МИКРОЭЛЕКТРОНИКА, 2019, том 48, № 6, с. 452-459

____ МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ _ ПРОЦЕССОВ МИКРОЭЛЕКТРОНИКИ _

УДК 621.382.323

МОДЕЛИРОВАНИЕ ХАРАКТЕРИСТИК КМОП НАНОТРАНЗИСТОРА С ПОЛНОСТЬЮ ОХВАТЫВАЮЩИМ ЗАТВОРОМ И НЕРАВНОМЕРНО ЛЕГИРОВАННОЙ РАБОЧЕЙ ОБЛАСТЬЮ

© 2019 г. Н. В. Масальский*

Федеральное государственное учреждение Федеральный научный центр Научно-исследовательский институт системных исследований Российской АН, Нахимовский проспект, 36/1, Москва, 117218 Россия *E-mail: volkov@niisi.ras.ru Поступила в редакцию 15.01.2019 г. После доработки 15.05.2019 г. Принята к публикации 15.05.2019 г.

Обсуждаются вопросы моделирования основных электрофизических характеристик полностью обедненных КМОП нанотранзисторов с полностью охватывающим затвором и неравномерно легированной рабочей областью. Анализируется случай гауссового распределения примеси в радиальном направлении с максимумом в центре рабочей области. Рассматривается математическая модель распределения потенциала, вытекающая из аналитического решения 2D уравнения Пуассона. Результаты модельных расчетов распределения потенциала суб-50 нм структур находятся в хорошем соответствии с данными, полученными при помощи коммерчески доступного программного пакета ATLASTM предназначенного для 2D моделирования транзисторных структур. На основании полученных распределений потенциала вычисляются токовые характеристики при помощи апробированного подхода сформулированного в рамках зарядового разделения. Для выбранных топологических норм оптимизация крутизны профиля легирования предоставляет дополнительную возможность управления ключевыми характеристиками наряду с радиусом рабочей области и толщиной подзатворного окисла, что важно при анализе применимости анализируемых нанотранзисторных структур.

Ключевые слова: КМОП нанотранзистор с полностью охватывающим затвором, 2D уравнение Пуассона, неравномерно-легированная рабочая область, вольт-амперные характеристики **DOI:** 10.1134/S054412691906005X

введение

Стремительный скейлинг практически полностью исчерпал потенциал кремниевых планарных транзисторных структур [1]. Вместе с тем проявились вредные эффекты, которые наоборот усиливались по мере снижения топологических норм. Среди различных направлений развития транзисторных архитектур конструкция КМОП – транзистора с полностью охватывающим затвором отличается наиболее эффективным управлением его электростатических свойств [2-4]. Хотя данная архитектура была предложена достаточно давно, большая часть исследований была направлена на длинноканальные устройства [5, 6]. Совсем недавно интерес к такой архитектуре проявился вновь в связи с тем, что для них характерно двукратное превосходство по подавлению ККЭ (коротко-канальных эффектов) по сравнению с традиционными планарными структурами

[1]. Этот интерес подкреплен наличием современной технологической базой и гигантскими вычислительными возможностями для приборно-технологического моделирования.

Исследование в области сокращения ККЭ и в настоящее время являются очень актуальными. Среди различных типов 3D затворных транзисторов, КМОП транзисторы с полностью охватывающим затвором характеризуются превосходящим контролем вольт-амперных характеристик (BAX) транзистора. Упрощенная структурная схема рассматриваемого транзистора показана на рис. 1.

Для оценки влияния ККЭ в любой транзисторной структуре, обычно, анализируется уравнение Пуассона, из решения которого, опираясь на граничные условия, можно получить выражение для характеристической длины λ [7, 8], которая служит индикатором проявления ККЭ в транзисторной структуре [9]. В идеальном случае полного подавления ККЭ — должно выполняться условие $10\lambda \ge L_{e}$ [9].

Сокращения: Коротко-канальные эффекты – ККЭ; вольтамперные характеристики – ВАХ.

Рис. 1. Структурная схема КМОП транзистора с полностью охватывающим затвором, где 1 – исток; 2 – сток; 3 – рабочая область; 4 – подзатворный диэлектрик; обозначения: L_g – длина затвора, R – радиус рабочей области, t_{ax} – толщина подзатворного диэлектрика.

Рис. 2. Зависимость характеристической длины от *R* для разных t_{ox} , где $1 - t_{ox} = 1.2$ нм; $2 - t_{ox} = 2.2$ нм.

Для рассматриваемой архитектуры выражение для характеристической длины с учетом кремниевой рабочей области и окиси кремния в качестве подзатворного диэлектрика можно представить в виде [9, 10]:

$$\lambda = 1.225 R \sqrt{\ln\left(1 + \frac{t_{ox}}{R}\right)},\tag{1}$$

где t_{ox} — толщина подзатворного окисла, R — радиус рабочей области.

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

На рис. 2 представлены результаты расчетов λ , выполненные при помощи (1), с помощью которых можно определить диапазон параметров R и t_{ox} для заданного значения L_g при которых выполняется условие полного подавления ККЭ. Такие диапазоны параметров R и t_{ox} выбраны с учетом ограничений из-за проявления квантово-механических эффектов, характерных для устройств с топологическими нормами близкими к границе масштабирования [11].

Если ориентироваться на минимальные топологические нормы исходя из ограничений для выбора R и t_{ox} , например, $L_g = 32$ нм, то условие полного подавления ККЭ выполняется в небольшой области допустимых значений R и t_{ox} , которые приближаются к своим минимальным значениям. Для выбранной области значений R и t_{ox} транзисторные структуры можно с полной уверенностью отнести к полностью обедненным [3, 4, 10].

Для улучшения транспорта носителей в канале – уменьшение эффекта горячих носителей, эффекта roll-off порогового напряжения, DIBL-эффекта, снижение рассеяния на шероховатостях границы – легирование рабочей области транзистора в виде функции Гаусса очень полезно [12]. Более того, искусственно созданный гауссовый профиль легирующей примеси более весомо компенсирует проявление ККЭ в транзисторе, что положительным образом отражается на всех его характеристиках, что определяет актуальность и востребованность такого направления развития моделей и методов моделирования.

Цель данной работы — моделирование поведения тока утечки и тока в режиме сильной инверсии полностью обедненного КМОП-нанотранзистора с полностью охватывающим затвором и гауссовым профилем легирования рабочей области в радиальном направлении. Диапазон приложенных напряжений до 1 В. Математическая модель для токов строится на основе разработанной здесь же математической модели 2D распределения потенциала в рабочей области транзистора. Для оценки адекватности предложенной модели, результаты моделирования сопоставляются с данными полученными помощи программного пакета ATLASTM [13].

1. 2D МОДЕЛЬ РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА

2D распределение потенциала $\varphi(r, z)$ в неравномерно легированной рабочей области полностью обедненного КНИ КМОП транзистора с полностью охватывающим затвором в общем случае, вытекает из решения уравнения Пуассона [4]. В данном случае 2D уравнение Пуассона имеет вид:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\varphi(r,z)\right) + \frac{\partial^2}{\partial z^2}\varphi(r,z) = \frac{qN_A(r)}{\varepsilon_S},\tag{2}$$

где $\varphi(r, z)$ — электростатический потенциал, q — заряд электрона, ε_s — диэлектрическая проницаемость кремниевой рабочей области N(r) — радиальное распределение примеси в рабочей области транзистора, которое можно представить в виде

$$N_A(r) = N_{pick} \exp\left(-\left(\frac{r}{\sqrt{2\sigma}}\right)^2\right),$$

N_{pick} — максимальная концентрация легирующей примеси, σ — крутизна профиля легирующей примеси. В предположении, что длина рабочей области L_g всегда в несколько раз больше "толщины" рабочей области ($L_g > 2R$), то потенциал можно представить как суперпозицию двух: радиального и латерального, например, в виде [14]:

$$\varphi(r, z) = \varphi_{1D}(r) + \varphi_{2D}(r, z).$$
(3)

В данном случае 1D уравнение Пуассона для радиального направления аналогично случаю длинного канала, которое может быть выражено следующим образом:

$$\frac{1}{r}\frac{\partial}{\partial r}\varphi_{1D} + \frac{\partial^2}{\partial r^2}\varphi_{1D} = \frac{qN_A(r)}{\varepsilon_S} \left(1 + \left(\frac{n_i}{N_A(r)}\right)^2 e^{\beta(\varphi_{1D} - (V_n - V_p))}\right),\tag{4}$$

где n_i — собственная концентрация носителей, β — термический потенциал, V_n , V_p — положение уровня Ферми для электронов и дырок, соответственно. Граничные условия для (4) можно представить так [5]:

$$\frac{\partial}{\partial r} \varphi_{1D}(r, z) = 0, \quad \varphi_{1D}(r, z) \Big|_{r=R} = \varphi_f(z),$$

$$\frac{\varepsilon_{ox}}{t_{ox}} (U_g - U_{FB} - \varphi_{1D}(R, z)) = \varepsilon_S \frac{\partial \varphi_{1D}(r, z)}{\partial r} \Big|_{r=R}$$

где $\phi_f(z)$ – поверхностный потенциал, ε_{ox} – диэлектрическая проницаемость подзатворного окисла, U_g – напряжение на затворе, U_{FB} – напряжение плоских зон.

2D уравнение Лапласа, которое представляет потенциал для случая короткого канала можно представить следующим образом:

$$\frac{1}{r}\frac{\partial}{\partial r}\varphi_{2D}(r,z) + \frac{\partial^2}{\partial r^2}\varphi_{2D}(r,z) + \frac{\partial^2}{\partial z^2}\varphi_{2D}(r,z) = 0,$$
(5)

где граничные условия для (5) следующие

$$\varphi_{2D}(r,0) = U_{bi} - \varphi_{1D}(r), \varphi_{2D}(r,L_g) = U_{bi} + U_{ds} + \varphi_{1D}(r),$$

где U_{bi} — контактная разность потенциалов, U_{ds} — напряжение сток-исток.

Для прототипа КМОП-нанотранзистора с полностью охватывающим затвором, топологические параметры которого: $L_g = 32$ нм, R = 5 нм, $t_{ox} = 1.2$ нм, максимальный уровень легирования стока/истока 0.5×10^{20} см⁻³, гауссовый профиль легирования рабочей области с $N_{pick} = 1.0 \times 10^{17}$ см⁻³, σ изменяется в пределах 3...10 нм, приведем результаты моделирования распределения поверхностного потенциала вдоль рабочей области, которые представлены на рис. 3. Следует отметить, что сопоставление результатов расчетов с данными моделирования, полученными при помощи коммерчески доступного программного пакета AT-LASTM для 2D моделирования транзисторных

структур [13], позволяет сделать вывод о хорошем соответствии между ними.

2. МОДЕЛЬ ТОКА УТЕЧКИ

В приближении зарядового разделения и с учетом зависимостей физических параметров кремния выражение для тока утечки (при $U_g = 0$ В) полностью обедненного КМОП-нанотранзистора с полностью охватывающим затвором и с неравномерно-легированной рабочей областью в виде функции Гаусса, можно представить по аналогии с [15, 16] так:

$$I_{ds} = \frac{\mu_{\text{eff}} k T \left(1 - e^{\frac{-qU_{ds}}{kT}}\right)}{\int_{0}^{L_g} \frac{dz}{\pi \int_{0}^{R} n_c(r, z) dr}},$$
(6)

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

Рис. 3. Распределение поверхностного потенциала для разных σ , где $1 - \sigma = 3$ нм; $2 - \sigma = 10$ нм. Звездочкой обозначены данные моделирования, полученные при помощи программы ATLASTM.

где, μ_{eff} – "эффективная" подвижность носителей, *T* – температура, *k* – константа Больцмана, $n_c(r, z)$ – распределение эффективной концентрации носителей по всему объему рабочей области:

$$n_c(r,z) = \left(\frac{n_i^2}{N_A(r)}\right) e^{-\frac{q\phi(r,z)}{2kT}}$$

Зависимость подвижности от электрического поля является одним из двух основных факторов, влияющих на поведение КМОП транзистора. Она имеет очень сложную зависимость и в общем случае определяется взаимодействием четырех механизмов рассеяния: рассеяние на фононах, рассеяния из-за шероховатости поверхности, кулоновское рассеяние из-за объемного заряда и кулоновское рассеяние из-за поверхностного заряда [17]. Каждый из этих механизмов зависит от распределения электрического поля (E) в рабочей области и от распределения и концентрации легирующей примеси в канале [18].

Один из наиболее широко используемых имитационных подходов сочетает в себе эти четыре компонента рассеяния в виде "эффективной подвижности" μ_{eff} с помощью правила Маттиссена [19]:

$$\frac{1}{\mu_{\rm eff}(E, N_A(r), T)} \propto \frac{1}{\mu_{ph}} + \frac{1}{\mu_{sr}} + \frac{1}{\mu_{cb}} + \frac{1}{\mu_{\rm int}},\tag{7}$$

где μ_{ph} , μ_{sr} , μ_{cb} , μ_{int} — компонент подвижности с учетом рассеяние на фононах, рассеяния из-за шероховатости поверхности, кулоновское рассеяние из-за объемного заряда, кулоновское рассеяние из-за поверхностного заряда, соответственно.

Для представленного выше прототипа нанотранзистора с параметрами проанализируем поведение тока утечки на основе численных расчетов с использованием уравнения (6). На рис. 4 приведена зависимость тока утечки от крутизны профиля легирования.

Из результатов моделирования следует, ток утечки существенно зависит от крутизны профиля легирования. Чем выше крутизна (меньшее значение параметра σ), тем ниже ток утечки. Например, ток утечки прототипа с профилем $\sigma = 3$ нм в 28 раз меньше тока утечки прототипа с $\sigma = 10$ нм, что

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

иллюстрируется рис. 5. Сравнение проведено для токов при напряжении $U_{ds} = 1$ В.

3. МОДЕЛЬ ПРЯМОГО ТОКА ТРАНЗИСТОРА

В режиме сильной инверсии транзистора перенос зарядов становиться более сложным. Распределение электрического поля в гауссовом случае отличается от равномерно-легированного случая. И характерный размер изменений напрямую связан с величиной о. Локализация носителей ближе к центру снижает общий уровень напряженности электрического поля, что повышает их подвижность и значительно снижает эффекты рассеяния на границе [12].

Общий заряд, если мы рассматриваем транзистор *n*-типа, состоит из подвижного (электроны) и неподвижный (акцепторная примесь). В прибли-

Рис. 4. Зависимость тока утечки для разных σ , где $1 - \sigma = 3$ нм; $2 - \sigma = 5$ нм; $3 - \sigma = 10$ нм.

жении полного обеднения ток транзистора определяется переносом подвижного заряда $Q_m(r, z)$ и положением квази уровня Ферми. Тогда выражение для плотности тока можно записать в виде [20]

$$i_{ds} = -\mu_{\text{eff}} Q_m(r, z) \frac{\partial V_n}{\partial z}.$$
 (8)

Это выражение объединяет дрейфовую и диффузную компоненты тока. Следует отметить, что в силу симметрии задачи производная $\frac{\partial V_n}{\partial r}$ не зависит от величины Θ . В общем случае распределение зарядов можно записать так:

$$n = n_i \exp\left(-\frac{q}{kT}(\varphi(r,z) - V_n(r,z))\right)$$

Значение тока получается двойным интегрированием выражения (8).

Для того же прототипа рассчитаны BAX $Ids(U_{ds})$ при затворных напряжениях выше порогового для разных значений крутизны профиля примеси, которые приведены на рис. 6.

Из сопоставления ВАХ следует, что ток транзистора, крутизна профиля легирования которого $\sigma = 3$ нм, примерно на 20% выше, чем ток транзистора, профиль которого соответствует $\sigma = 10$ нм. И сами ВАХ отличаются чувствительностью к уровню затворного напряжения. Это также иллюстрируется рис. 7. Следует отметить, что зависимости полученные по (6) и (8) "сшиваются" при помощи сглаживающих функций по широко известной методике.

Варьированием R можно эффективно управлять током транзистора. На рис. 8 приведены результаты моделирования зависимости максимального тока транзистора Ids_max от R для разных σ . Диапазон изменения R 3.5...6 нм, что соответствует выбранному выше. Следует отметить, что результаты расчетов в большей степени согласуются с данными, полученными при помощи программа ATLASTM.

Для прототипа с крутым профилем легирования условия для протекания тока предпочтительнее, чем для прототипа с крутизной профиля $\sigma =$ = 10 нм. При этом зависимости Ids_max(*R*) характеризуются разной кривизной. Это связано с тем, что для "тонких" рабочих областей напряженность радиального электрического поля очень высокая и в случае плавного профиля легирования при его высоком уровне такая совокупность факторов приводит к высокой деградации подвижности, и, следовательно, к заметному снижению тока транзистора.

Аналогичный результат получается при увеличении крутизны профиля (уменьшении $\sigma < 3$ нм). В данном случае уменьшается общее число носителей, и общий ток транзистора падает. Это вызывает необходимость повышать уровень пиковой концентрации легирования. Однако, такой подход имеет ограничение. После некоторого значения N_{nick} начинают проявляться все плохие меха-

Рис. 5. Зависимость $Ids_max(\sigma)$.

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

Рис. 6. *a* – BAX Ids(U_{ds}) и Ug 0.4, 0.6, 0.8, 1.0 прототипа транзистора с $\sigma = 3$ нм; δ – BAX Ids(U_{ds}) и Ug 0.4, 0.6, 0.8, 1.0 прототипа транзистора с $\sigma = 10$ нм.

низмы, что приводит к тому же результату — ток транзистора снижается [21].

Варьирование концентрацией легирования приводит к незначительному увеличению тока транзистора в открытом режиме. На рис. 9 приведены результаты расчетов для прототипа с крутым профилем легирования. В данном случае максимальное повышение тока при увеличении параметра N_{pick} в 5 раз составляет примерно 4%.

Из результатов расчетов можно сделать вывод, что эффективное управление током осуществляется при помощи варьирования радиуса рабочей области, а уровень легирования 1 × 10¹⁷ см⁻³ явля-

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

ется предельным для рассматриваемых топологических норм.

ЗАКЛЮЧЕНИЕ

Разработаны теоретические основы математической модели полностью обедненного КМОП нанотранзистора с полностью охватывающим затвором и гауссовым профилем легирования рабочей области в радиальном направлении. Применение такого подхода перспективно и для более весомого подавления ККЭ и для улучшения транспорта носителей в канале, что положительным образом отражается на всех его характеристиках, что опреде-

Рис. 7. ВАХ $Ids(U_g)$ и $U_{ds} = 0.1$ В, где 1 – прототип транзистора с $\sigma = 3$ нм; 2 – прототип транзистора с $\sigma = 10$ нм.

Рис. 8. Ids_max при $U_{ds} = U_g = 1$ В для разных значений *R*, где *1* – прототип транзистора с $\sigma = 3$ нм; *2* – прототип транзистора с $\sigma = 10$ нм. Звездочкой обозначены данные моделирования, полученные при помощи программы ATLASTM.

ляет актуальность и востребованность такого направления.

В частности, разработана математическая модель 2D распределения потенциала в рабочей области транзистора, которая строится на основе решения уравнения Пуассона в цилиндрических координатах. Численно исследованы распределения потенциала и показано, что крутизна профиля легирования существенно влияет и на форму распределения потенциала и на его значение в каждой точке канала. Сопоставление результатов расчетов с данными моделирования, полученными при помощи коммерчески доступного программного пакета ATLASTM для 2D моделирования транзисторных структур, позволяет сделать вывод о хорошем соответствии между ними. На основе разработанной модели распределения потенциала сформулированы модели тока утечки и тока в режиме сильной инверсии. Численно исследовано влияние крутизны профиля легирования на поведение анализируемых токов. Так, для структуры $L_g = 32$ нм, R = 5 нм, $t_{ax} = 1.2$ нм получены следующие результаты. Ток утечки транзистора с крутизной профиля $\sigma = 3$ нм в 28 раз меньше, чем ток утечки транзистора крутизной профиля $\sigma = 10$ нм. Для токов в режиме сильной инверсии ток транзистора, с крутизной $\sigma = 3$ нм, примерно на 20% выше, чем ток транзистора с $\sigma = 10$ нм. И сами ВАХ отличаются чувствительностью к уровню затворного напряжения.

Установлено, что варьированием *R* можно эффективно управлять током транзистора. При

Рис. 9. ВАХ Ids(U_{ds}) и U_g 0.4, 0.6, 0.8, 1.0 прототипа транзистора с увеличенной $N_{pick} = 5 \times 10^{17}$ см⁻³ и с $\sigma = 3$ нм.

этом для прототипа с крутым профилем легирования $\sigma = 3$ нм условия для протекания тока предпочтительнее, чем для прототипа с крутизной профиля $\sigma = 10$ нм. Результаты проведенных численных исследований в большей степени согласуются с данными, полученными при помощи программа ATLASTM.

Показано, что увеличение концентрации легирования не приводит к существенному росту тока транзистора. Так, например, максимальное повышение тока при увеличении концентрации легирования в 5 раз составляет примерно 4%.

Обобщающий вывод — эффективное управление током осуществляется при помощи варьирования радиуса рабочей области, а уровень легирования 1×10^{17} см⁻³ является предельным для рассматриваемых топологических норм.

Работа выполнена в рамках Государственного задания по проведению фундаментальных научных исследований (ГП 14) по теме (проекту) № 0065-2019-0001.

СПИСОК ЛИТЕРАТУРЫ

- Ferain I., Colinge C.A., Colinge J. Multigate transistors as the future of classical metal–oxide–semiconductor fieldeffect transistors // Nature. 2011. V. 479. P. 310–316.
- He J., Liu F., Bian W., Feng J., Zhang J., Zhang X. An approximate carrier-based compact model for fully depleted surrounding-gate MOSFETs with a finite doping body // Semiconductor Science and Technology. 2007. V. 22. № 6. P. 671–677.
- Son A., Kim J., Jeong N., Choi J., Shin H. Improved explicit current-voltage model for long-channel undoped surrounding-gate metal oxide semiconductor field effect transistor // J. Appled Physics. 2009. V. 48. P. 412–413.
- 4. *Suh C*. Two-dimensional analytical model for deriving the threshold voltage of a short channel fully depleted cylindrical/surrounding gate MOSFET // J. Semicon-

МИКРОЭЛЕКТРОНИКА том 48 № 6 2019

ductor Technology and Science. 2011. V. 11. No 2. P. 111–120.

- 5. *Jimenez D., Inguiez B.* Continuous analytic I–V model for surrounding-gate MOSFETs // IEEE Electron Device Letters. 2004. V. 25. № 8. P. 571–573.
- 6. *Iniguez B., Jimenez D., Roig J., Hamidi H.-A., Marsal L.F., Pallares J.* Explicit continuous model for long-channel undoped surrounding-gate MOSFETs // IEEE Trans. Electron. Devices. 2005. V. 52. № 8. P. 1868–1873.
- Kranti A., Armstrong G.A. Engineering source/drain extension regions in nanoscale double gate (DG) SOI MOSFETs: Analytical model and design considerations // Solid State Electronic. 2006. V. 50. № 4. P. 437–447.
- Масальский Н.В. Характеристики двух затворных КНИ КМОП нанотранзисторов для перспективных технологий с низким уровнем потребляемой мощности // Микроэлектроника. 2012. Т. 41. № 6. С. 436–444.
- 9. Colinge J.P. Multiple-gate SOI MOSFETs // Solid State Electronics. 2004. V. 48. № 3. P. 897–909.
- 10. *Hamid H.A.E., Iniguez B., Guitart J.R.* Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs // IEEE Electron Device. 2007. V. 54. № 3. P. 572–579.
- 11. *Yuan Y., Yu B., Song J., Taur Y.* An analytic model for threshold voltage shift due to quantum confinement in surrounding gate MOSFETs with anisotropic effective mass // Solid State Electon. 2009. V. 53. № 2. P. 140–144.
- Масальский Н.В. Моделирование распределения потенциала в неоднородно легированной рабочей области двух затворного КНИ КМОП нанотранзистора // Микроэлектроника. 2017. Т. 46. № 2. С. 139–148.
- URL: http://www.silvaco.com/ Silvaco Int. 2004: ATLAS User's Manual A 2D numerical device simulator (дата обращения 25.11.2016).
- Kim J., Sun W., Park S., Lim H., Shin H. A compact model of gate-voltage-dependent quantum effects in short-channel surrounding-gate metal-oxide-semiconductor field-effect transistors // J. Semiconductor Technology and Science. 2011. V. 11. № 4. P. 278–286.
- 15. *Zhang L., Ma C., He J., Lin X., Chan M.* Analytical solution of subthreshold channel potential of gate underlap cylindrical gate-all-around MOSFET // Solid State Electron. 2010. V. 54. № 8. P. 806–808.
- Chiang T.K. A compact model for threshold voltage of surrounding-gate MOSFETs with localized interface trapped charges // IEEE Trans. Electron Devices. 2011. V. 58. № 2. P. 567–571.
- 17. *Зи С.* Физика полупроводниковых приборов. М.: Мир, 1984. С. 456.
- Lee K., Choi J., Sim S., Kim C. Physical understanding of low-field carrier mobility in silicon MOSFET inversion layer // IEEE Trans. Electron. Devices. 1991. V. 38. № 8. P. 1905–1912.
- 19. *Neamen D.* Semiconductor physics & devices: basic principles. New York, McGaw-Hill, 2011. 760 p.
- Sharma D., Vishvakarma S.K. Precise analytical model for short channel cylindrical gate (CylG) gate-allaround (GAA) MOSFET // Solid State Electron. 2013. V. 86. P. 68–74.
- 21. *Cheralathan M., Iniguez B.* Compact model for longchannel cylindrical surrounding-gate MOSFETs valid from low to high doping concentrations // Solid State Electronics. 2011. V. 55. № 1. P. 13–18.