___ ТЕХНОЛОГИЧЕСКИЕ __ ПРОЦЕССЫ ___

УДК 537.525

ПАРАМЕТРЫ ПЛАЗМЫ И МЕХАНИЗМЫ ТРАВЛЕНИЯ КРЕМНИЯ В СМЕСИ CF₄ + CHF₃ + O₂

© 2019 г. А. М. Ефремов^{1,} *, Д. Б. Мурин¹, К.-Н. Кwon²

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет", Шереметевский просп., 7, Иваново, 153000 Россия ²Korea University, Sejong, 339-700 South Korea

> **E-mail: efremov@isuct.ru* Поступила в редакцию 28.01.2019 г. После доработки 28.01.2019 г. Принята к публикации 25.04.2019 г.

Проведено исследование влияния соотношения CF_4/CHF_3 в смеси $CF_4 + CHF_3 + 9\%$ O₂ на параметры газовой фазы и кинетику травления кремния в условиях индуктивно-связанной плазмы низкого давления. Установлено, что замещение CF_4 на CHF_3 при неизменных внешних параметрах плазмы: 1) приводит к изменению температуры (средней энергии) и концентрации электронов; 2) вызывает снижение концентрации атомов фтора с последующим доминированием молекул HF; и 3) способствует увеличению скорости осаждения и толщины фторуглеродной полимерной пленки. При анализе механизма травления кремния с использование расчетных данных по потокам активных частиц было найдено, что наблюдаемое изменение скорости травления может быть объяснено гетерогенными реакциями с участием O, H и HF. Предположено, что процесс травления кремнияпротекает в режиме лимитирования потоком химически активных частиц F + HF и характеризуется эффективной вероятностью, зависящей от толщины фторуглеродной пленки.

DOI: 10.1134/S0544126919060048

1. ВВЕДЕНИЕ

Фторуглеродные газы семейства С_xF_y нашли широкое применение в технологии микро- и наноэлектроники при проведении "сухого" травления кремния и его соединений [1–3]. Известно, что в плазметаких газов параллельно протекают процессыудаления (газификации) атомов обрабатываемого материала и поверхностной полимеризации, баланс которых зависит от числа атомов фтора, приходящихся на один атом углерода в исходной молекуле (F/C) [2-4]. Величина F/C характеризует соотношение концентраций атомов F и ненасыщенных радикалов CF_x в газовой фазе и, в значительной степени, определяет выходные параметры процесса травления (скорость, селективность, анизотропия). Так, в газах с высоким F/C ($n_{\rm F} > n_{\rm CE}$) имеет место доминирование травления над полимеризацией, что обеспечивает высокую скорость травления и чистоту обрабатываемой поверхности. В то же время, характерные значения анизотропии травления и селективности в системе SiO₂/Si далеки от оптимальных. Напротив, газы с низким F/C ($n_F < n_{CF}$) способны

обеспечить анизотропное травление (за счет маскирования фторуглеродным полимером боковых стенок формируемого рельефа [1, 4]) и высокую селективность в системе SiO₂/Si (за счет различной толщины фторуглеродной полимерной пленки на кислородсодержащих и бескислородных поверхностях) [5]. Однако эти же механизмы обуславливают низкие скорости травления и высокие степени загрязнения обработанных поверхностей фторуглеродным полимером.

Для регулирования эффекта полимеризации на выходные параметры процесса травления обычно используют бинарные смеси фторуглеродного газа с аргоном или кислородом [4, 5]. В первом случае происходит интенсификация деструкции полимерной пленки за счЕт распыления ионами Ar⁺, во втором – связывание фторуглеродных радикалов в соединения вида CF_xO_y и травление пленки атомами кислорода. Еще одним подходом к оптимизации выходных параметров может служить использование плазмообразующих смесей с двумя фторуглеродными компонентами, например – CF₄ + CHF₃. По нашему мнению, перспективы CHF₃ в качестве добавки к тетрафторметану обусловлены двумя свойствами принципиальными свойствами данного газа. Во-

Сокращения: ФРЭЭ – функции распределения электронов по энергиям.

первых, плазма CHF₃ отличается значительно более высокой, по сравнению с CF₄, полимеризационной способностью [6] в силу низкого F/C и наличия водорода в составе исходной молекулы. И, во-вторых, плазмохимические процессы вида

$$CH_xF_y + H \rightarrow CH_xF_{y-1} + HF$$

and $CH_xF_y + F \rightarrow CH_{x-1}F_y + HF$

обеспечивают высокие концентрации молекул HF в газовой фазе [7, 8]. Наряду с атомами фтора, эти частицы также могут давать вклад в химическую составляющую процесса травления. Таким образом, соотношение CF_4/CHF_3 в исходной смеси будет являться эффективным инструментом воздействия наконцентрации частиц, определяющих скорости процессов травления и полимеризации.

Предшествующие исследования плазменных систем на основе CF₄ [9–11] и CHF₃ [12–14] содержат надежные данные по электрофизическим параметрам плазмы и концентрациям активных частиц, а также представляют наборы реакций и констант скоростей, обеспечивающие корректное описание кинетики и понимание механизмов плазмохимических процессов в этих газах. В то же время, совокупность имеющихся данных не достаточна для анализа эффектов, возникающих при комбинировании CF4 и CHF3 в рамках одной смеси. Это обусловлено тем, что результат смешения не определяется простым "усреднением" свойств компонентов смеси и/или "суммированием" их кинетических схем. Очевидно, что при анализе смесей первостепенную важность приобретают вопросы изменения электрофизических параметров плазмы (температуры и концентрации электронов), определяющих кинетику процессов при электронном ударе, а также появления перекрестных каналов взаимодействия продуктов диссоциации исходных газов. С учетом вышесказанного, целью настоящей работы являлось:

1) исследование влияния соотношения концентраций CF_4/CHF_3 в смеси $CF_4 + CHF_3 + 9\%$ O₂ на электрофизические параметры плазмы, кинетику и концентрации активных частиц;

 установление взаимосвязей между характеристиками газовой фазы и гетерогенными процессами, определяющими кинетику и механизм травления кремния.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

2.1. Экспериментальные методики и оборудование

Эксперименты проводились при возбуждении индукционного ВЧ (13.56 МГц) разряда в смеси $CF_4 + CHF_3 + O_2$ в реакторе планарного типа с цилиндрической (r = 13 см, l = 16 см) рабочей камерой из анодированного алюминия [15]. В каче-

стве постоянных условий процесса выступали вкладываемая мощность W = 500 Вт, общее давление плазмообразующего газа p = 10 мтор и его расход q = 44 станд. см³/мин. В качестве варьируемого параметра использовалось соотношение начальных концентраций CF₄/CHF₃, которое устанавливалось изменением индивидуальных расходов этих компонентов при постоянном значении $q_{O_2} = 4$ станд. см³/мин. Таким образом, содержание кислорода в смеси всегда составляло 9% ($y_{O_2} = q_{O_2}/q = 0.09$), при этом изменение $q_{CHF_3} = 0-40$ станд. см³/мин ($y_{CHF_3} = 0-0.91$) соответствовало полному замещению CF₄ на CHF₃.

Диагностика плазмы осуществлялась двойным зондом Лангмюра DLP2000 (Plasmart Inc., Korea). Для минимизации погрешности измерений зондовых вольт-амперных характеристик (ВАХ) изза полимер-образования на зондах применялась система импульсной очистки зондов ионной бомбардировкой. Предварительные эксперименты показали отсутствие существенных искажений ВАХ, последовательно измеряемых в чистых СF₄ и CHF₃ в течение ~5 мин после зажигания разряда. Обработка ВАХ базировалась на известных положениях теории двойного зонда [16] с использованием максвелловской функции распределения электронов по энергиям (ФРЭЭ). Результатом обработки выступали данные по температуре электронов (T_{e}) и плотности ионного тока (J_{+}) . Суммарная концентрация положительных ионов (n_+) определялась из соотношения $J_+ \approx 0.61 en_+ v_B$ [17], где $v_B \approx \sqrt{e T_e/m_i}$ – скорость ионов на внешней границе двойного электрического слоя у поверхности зонда без учета отрицательных ионов. Допустимость такого подхода показана в наших работах [11, 18]. Эффективная масса ионов (m_i) оценивалась по закону Бланка в предположении, что доля ионов данного сорта пропорциональна скорости ионизации соответствующей нейтральной частицы.

В качестве объектов травления использовались фрагменты не окисленных пластин Si(100) размером ~4 см², которые располагались на подложкодержателе из анодированного алюминия в нижней части рабочей камеры реактора. Температура образца T_s стабилизировалась на уровне $17 \pm 3^{\circ}$ С с помощью системы проточного водяного охлаждения. Отрицательное смещение на подложкодержателе ($-U_{dc}$) задавалось независимым ВЧ (12.56 МГц) генератором с постоянной мощностью смещения $W_{dc} = 100$ Вт. Измерение параметра $-U_{dc}$ проводилось с помощью высоковольтного зонда AMN-CTR (Youngsin Eng, Korea). В предварительных экспериментах было найдено, что варьирование W_{dc} в пределах 0–200 Вт оказы-

вает пренебрежимо малое влияние на вид зондовых ВАХ и, следовательно, на параметры газовой фазы разряда. Подвергаемые травлению образцы были частично маскированы фоторезистом AZ1512, при этом высота ступеньки (Δh) на границе маскированной и немаскированной областей после окончания процесса травления измерялась профилометром Alpha-step D-500 (KLA-Tencor, USA). Скорость травления определяли как $R = \Delta h/\tau$, где τ – время травления. Величина τ выбиралась в пределах стационарного режима травления, обеспечивающего квазилинейную форму зависимости $\Delta h = f(\tau)$.

2.2. Моделирование плазмы

Для получения данных по составу плазмы и анализа кинетики плазмохимических процессов, протекающих в газовой фазе, использовалась 0-мерная кинетическая модель. Набор реакций и их кинетических характеристик (констант скоростей объемных процессов, вероятностей гетерогенной рекомбинации атомов и радикалов) в плазме CF₄ + CHF₃ + O₂ был сформирован на основе имеющихся данных для систем CF₄ + O₂ + + Ar [11, 19, 20] и CHF₃ + Ar + O₂ [12, 19, 21]. Корректность используемых кинетических схем в этих системах подтверждается удовлетворительным согласием расчетных и измеренных параметров плазмы и концентраций частиц [11, 12, 20].

Алгоритм моделирования базировался на типовых предпосылках, использованных в наших предшествующих работах по моделированию разрядов низкого давления в фторуглеродных газах [11, 12, 18, 19]. В частности, предполагалось, что:

 максвелловская ФРЭЭ обеспечивает адекватное описание кинетики процессов под действием электронного удара;

2) температура газа в условиях p,W = const не зависит от начального состава смеси;

3) гетерогенная рекомбинация атомов и радикалов подчиняется механизму Или–Ридила;

4) низкая электроотрицательность чистых CF_4 и CHF₃ в области p < 20 мторр дает возможность полагать $n_{-}/n_{e} \ll 1$ и $n_{e} \approx n_{+}$. В качестве входных параметров модели использовались T_e и n_{+} . Выходными параметрами служили средние по объему реактора скорости процессов образования и гибели нейтральных частиц, их концентрации и плотности потоков на поверхность, контактирующую с плазмой.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Параметры плазмы и концентрации активных частиц

Кинетика и механизмы плазмохимических процессов в системах $CF_4 + O_2 + Ar u CHF_3 + O_2 + Ar подробно обсуждались в наших предшествующих работах [11, 19, 21]. Поэтому ниже мы ограничимся краткой актуализацией имеющих-ся данных для исследуемого диапазона условий с подробным рассмотрение эффектов, возникающих при смешении <math>CF_4$ и CHF_3 .

Из данных рис. 1*а* можно видеть, что замещение CF₄ на CHF₃ приводит к одновременному снижению средней энергии (температуры) электронов ($T_e = 4.3-3.5$ эВ при 0–91% CHF₃) и концентраций заряженных частиц ($n_+ \approx n_e = 1.5 \times 10^{10} - 1.3 \times 10^{10}$ см⁻³ при 0–91% CHF₃). Причиной снижения T_e являются более высокие потери энергии электронами наколебательное и электронное возбуждение CHF₃ и HF по сравнению с такими процессами для CF₄. Это подтверждается, например, сравнением сечений колебательного возбуждения [22]. Аналогичный характер изменения n_+ и n_e обусловлен уменьшением эффективных скоростей образования электронов и положительных ионов. Действительно, сравнение констант скоростей для

R1: CF₄ + e
$$\rightarrow$$
 CF₃⁺ + F + 2e ($k_1 = 5.7 \times 10^{-10} \text{ см}^3/\text{с}$ при $T_e = 4$ эB),
R2: CHF₃ + e \rightarrow CF₃⁺ + H + 2e ($k_3 = 2.4 \times 10^{-10} \text{ см}^3/\text{с}$ при $T_e = 4$ эB),
R3: HF + e \rightarrow HF⁺ + 2e ($k_3 = 1.9 \times 10^{-10} \text{ см}^3/\text{с}$ при $T_e = 4$ эB) [10, 12, 13]

показывает, что замещение CF_4 на CHF_3 обогащает газовую фазу трудно ионизуемыми частицами. Кроме этого, снижение T_e вызывает аналогичные изменения констант скоростей ионизации всех нейтральных частиц. Все это закономерно приводит к снижению эффективной частоты ионизации. Противоположный характер изменения n_+ и плотности ионного тока ($j_+ = 0.36-0.40$ мА/см² при 0–91% СНF₃) обусловлен уменьшение эффективной массы ионов ($M_i = 62-36$ при 0–91% СНF₃) в соответствии с изменением типов доминирующих нейтральных частиц.

Расчеты показали, что концентрации фторуглеродных компонентов в плазме чистого тетрафтор-

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

Рис. 1. Электрофизические параметры плазмы в смеси $CF_4 + CHF_3 + O_2$ в зависимости от соотношения CF_4/CHF_3 : 1 - температура электронов (T_e) ; 2 - концентрация электронов (n_e) и суммарная концентрация положительных ионов (n_+) ; 3 - отрицательное смещение на подложкодержателе $(-U_{dc})$; 4 - плотность потока энергии ионов $(\sqrt{\varepsilon_i}\Gamma_+)$. Условия процесса: p = 10 мтор, W = 500 Вт, $W_{dc} = 100$ W, $y_{O_2} = 0.09$.

метана снижаются в ряду $CF_4 - CF_3 - CF_2 - CF$. Такая ситуация обусловлена ступенчатым механизмом образования менее насыщенных радикалов в процессах под действием электронного удара, а также более высокими вероятностями их гетерогенной рекомбинации. Диссоциация CF_4 и CF_3 по механизмам R1,

R4:
$$CF_4 + e \rightarrow CF_3 + F + e$$
,
R5: $CF_3 + e \rightarrow CF_2 + F + e$

обеспечивает ~85% общей скорости образования атомов фтора, при этом суммарный вклад от

R6:
$$CF_2 + e \rightarrow CF + F + e$$
,

R7: CF + $e \rightarrow C + F + e$ не превышает 5%.

Более заметный вклад ~10% вносит диссоциация молекул фтора

(R8:
$$F_2 + e \rightarrow 2F + e$$
),

высокая концентрация которых поддерживается гетерогенной рекомбинацией $2F \rightarrow F_2$. Соответственно, последний процесс представляет основ-

ной канал гибели атомов фтора. Переход к системе 91% CF₄ + 9% O₂ существенно снижает скорости генерации атомов фтора по механизмам R1, R4 и R5 из-за одновременного снижения n_e , n_{CF_4} и n_{CF_3} . В частности, более чем двукратное снижение n_{CF_3} обусловлено протеканием атомно-молекулярных процессов

> R9: $CF_3 + O \rightarrow CF_2O + F$, R10: $CF_3 + O(^1D) \rightarrow CF_2O + F$, R11: $CF_3 + CFO \rightarrow CF_4 + CO$, R12: $CF_3 + CFO \rightarrow CF_2O + CF_2$,

которые характеризуются высокими (~ 10^{-10} – 10^{-11} см³/с [23]) значениями констант скоростей. Аналогичное поведение n_{CF_4} ожидаемо следует из снижения эффективности образования этих частиц в объемных и гетерогенных процессах вида $CF_3 + F \rightarrow CF_4$. В то же время, добавка кислорода приводит к появлению дополнительных каналов образования атомов фтора по реакциям R9, R10 и

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

Рис. 2. Стационарные концентрации нейтральных компонентов газовой фазы (*a*) и отношения плотностей потоков частиц (δ) в смеси CF₄ + CHF₃ + O₂ в зависимости от соотношения CF₄/CHF₃. Обозначения кривых на рис. (δ): "pol/F" – Γ_{pol}/Γ_F ; "pol/F+" – Γ_{pol}/Γ_F ; "pol/F+" – Γ_{pol}/Γ_F , "pol/F+" – $\Gamma_F/\sqrt{\epsilon_i}\Gamma_+$. Условия процесса соответствуют рис. 1.

R13:
$$CF_2O + e \rightarrow CFO + F + e$$
,

а также обеспечивает увеличение скорости R8. Эффективность R13 обусловлена высокими скоростями генерации CF_2O в объемных процессах R9, R10,

R14: 2CFO
$$\rightarrow$$
 CF₂O + CO

И

R15: CFO + F
$$\rightarrow$$
 CF₂O.

Причиной второго эффекта является увеличение *n*_{F2} из-за образования молекул фтора по реакции

R16:
$$CF_2O + O(^1D) \rightarrow F_2 + CO_2$$
.

В результате, соотношение концентраций основных компонентов в плазме смеси 91% CF₄ + + 9% O₂ характеризуется условием $n_{\rm F} \approx n_{\rm F_2} \approx n_{\rm CF_2O} > n_{\rm CF_x}$ (x = 1-3) (рис. 2*a*).

Увеличение доли CHF₃ в плазмообразующей смеси (фактически – замещение CF₄ на CHF₃ при $y_{O_2} = \text{const}$) вызывает два принципиальных изменения в кинетике атомов фтора. Во-первых, это появление эффективных механизмов конверсии F \rightarrow HF в объемных процессах

R17: CHF_x + F
$$\rightarrow$$
 CF_x + HF ($k_{17} \sim 3.0 \times 10^{-11} \text{ см}^3/\text{с}$ для $x = 1, 2$),
R18: CHF_x + H \rightarrow CHF_{x-1} + HF ($k_{18} \sim 3.0 \times 10^{-10} \text{ см}^3/\text{с}$ для $x = 1, 2$)

И

R19: CF_x + H
$$\rightarrow$$
 CF_{x-1} + HF ($k_{19} \sim 8 \times 10^{-11} \text{ см}^3/\text{с}$ для $x = 3 \text{ и} \sim 4 \times 10^{-11} \text{ см}^3/\text{с}$ для $x = 2$).

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

Высокая концентрация молекул HF в плазме CHF_3 отмечалась ранее в работах [7, 8, 21]. И, вовторых, имеет место снижение скорости образования атомов фтора в процессах под действием электронного удара. Причина этого — низкая эффективность диссоциации

CHF₃ (R20: CHF₃ + e
$$\rightarrow$$
 CHF₂ + F + e, $k_{20} = 1.6 \times 10^{-11}$ см³/с при $T_a = 4$ эВ)

И

HF(R21: HF + e
$$\rightarrow$$
 H + F + e, $k_{21} = 8.1 \times 10^{-10}$ см³/с при $T_e = 4$ эВ

по сравнению с CF₄ ($k_1 + k_4 = 8.3 \times 10^{-10}$ см³/с при $T_e = 4$ эВ). Совместное действие обоих факторов обеспечивает быстрое снижение концентрации атомов фтора ($n_{\rm F} = 3.1 \times 10^{13}$ –4.5 × 10¹¹ см⁻³ при 0–91% CHF₃, см. рис. 2*a*).

Основными источниками атомов водорода в плазме $CF_4 + CHF_3 + O_2$ являются реакции R21 and

R22:
$$CHF_3 + e \rightarrow CF_3 + H + e$$

Увеличение суммарной скорости образования атомов водорода с ростом y_{CHF_3} частично компенсируется аналогичным имением частот их гибели по механизму R18 из-за роста n_{CHF_x} . Поэтому величина $n_{\rm H}$ достигает насыщения ~3.1 × 10¹¹ см⁻³ уже при $y_{CHF_3} > 20\%$. Образование атомов кислорода обеспечивается, в основном, реакциями

> R23: $CF_2O + e \rightarrow CF_2 + O + e$ μ R24: $CO + e \rightarrow C + O + e$.

Суммарная скорость этих процессов остается практически неизменной, что определяется поведением скоростей

R25:
$$O_2 + e \rightarrow 2O + e$$

и R26: $O_2 + e \rightarrow O + O(^1D) + e$

в условиях $y_{O_2} = \text{сопst. B}$ то же время, гибель атомов кислорода в реакциях вида $\text{CHF}_x + \text{O} \rightarrow \text{CF}_x\text{O} + + \text{H}$ ($k \sim 1.0 \times 10^{-11} \text{ cm}^3/\text{c}$) менее эффективна по сравнению с $\text{CF}_x + \text{O} \rightarrow \text{CF}_{x-1}\text{O} + \text{F}$ ($k \sim 3.2 \times 10^{-11} \text{ cm}^3/\text{c}$). Поэтому рост параметра y_{CHF_3} сопровождается увеличением концентрации атомов кислорода в газовой фазе ($n_0 = 1.9 \times 10^9 - 3.3 \times 10^{10} \text{ cm}^{-3}$ при 0–91% CHF₃, см. рис. 2*a*). Доминирующими фторуглеродными радикалами в условиях $y_{\text{CHF}_3} < 60\%$ являются CF_x (x = 2, 3), при этом дальнейшее увеличение доли CHF₃ в плазмообразующей смеси изменяет ситуацию на $n_{\text{CHF}} > n_{\text{CF}_x}$. Это обусловлено ростом суммарной скорости образования CHFпo R18 и

R27: CHF₂ + e
$$\rightarrow$$
 CHF + F + e,

а также увеличением скорости гибели CF_x (x = 2, 3) в R19.

3.2. Кинетика и механизм травления Si

Известно, что механизм травления кремния в плазме CF₄ представляет комбинацию спонтанной и ионно-стимулированной химической реакции

$$\mathbf{F} \to \mathbf{F}_{(s)},\tag{R28}$$

$$\operatorname{Si}_{(s)} + xF_{(s)} \to \operatorname{Si}F_{x(s)},$$
 (R29)

$$\mathrm{SiF}_{x=4(s)} \to \mathrm{SiF}_{x=4},\tag{R30}$$

$$\mathrm{SiF}_{x=1,2,3(s)} \xrightarrow{\mathrm{uohis}} \mathrm{SiF}_{x=1,2,3}, \tag{R31}$$

где роль ионной бомбардировки заключается в распылении (десорбции) труднолетучих ненасыщенных фторидов кремния [4, 5]. Эффективная вероятность взаимодействия атомов фтора с кремнием может быть найдена как $\gamma_R = \Gamma_{\text{SiF}_x}/\Gamma_F$, где Γ_{SiF_x} – поток продуктов реакции с поверхности в газовую фазу (определяется скоростями R30 и R31), а Γ_F – поток атомов фтора из газовой фазы на поверхность (задает скорость R28). Из рис. 3

можно видеть, что увеличение доли CHF₃ в смеси CF₄ + CHF₃ + 9% O₂ сопровождается монотонным снижением скорости травления Si (167–71 нм/мин, или в ~2.3 раз при 0–91% CHF₃), что в пересчете на поток продуктов реакции составляет 1.4 × × 10¹⁶–5.9 × 10¹⁵ см⁻² с⁻¹. В то же время, поток атомов фтора монотонно снижается ($\Gamma_F = 6.3 \times 10^{17}$ – 9.2 × 10¹⁵ см⁻² с⁻¹, или в ~68 раз при 0–91% CHF₃) следуя изменению *n*_F (рис. 2*a*). Таким образом, уве-

Рис. 3. Кинетика травления кремния в смеси $CF_4 + CHF_3 + O_2$ в зависимости от соотношения CF_4/CHF_3 : 1 -скорость травления; 2 - вероятность взаимодействия для F; 3 - вероятность взаимодействия для F + HF. Условия процесса соответствуют рис. 1.

личение y_{CHF_3} сопровождается ростом γ_R более чем на порядок величины, в диапазоне 0.022–0.64.

По данным работ [5, 24–26] можно заключить, что характер изменения γ_R при T_S = const зависит от:

 интенсивности ионной бомбардировки, определяющей скорость ионно-стимулированной десорбции продуктов реакции;

 толщины фторуглеродной полимерной пленки h_{pol}, ограничивающей доступ атомов фтора к обрабатываемой поверхности.

Первый фактор количественно характеризуется параметром $\sqrt{\varepsilon_i}\Gamma_+$ [27, 28], где $\Gamma_+ \approx j_+/e$ – поток ионов, а $\varepsilon_i \approx e \left| -U_f - U_{dc} \right|$ – их энергия, определяемая суммой плавающего потенциала ($-U_f$) и отрицательного смещения на подложке ($-U_{dc}$). Величина *h*_{pol}формируется совокупностью скоростей осаждения и разрушения полимерной пленки. Ранее в работах [29, 30] было показано, что скорость осаждения полимера во фторуглеродной плазме характеризуется параметром Γ_{pol}/Γ_{F} , где $\Gamma_{\text{pol}} = \Gamma_{\text{CF}_2} + \Gamma_{\text{CF}} + \Gamma_{\text{CHF}}$ – суммарный поток полимеробразующих радикалов. Соответственно, изменение баланса полимеризация/травления за счет разрушения полимерной пленки по физическому (ионная бомбардировка) и химическому (травление атомами кислорода) механизмам может быть отслежено отношениями $\Gamma_{\rm pol}/\sqrt{\epsilon_i}\,\Gamma_+\Gamma_F$ и $\Gamma_{\rm pol}/\Gamma_0\Gamma_{\rm F}$, соответственно. Из рис. 16 можно видеть, что параметр $\sqrt{\epsilon_i \Gamma_+}$ сохраняет близкое к постоянному значение ~ 4.5×10^{16} $3B^{1/2}$ см⁻² с⁻¹ во всем исследованном диапазоне состава смеси. Причиной этого является то, что слабое увеличение потока ионов ($\Gamma_{+} = 2.3 \times 10^{15} - 2.5 \times 10^{15} \,\mathrm{cm^{-2}\,c^{-1}}$ при

0–91% СНF₃) компенсируется снижением энергии ионов ($\varepsilon_i = 358-319$ эВ при 0–91% СНF₃) изза аналогичного изменения – U_{dc} . Таким образом, трудно ожидать, что увеличение y_{CHF_3} приводит к интенсификации ионно-стимулированной десорбции продуктов травления (R31). Кроме того, данные рис. 26 показывают, что имеет место значительный рост параметров $\Gamma_{pol}/\sqrt{\varepsilon_i} \Gamma_+\Gamma_F$ (в ~1400 раз при 0–91% СНF₃) and $\Gamma_{pol}/\Gamma_0\Gamma_F$ (в ~85 раз при 0–91% СНF₃). Это обусловлено резким увеличением скорости осаждения полимерной пленки

$$(\Gamma_{\text{pol}} = 1.3 \times 10^{16} - 2.8 \times 10^{17} \text{ см}^{-2} \text{ c}^{-1}$$

и $\Gamma_{\text{pol}}/\Gamma_{\text{F}} = 0.02 - 30$ при 0-91% CHF₃),

которое с избытком компенсирует изменение $\sqrt{\varepsilon_i}\Gamma_+$ и Γ_0 . Очевидно, что такая ситуация отвечает росту h_{pol} и снижению скорости R28. Таким образом, реакционный механизм R28–R31 не может объяснить увеличение эффективной вероятности взаимодействия атомов фтора с ростом доли CHF₃ в плазмообразующей смеси.

Отмеченное выше противоречие позволяет предположить, что атомы фтора не являются единственным типом активных частиц, обеспечивающих травление кремния в данной газовой системе. В частности, ранее было показано, что молекулы HF эффективно реагируют с поверхностью Si, SiO₂ и Si₃N₄ в газовом (без возбуждения плазмы) процессе в присутствии воды или метанола [31–34]. В работе [32] была предложена простая реакционная схема, обеспечивающая хорошее согласие измеренных и расчетных скоростей травления в системе HF + SiO₂. Применительно к плазменному процессу в смеси CF₄ + CHF₃ + O₂, данный механизм может быть интерпретирован в виде двух положений:

 совместное действие атомов О и Н приводит к образованию на поверхности гидроксисоединений вида Si(OH)_x; 2) взаимодействие высокополярных ОН групп с адсорбированными молекулами НF вызывает диссоциацию последних. Таким образом, "стандартный" механизм травления R28–R31 может быть дополнен следующими процессами:

$$\mathrm{HF} \to \mathrm{HF}_{(s)},$$
 (R32)

$$\mathbf{O} \to \mathbf{O}_{(s)},\tag{R33}$$

$$H \to H_{(s)}, \tag{R34}$$

$$\operatorname{Si}_{(s)} + x\operatorname{O}_{(s)} + x\operatorname{H}_{(s)} \to \operatorname{Si}(\operatorname{OH})_{x(s)},$$
(R35)

$$\operatorname{Si}(\operatorname{OH})_{x(s)} + x\operatorname{HF}_{(s)} \to x\operatorname{H}_2\operatorname{O} + \operatorname{SiF}_{x(s)}.$$
(R36)

Из данных рис. 2а можно заключить, что увеличение концентрации HF с ростом y_{CHF_2} , а также выполнение условия $n_{\rm HF} > n_{\rm F}$ начиная с $y_{\rm CHF_2} > 10\%$ обеспечивают монотонный рост суммарного потока химически активных частиц на обрабатываемую поверхность ($\Gamma_{\rm F} + \Gamma_{\rm HF} = 6.3 \times 10^{17} - 1.3 \times$ × 10¹⁸ см⁻²с⁻¹, или в ~2 раза при 0–91% СНF₃). Предполагая, что индивидуальные вероятности взаимодействия F и HF с поверхностью кремния являются величинами одного порядка, эффективная вероятность химического взаимодействия для процесса в целом может быть охарактеризована отношением $R_{\rm Si}/(\Gamma_{\rm F} + \Gamma_{\rm HF})$. Из рис. 3 можно видеть, что данный параметр монотонно снижается в диапазоне 2.2×10^{-2} — 4.8×10^{-3} , или в ~4.6 раз при 0-91% СНГ₃. По нашему мнению, такое поведение хорошо согласуется с увеличением $h_{\rm pol}$, вызывающим, в свою очередь, снижение скоростей R29 иR32-R34. Снижение эффективной вероятности взаимодействия и выхода травления кремния и его соединений с ростом толщины фторуглеродной полимерной пленки неоднократно отмечалось ранее в экспериментальных работах [24, 26, 35, 36]. Поэтому можно с достаточной степенью уверенности полагать, что набор процессов R28–R36 адекватно отражает механизм травления кремния в смеси $CF_4 + CHF_3 + O_2$.

В заключении отметим, что предложенный механизм травления кремния в плазме смеси CF_4 + + CHF_3 + O_2 обеспечивает лишь качественное описание этого процесса в силу очевидных упрощений в исходных предпосылках. В то же время, он не противоречит эксперименту, имеет хорошее согласие с литературными данными, а также обеспечивает понимание взаимосвязей между объемной и гетерогенной подсистемами. Последнее является особенно важным для оптимизации режимов проведения процессов плазменного травления в многокомпонентных газовых смесях.

ЗАКЛЮЧЕНИЕ

Проведено исследование влияния соотношения фторуглеродных компонентов в смеси CF_4 + + CHF_3 + O_2 на электрофизические параметры плазмы, стационарные концентрации активных частиц и кинетику их взаимодействия с кремнием. Установлено, что замещение CF_4 на C_4F_8 при постоянном содержании O_2 и неизменных внешних параметрах плазмы:

1) оказывает влияние на кинетику процессов под действием электронного удара через изменение температуры (средней энергии) и концентрации электронов;

 приводит к снижению концентрации атомов фтора, но к росту концентраций атомов водорода и кислорода;

3) смещает баланс процессов осаждения/деструкции фторуглеродной полимерной пленки в сторону осаждения из-за увеличения концентрации полимеробразующих радикалов.

Показано, что наблюдаемое поведение скорости травления кремния и эффективной вероятности химического взаимодействия в гетерогенной подсистеме может быть объяснено реакциями с участием молекул НF. Предположено, что в исследованном диапазоне условий процесс травления протекает в режиме лимитирования потоком химически активных частиц (F + HF) и характеризуется эффективной вероятностью, зависящей от толщины фторуглеродной полимерной пленки.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-37-00064 мол_а.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Rossnagel S.M., Cuomo J.J., Westwood W.D.* (Eds.). Handbook of plasma processing technology. Noyes Publications, Park Ridge, 1990. 338 p.
- 2. *Rooth J.R.* Industrial Plasma Engineering // IOP Publishing LTD, Philadelphia, 1995. 620 p.

- 3. Roosmalen A.J., Baggerman J.A.G., Brader S.J.H. Dry etching for VLSI // Plenum Press, New-York, 1991. 490 p.
- 4. *Wolf S., Tauber R.N.* Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press, New-York, 2000. 416 p.
- Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. John Wiley & Sons Inc. New York, 1994. 757 p.
- Jansen H., Gardeniers H., de Boer M., Elwenspoek M., Fluitman J. A survey on the reactive ion etching of silicon in microtechnology // J. Micromech. Microeng. 1996. V. 6. P. 14–28.
- 7. Turban G., Grolleau B., Launay P., Briaud P. A mass spectrometric diagnostic of C_2F_6 and CHF₃ plasmas during etching of SiO₂ and Si // Revue Phys. Appl. 1985. V. 20. P. 609–620.
- Takahashi K., Hori M., Goto T. Characteristics of fluorocarbon radicals and CHF₃ molecule in CHF₃ electron cyclotron resonance downstream plasma // Jpn. J. Appl. Phys. 1994. V. 33. P. 4745–4758.
- Kimura T., Ohe K. Model and probe measurements of inductively coupled CF₄ discharges // J. Appl. Phys. 2002. V. 92. P. 1780–1787.
- Kimura T., Ohe K. Probe measurements and global model of inductively coupled Ar/CF₄ discharges // Plasma Sources Sci. Technol. 1999. V. 8. P. 553–560.
- Chun I., Efremov A., Yeom G.Y., Kwon K.-H. A comparative study of CF₄/O₂/Ar and C₄F₈/O₂/Ar plasmas for dry etching applications // Thin Solid Films. 2015. V. 579. P. 136–143.
- 12. Ho P., Johannes J.E., Buss R.J. Modeling the plasma chemistry of C_2F_6 and CHF₃ etching of silicon dioxide, with comparisons to etch rate and diagnostic data // J. Vac. Sci. Technol. A. 2001. V. 19. P. 2344–2367.
- Bose D., Rao M.V.V.S., Govindan T.R., Meyyappan M. Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF₃ plasma // Plasma Sources Sci. Technol. 2003. V. 12. P. 225–234.
- Proshina O., Rakhimova T.V., Zotovich A., Lopaev D.V., Zyryanov S.M., Rakhimov A.T. Multifold study of volume plasma chemistry in Ar/CF₄ and Ar/CHF₃ CCP discharges // Plasma Sources Sci. Technol. 2017. V. 26. P. 075005.
- 15. Son J., Efremov A., Yun S.J., Yeom G.Y., Kwon K.-H. Etching characteristics and mechanism of SiN_x films for Nano-Devices in $CH_2F_2/O_2/Ar$ inductively coupled plasma: Effect of O_2 mixing ratio // J. Nanosci. Nanotech. 2014. V. 14. P. 9534–9540.
- Johnson E.O., Malter L. A floating double probe method for measurements in gas discharges // Phys. Rev. 1950. V. 80. P. 58–70.
- 17. Sugavara M. Plasma etching: Fundamentals and applications. Oxford University Press, New-York, 1998. 469 p.
- Efremov A., Lee J., Kwon K.-H. A comparative study of CF₄, Cl₂ and HBr + Ar inductively coupled plasmas for dry etching applications // Thin Solid Films. 2017. V. 629. P. 39–48.
- Lim N., Efremov A., Yeom G.Y., Kwon K.-H. On the etching characteristics and mechanisms of HfO₂ thin films in CF₄/O₂/Ar and CHF₃/O₂/Ar plasma for nano-devices // J. Nanosci. Nanotechnol. 2014. V. 14. P. 9670–9679.
- Son J., Efremov A., Chun I., Yeom G.Y., Kwon K.-H. On the LPCVD-Formed SiO₂ Etching Mechanism in CF₄/Ar/O₂ Inductively Coupled Plasmas: Effects of

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

Gas Mixing Ratios and Gas Pressure // Plasma Chem. Plasma Proc. 2014. V. 34. P. 239–257.

- Efremov A., Kwon K.-H., Morgunov A., Shabadarova D. Comparative study of CF₄- and CHF₃-based plasmas for dry etching applications. Proc. SPIE 10224, International Conference on Micro- and Nano-Electronics 2016, 102241W (30 December 2016).
- 22. *Chistophorou L.G., Olthoff J.K.* Fundamental electron interactions with plasma processing gases. Springer Science + Business Media, LLC. New-York. 2004. 780 p.
- NIST Chemical Kinetics Database. http://kinetics.nist.gov/ kinetics/.
- 24. Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A. 2004. V. 22. P. 53–60.
- Stoffels W.W., Stoffels E., Tachibana K. Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A. 1998. V. 16. P. 87–95.
- Matsui M., Tatsumi T., Sekine M. Relationship of etch reaction and reactive species flux in C₄F₈-Ar-O₂ plasma for SiO₂ selective etching over Si and Si₃N₄ // J. Vac. Sci. Technol. A. 2001. V. 19. P. 2089–2096.
- Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching // J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243–1257.
- Lee C., Graves D.B., Lieberman M.A. Role of etch products in polysilicon etching in a high-density chlorine discharge // Plasma Chem. Plasma Proc. 1996. V. 16. P. 99–118.
- 29. *Efremov A.M., Murin D.B., Kwon K.H.* On the effect of the ratio of concentrations of fluorocarbon components in a CF₄ + C₄F₈ + Ar mixture on the parameters of plasma and SiO₂/Si etching selectivity // Russian Microelectronics. 2018. V. 47. № 4. P. 239–246.
- 30. *Efremov A.M., Murin D.B., Kwon K.H.* Parameters of plasma and kinetics of active particles in CF₄(CHF₃) + + Ar mixtures of a variable initial composition // Russian Microelectronics. 2018. V. 47. № 6. P. 371–380.
- Jang W.I., Choi C.A., Lee M.L., Jun C.H., Kim Y.T. Fabrication of MEMS devices by using anhydrous HF gasphase etching with alcoholic vapor // J. Micromech. Microeng. 2002. V. 12. P. 297–306.
- 32. Clements L.D., Busse J.E., Mehta J. Reaction mechanisms and rate limitations in dry etching of silicon dioxide with hydrous hydrogen fluoride // Semiconductor Fabrication; Technology and Metrology. 1989. ASTM STP 990. P. 182–201.
- Hoshino T., Nishioka Y. Etching process of SiO₂ by HF molecules // J. Chem. Phys. 1999. V. 111. P. 2109– 2114.
- 34. Jang W.I., Choi C.A., Lee C.S., Hong Y.S., Lee J.H., Kim B.W., Kim D.Y. Optimal gas-phase etching for the dry release of polysilicon and SOI microstructures // J. Korean Phys. Soc. 1999. V. 34. P. 69–74.
- Kastenmeier B.E.E., Matsuo P.J., Beulens J.J., Oehrlein G.S. Chemical dry etching of silicon nitride and silicon dioxide using CF₄/O₂/N₂ gas mixtures // J. Vac. Sci. Technol. A. 1996. V. 14. P. 2802–2813.
- Kastenmeier B.E.E., Matsuo P.J., Oehrlein G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide // J. Vac. Sci. Technol. A. 1999. V. 17. P. 3179–3184.