfeh A.E.* // THERMAL SCIENCE. 2011. № 15. P. 55–65.
- 16. *Khalifa A. et al.* // Desalination. 2017. № 404. P. 22–34.

Using Waste Heat of Diesel Power Plant Cooling System for Seawater Desalination by Membrane Distillation

M. M. Agamaliyev^{1, *}, D. A. Ahmadova¹, and O. O. Aliyeva¹

¹Azerbaijan State Oil and Industry University, Baky, 1000 Azerbaijan *e-mail: agamalivevm@mail.ru

The article investigates the possibility of increasing the efficiency of seawater desalination by membrane distillation by using low-potential $(80-85^{\circ}C)$ waste heat of the diesel power plant cooling system and preventing the formation of calcium sulfate scale on membranes by nanofiltration softening of a part of the source water. The membrane module is integrated into the cooling system by means of an intermediate circulation loop fed with a mixture of softened and original seawater, provides distillate production and coolant cooling. The study was carried out by the method of computer modeling of a calculated model of a system transformed into a computational program, using the example of the water of the Caspian and Black Seas, using a membrane module of direct contact of a flat frame structure. It was found that the Caspian water is characterized by a high potential for sulfate scale formation and when the intermediate circuit is fed with a mixture of softened and initial water in an equal ratio, the salt content of the membrane module feed water should not exceed 30 g/dm^3 , and in the case of Black Sea water, even without softening, this indicator can be increased to 95 g/dm^3 . In both cases, a high conversion of make-up water is achieved: 75-80%. The conversion of the feed water of the membrane module is 5.2–6.8%. The energy consumption is associated only with the operation of the pumps. For each megawatt of generated electric power, 4.9-5.5 t/day of distillate (desalinated water) is generated. The studies were computational and analytical in nature, which makes it necessary to further experimental verification of the results obtained.

Keywords: desalination, waste heat, membrane distillation, nanofiltration, calculated model, computer simulation