______ ДИАГНОСТИ**К**А _____

УЛК 621.794.61

ВЛИЯНИЕ ДАВЛЕНИЯ КИСЛОРОДА НА ПРОЦЕСС ОКИСЛЕНИЯ ПОВЕРХНОСТИ НИТРИДА ТИТАНА В ПЛАЗМЕ

© 2019 г. В. М. Мордвинцев^{1, *}, В. В. Наумов¹, С. Г. Симакин¹

¹Ярославский филиал Физико-технологического института им. К.А. Валиева Российской АН, ул. Университетская, 21, г. Ярославль, 150007 Россия

*E-mail: Mordvintsev-Viktor@yandex.ru
Поступила в редакцию 29.01.2019 г.
После доработки 29.01.2019 г.
Принята к публикации 04.05.2019 г.

С использованием вторично-ионной масс-спектрометрии получены зависимости толщины образующегося на поверхности TiN слоя TiO_2 от парциального давления (потока) кислорода в аргоновой кислород-содержащей плазме установки магнетронного распыления. Наблюдающиеся зависимости могут быть объяснены с привлечением простой феноменологической модели. Используя ранее опубликованные данные, получено общее выражение для зависимости толщины TiO_2 от времени и температуры отжига, а также от парциального давления кислорода. Показано, что в исследованном диапазоне температур отжига происходит смена кинетического режима процесса окисления, что приводит к необходимости уточнения ранее применявшейся модели и значений ее параметров. Результаты могут быть использованы для получения на поверхности нитрида титана окисного слоя заданной нанометровой толщины.

Ключевые слова: нитрид титана, окисление, плазменная стимуляция, нанометровый окисел, кинетика, вторично-ионная масс-спектрометрия

DOI: 10.1134/S0544126919060061

ВВЕДЕНИЕ

Тонкие пленки нитрида титана (TiN) используются в технологии микроэлектроники из-за их высокой стабильности и электропроводности. Одним из распространенных способов получения пленок TiN в настоящее время является осаждение с помощью реактивного магнетронного распыления. При этом, несмотря на высокую стойкость нитрида титана к окислению в обычных условиях (заметное окисление в сухом кислороде наблюдается только для температур выше 500°С [1, 2]), воздействие плазмы, содержащей кислород, может приводить к образованию на его поверхности слоев окисла толщиной несколько нанометров [3, 4] даже при пониженных температурах.

Условия, в которых поверхность TiN подвергается обработке в кислородсодержащей плазме, возникают, в частности, при изготовлении элементов одного из видов мемристорной памяти — памяти на самоформирующихся проводящих наноструктурах [5], использующей явление электроформовки [6]. Конструкция элемента памяти предполагает осаждение на пленку TiN слоя диоксида кремния методом реактивного распыления кремниевой мишени в атмосфере кислорода.

Сокращения: ВИМС – вторично-ионная масс-спектрометрия; ПХО – плазмохимическая обработка.

Это сопровождается неустранимым воздействием кислородсодержащей плазмы на поверхность нитрида титана. Оказалось, что образующийся при этом слой диоксида титана (TiO_2) толщиной несколько нанометров играет значительную и положительную роль как для выполнения операции электроформовки, так и для последующего функционирования элементов памяти [5]. При этом, важно контролировать с высокой точностью толщину растущего слоя ТіО2. Ранее были опубликованы результаты исследования зависимости его толщины от температуры подложкодержателя установки вакуумного осаждения и времени обработки [4], однако не было данных по влиянию на процесс окисления парциального давления кислорода, от которых существенно зависит правильное понимание кинетики процесса. В данной работе восполняется этот пробел. У приведенных результатов есть и прикладной аспект, связанный с тем, что по мере выработки кремниевой мишени, меняется скорость ее распыления, в то время как при осаждении на подложку слоя двуокиси кремния соотношение потоков кремния и кислорода на поверхность подложки надо поддерживать постоянным. Проще всего это делать путем подстройки давления кислорода. Однако при этом надо знать, как это будет сказываться на процессе окисления поверхности Ті N.

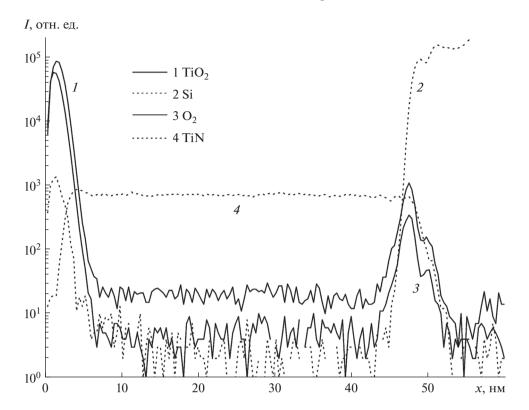
ПОДГОТОВКА ОБРАЗЦОВ И МЕТОДИКА ИХ ИССЛЕДОВАНИЯ

Образцы представляли собой кремниевые пластины диаметром 100 мм, легированные бором, с удельным сопротивлением 12 Ом · см. На поверхности пластин путем термического окисления выращивался слой диоксида кремния толщиной около 0.5 мкм. Слой SiO₂ локально, с использованием маски фоторезиста, стравливался на участках, предназначенных для исследования. Это имитировало реальную ситуацию, возникаюшую при изготовлении элементов памяти. Затем на пластины реактивным высокочастотным магнетронным распылением титановой мишени (установка SCR-650, Alcatel) в атмосфере аргона с добавками азота осаждался слой TiN с подслоем чистого Ті (около 15 нм, осаждался без напуска азота) общей толшиной около 50 нм. Температура пластины в ходе осаждения поддерживалась на уровне 350°C. После завершения процесса выключался напуск газов и нагрев подложкодержателя, пластина остывала в течение 10 мин в вакууме (достигалась температура, не превышающая 200°C) и выгружалась из установки. Таким образом, помимо экспозиции в высоком вакууме в течение 10 мин, присутствовала выдержка поверхности пленки TiN на воздухе при повышенных температурах в течение нескольких минут, когда температура пластины падала от 200°C до комнатной.

Далее по осажденному слою Ti—TiN выполнялась фотолитография, его толщина измерялась по высоте сформированной ступеньки с помощью профилометра. До отжига пластины хранились под защитным слоем фоторезиста на воздухе в течение нескольких недель.

Непосредственно перед выполнением отжига фоторезист удалялся в диметилформамиде и пластина обрабатывалась в кислородной плазме с целью удаления органических загрязнений, для чего применялась установка ПХО-100Т-001. Использовались следующие режимы плазмохимической обработки: давление кислорода 50 Па, мощность разряда 180 Вт, время обработки составляло 50 с, две пластины обрабатывались одновременно.

Далее пластина помещалась в установку магнетронного осаждения SCR-650, в которой выполнялся отжиг в кислородсодержащей плазме. Подложкодержатель разогревался в высоком вакуме (остаточное давление порядка 10⁻⁴ Па) до заданной температуры. Непосредственно перед процедурой отжига в вакуумную камеру напускались аргон и кислород (содержание паров воды в кислороде менее 0.007%, в аргоне — менее 0.0003%) с одновременным зажиганием плазмы в режимах распыления кремниевой мишени. Этим имитировалось последующее осаждение слоя диоксида кремния, однако заслонка, закрывающая подложкодержатель с пластиной от мишени, не открывалась. Основные параметры собственно от-


жига составляли: мощность на мишени 200 Вт, давление аргона в камере $0.9\ \Pi a$, поток кислорода P менялся в диапазоне от $5.2\ \text{дo}\ 9.2\ \text{cm}^3$ /мин. Парциальное давление кислорода было пропорционально его потоку P, причем при значении $P=5.2\ \text{cm}^3$ /мин оно составляло $0.06\ \Pi a$, однако характеризовать концентрацию кислорода в вакуумной камере было удобно именно величиной P. Отжиг состоял в экспозиции в таких условиях в течение $3\ \text{мин}$. Затем плазма "гасилась" (отключалась путем выключения генератора магнетрона), отключалась подача кислорода и аргона, выключался нагрев подложкодержателя, пластина остывала в течение $10\ \text{мин}$ в вакууме (достигалась температура, не превышающая $200\ \text{°C}$) и выгружалась из установки.

Из пластин вырезались образцы размером 6 × 6 мм, содержащие слой Ti—TiN на поверхности кремния после всех упомянутых выше обработок. Они подвергались послойному анализу методом вторично-ионной масс-спектрометрии.

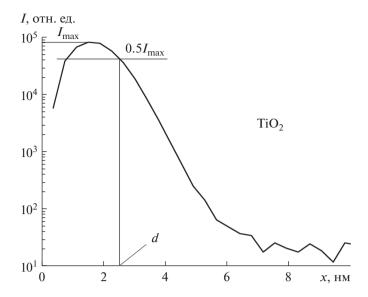
ВИМС-исследования проводились с помощью установки TOF.SIMS⁵ с времяпролетным масс-анализатором с использованием двух пучков, зондирующего и распыляющего, работающих попеременно в циклическом режиме. В качестве зондирующих использовались ионы Ві⁺ с энергией 25 кэВ, производимые жидкометаллическим источником. Распыление (травление) поверхности образца при послойном анализе производилось ионами Cs^+ с энергией 1 кэВ. Распыляющий пучок разворачивался в растр на поверхности образца размером 250 × 250 мкм. Сканирование зондирующего пучка осуществлялось в центральной области кратера ионного травления, производимого низкоэнергетичными ионами цезия. Размер области сканирования, и, соответственно, области сбора вторичных ионов, составлял 50 × 50 мкм. Сканирование осуществлялось случайным образом, дискретно в растре 128 × 128 точек.

В данных экспериментах интерес представляло, прежде всего, распределение кислорода по глубине от поверхности структуры TiN-Si, которое отражалось изменением интенсивностей соответствующих отрицательных, как молекулярных, так и одноатомных ионов от времени работы распыляющего пучка. Поэтому в пределах масс-спектра, охватывающего диапазон от 0 до 140 а.е.м., задавались интервалы интегрирования, соответствующие масс-пикам: O^- , Si^- , NO^- , O^-_2 , SiN^- , SiO^-_2 , TiN^- , TiO^- , $TiNO^-$, TiO^-_2 . Интенсивность сигнала в каждой точке на профиле послойного анализа соответствующему интервалу масс-спектра для кадра 128×128 точек.

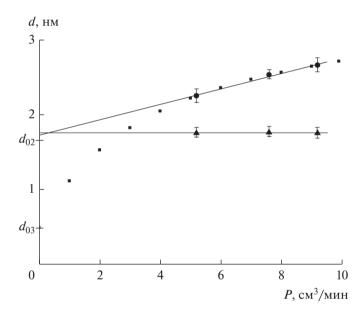
На рис. 1 приведены типичные данные послойного анализа. Травление продолжалось до надежного стравливания слоя Ti—TiN и вхождения ионного пучка цезия в кремниевую подлож-

Рис. 1. Типичные результаты послойного ВИМС-анализа пленки Ti—TiN на Si для отрицательных ионов, показанных на вставках (зависимости интенсивности I выхода иона от глубины x травления образца). Толщина пленки 47.4 нм. Отжиг в течение 3 мин при температуре T 440°C и потоке P кислорода 7.6 см 3 /мин.

ку. Калибровка исходной оси времени травления (абсцисс графиков) на его глубину осуществлялась по значениям толщин слоев Ti-TiN, полученных предварительно путем измерения их с использованием профилометра (см. выше). При этом, принималось, что, поскольку кислород в тонких пленках концентрируется на границах раздела слоев, максимум интенсивности иона TiO_2^- соответствует геометрической границе Ti-Si.


Методику определения толщины d слоя ${\rm TiO_2}$ иллюстрирует рис. 2. Параметр d определялся, как координата по оси абсцисс для значения интенсивности иона ${\rm TiO_2^-}$, равной 0.5 от значения в максимуме кривой $I_{\rm max}$ в сторону, противоположную поверхности образца.

Более подробное описание технологии подготовки образцов и методики их исследования приведено в [4].


ЭКСПЕРИМЕТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экспериментальные результаты для трех значений потока P кислорода и двух значений температуры (350 и 440°С) подложкодержателя приведены на рис. 3. В [4] все данные были получены при P = 5.2 см³/мин, поэтому представляет инте-

рес сравнить их со значениями толщины d слоя ТіО, для тех же условий. Оказывается, что новые данные, хоть и близки, но все же значимо (больше случайной ошибки измерений) отличаются от старых: для температуры 350° С новое значение dна 0.27 нм, а для температуры 440° C — на 0.37 нм меньше старого. Если учесть, что в [4, табл. 1] начальная толщина d_{01} до отжига (но после ПХО, которая приводит к заметному окислению) была равна 1.98 нм, а на рис. З даже после отжига в течение 3 мин при 350° С d = 1.75 нм, становится понятным, что в новом эксперименте начальная толщина d_{02} слоя ${
m TiO_2}$ была заметно меньше старой d_{01} . Именно этим можно объяснить отмеченные выше расхождения значений d в одинаковых условиях отжига d_{02} не была измерена непосредственно в последних экспериментах, однако ее оценку можно получить вычитанием из d_{01} усредненной разницы между значениями $d: d_{02} =$ $= d_{01} - (0.27 + 0.37)/2 = 1.66$ нм. Соответствующая точка показана на рис. 3 при P = 0, поскольку отжиг при нулевой концентрации кислорода, по смыслу, и должен дать $d(0) = d_0$. Отметим, что эта точка, в пределах ошибки измерений, ложится на прямую, полученную экстраполяцией экспериментальных данных для 440°C, что дополнительно подтверждает правильность полученной оценки (см. ниже).

Рис. 2. Результаты послойного ВИМС-анализа образца рис. 1 для иона TiO_2^- (зависимости интенсивности I выхода иона от глубины x травления образца), на глубине до 10 нм от внешней поверхности пленки. Показана методика определения толщины d слоя диоксида титана.

Рис. 3. Экспериментальные и расчетная зависимости толщины d слоя диоксида титана от потока P кислорода. Температура T отжига, °C: "кружки" — 440, "треугольники" — 350. Время отжига 3 мин. Сплошные линии — линейная экстраполяция экспериментальных данных. "Квадраты" — расчет в соответствии с выражением (6).

Отличие значений начальной толщины d_{02} и d_{01} TiO₂ при, вроде бы, одинаковых технологических параметрах выполнения ПХО связано, очевидно, с медленным неконтролируемым дрейфом характеристик генератора установки ПХО-100Т-001, поскольку время между двумя экспериментами составило около 3 лет. Этот факт говорит о необходимости впредь непосредственно контролировать толщину образовавшегося диоксида титана после выполнения ПХО.

В [4] было показано, что решающий вклад в процесс окисления нитрида титана в таких условиях вносит активация процесса плазмой. При этом не было достаточных оснований для выбора механизма воздействия плазмы: либо это связано с эффектом увеличения электрического поля в образующемся слое TiO_2 , либо — с активацией кислорода в газовой фазе. Приведенная на рис. З зависимость d(P) для температуры 440°C однозначно указывает на второй механизм. Окисление происходит за счет поступления активированных плазмой ча-

стиц кислорода (например, в атомарном состоянии) из газовой фазы, поэтому увеличение парциального давления кислорода и приводит к увеличению скорости (толщины d при фиксированном времени) окисления.

Существенно, что монотонный рост скорости окисления с увеличением потока кислорода при температуре отжига 440° С сменяется отсутствием зависимости d(P) для температуры 350° С. Это означает, что в первом случае процесс лимитируется поступлением на окисляемую поверхность активного кислорода, в то время как во втором — стадиями, ответственными за химические реакции на поверхности, либо диффузией кислорода через образующийся слой окисла. Скорость последних стадий не зависит от потока кислорода из газовой фазы и должна экспоненциально падать с уменьшением температуры, что и переводит процесс в другой кинетический режим при температуре 350° С.

Такая ситуация может быть описана простой феноменологической моделью. Активный кислород из газовой фазы прочно связывается с поверхностью нитрида титана (хемосорбируется) если попадает на свободный от кислорода участок поверхности. Скорость такого процесса пропорциональна давлению (и потоку P) кислорода и концентрации "свободных мест" $(n_0 - n)$ на поверхности, где n — поверхностная концентрация атомов хемосорбированного кислорода, n_0 — максимальная концентрация, соответствующая полному покрытию поверхности. Будем считать, что хемосорбированный кислород может удаляться с поверхности только за счет участия его в образовании окисла, не уточняя механизм этого процесса, который, в принципе, может включать много элементарных стадий [7]. Его скорость должна быть пропорциональна п. Тогда баланс атомов хемосорбированного кислорода определяется выражением:

$$\frac{dn}{dt} = K_1(n_0 - n)P - K_2n,\tag{1}$$

где K_1 и K_2 — константы скорости соответствующих процессов, экспоненциально (по закону Аррениуса) зависящие от температуры. Если принять условие квазистационарности [7], т.е. считать, что равновесие для n устанавливается значительно быстрее, чем растет окисел, то производную в (1) можно приравнять нулю, и найти выражение для концентрации n. Тогда для скорости V — образования окисла получаем

$$V = K_2 n = \frac{K_1 K_2 n_0 P}{K_1 P + K_2}.$$
 (2)

При условии $K_2 \ll K_1 P$, т.е. для случая низких температур и больших P,

$$V = K_2 n_0 \tag{3}$$

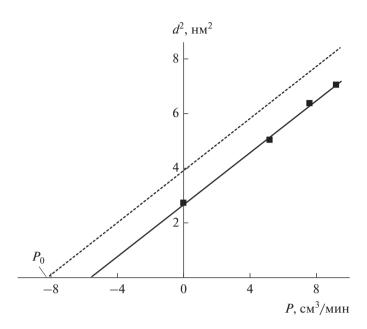
и не зависит от потока P кислорода. Именно эту ситуацию мы имеем при температуре отжига 350° С. Для обратного условия

$$K_{\gamma} \gg K_{1}P,$$
 (4)

т.е. в случае высоких температур и малых P,

$$V = K_1 n_0 P, (5)$$

получается линейная зависимость от потока кислорода. Такая ситуация реализуется при температуре отжига 440°C.


Далее надо обратить внимание на то, что экспериментальные данные рис. 3 демонстрируют некоторое отклонение от линейности, причем, вполне определенного характера — с увеличением P толщина d растет несколько медленнее, чем по линейному закону. Если эта нелинейность значима (обусловлена не только ошибкой измерений), то ее причиной могут быть два разных механизма. Во-первых, может не выполняться соотношение (4), тогда зависимость V(P) должна определяться не выражением (5), а более общим — (2), а оно дает как раз такой характер нелинейности.

Проверить это предположение можно следующим образом. Если при времени отжига 3 мин мы находимся еще в диапазоне почти линейной зависимости d от времени t отжига (т.е. постоянной скорости нарастания толщины), а данные [4] позволяют так считать, то, учитывая (2), для толщины окисла можно записать

$$d = c + \frac{aP}{bP + 1},\tag{6}$$

где a, b, c неизвестные константы, которые надо определить, используя экспериментальные данные. Константа с имеет смысл начальной, до отжига, толщины окисла, однако мы не будем считать ее равной d_{02} , как выше, а будем искать ее независимо от предыдущих соображений, в соответствии с (6) по общему для всех неизвестных констант алгоритму. Поскольку есть только три экспериментальные точки зависимости d(P) для температуры 440° С, из (6) мы можем записать три независимых уравнения для определения трех констант. Решение получающейся системы трех линейных уравнений дает следующие их значения: a = 0.78; b = 0.25; c = 0.49 (применялись значения P в см³/мин, а d – в нм). Рассчитанная с их использованием зависимость d(P)в интервале от 0 до 10 см³/мин показана на рис. 3. Естественно, что кривая точно проходит через экспериментальные точки, но вот значение d_{03} = = d(0) = c получается неправдоподобно малым. Такой результат дополнительно подтверждает, что в этих условиях соотношение (4) хорошо выполняется, и зависимость d(P) должна быть близка к (5).

Вторым механизмом отклонения зависимости d(P) от линейной может быть нарушение постоянства скорости окисления по мере увеличения d,

Рис. 4. Зависимости квадрата толщины d^2 слоя диоксида титана от потока P кислорода. Температура T отжига 440° С, время отжига 3 мин. Сплошная линия — линейная экстраполяция экспериментальных данных, пунктирная — линейная экстраполяция после корректировки начальной толщины слоя диоксида титана.

а именно, замедление этого процесса, вызванное необходимостью диффузии кислорода через слой растущего окисла. Собственно, мы знаем, что в исследуемых условиях зависимость d(t) хорошо описывается выражением [4]:

$$d^2 = A(t + t_0), (7)$$

где A — константа, зависящая от температуры, а t_0 — параметр, имеющий смысл времени, которое потребовалось бы в этих условиях от начала процесса окисления до образования окисного слоя толщиной d_{01} , начальной для процесса отжига. Построение графика в координатах (d^2 , P) показывает (рис. 4), что экспериментальные данные хорошо ложатся на прямую, т.е. должно выполняться и соотношение:

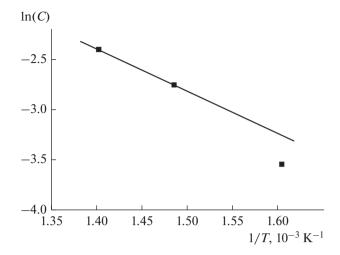
$$d^2 = B(P + P_0), (8)$$

где B — константа, которая тоже должна зависеть от температуры. Здесь параметр P_0 (значение, отсекаемое прямой на оси абсцисс) не имеет такого наглядного физического смысла, как t_0 в зависимости (7), но ее присутствие в выражении (8) связано с тем же фактором — исходным, до начала отжига, наличием окисла на поверхности нитрида титана. При этом (8) можно рассматривать как полуэмпирическое выражение. Таким образом, этот механизм возникновения нелинейности кривой d(P) представляется вполне обоснованным.

Из сравнения (7) и (8) понятно, что зависимости d от t и P можно записать единым выражением:

$$d^{2} = C(t + t_{0})(P + P_{0}), (9)$$

которое должно объединить экспериментальные данные, представленные в данной работе и в [4], и можно использовать для оценки значения d в рассматриваемых условиях. "Сшивку" (7), (8) и (9), т.е. определение выражения для константы C, можно провести следующим образом. Сначала надо "уровнять" исходные толщины окисла, т.е. найти значения d(P), которые были бы в случае, если бы $d_{02} = d_{01} = 1.98$ нм. Для этого исходную прямую на рис. 4 надо поднять на $(d_{01})^2 - (d_{02})^2 =$ $= 1.98^2 - 1.66^2 = 3.92 - 2.76 = 1.16 \text{ HM}^2$ (Hobas TDS) мая выполнена пунктиром), и в качестве константы P_0 в (9) использовать значение 8.2 см³/мин (оно показано на рис. 4). Поскольку после этого должны быть одинаковы значения d_1 в обеих сериях экспериментов при одинаковых условиях: $t_1 = 3$ мин, $P_1 = 5.2 \text{ см}^3/\text{мин}, T = 440^{\circ}\text{C}, -\text{то конкретное зна-}$ чение константы C (при данной температуре) может быть определено из (9):


$$C = \frac{d_1^2}{(t_1 + t_0)(P_1 + P_0)} = \frac{A}{(P_1 + P_0)}.$$
 (10)

Вторая часть равенства (10) дает общее соотношение (при любых температурах) между параметрами A и C в формулах (7) и (9).

Учитывая выражение для константы A, как функции температуры T[4], можно записать:

$$C = \frac{A_0}{P_1 + P_0} \exp\left(-\frac{E}{kT}\right) = C_0 \exp\left(-\frac{E}{kT}\right), \quad (11)$$

где E — энергия активации окисления нитрида титана, k — постоянная Больцмана, A_0 и C_0 — кон-

Рис. 5. Зависимость логарифма параметра C (в $\text{нм}^2/\text{см}^3$) от обратной температуры 1/T. Поток P кислорода $5.2 \text{ cm}^3/\text{мин}$.

станты. На рис. 5 показана зависимость логарифма C от обратной температуры, с учетом экспериментальных данных, приведенных в [4], и выражения (10), которая позволяет получить оценку энергии активации и константы в (11): E = 0.37 эВ, $C_0 = 34.8 \text{ нм}^2/\text{см}^3$. Таким образом, в выражении (9) определены все входящие в него параметры. Значение E отличается от полученного в [4], поскольку там прямая на графике, аналогичном рис. 5, проводилась через все три экспериментальные точки. Однако, как показано в данной работе, при температуре 350°C происходит смена кинетического режима процесса окисления, а каждый режим характеризуется своей энергией активации (сравнить выражения (3) и (5)), поскольку меняется лимитирующая стадия процесса окисления. Поэтому корректно проводить прямую только через две точки, соответствующие температурам 400 и 440°C (рис. 5). Это сужает диапазон применимости выражения (11) до 400-500°C, но именно из этого диапазона используются температуры для реального технологического процесса. Существенно, что при расчете по формулам (9) и (10) константы t_0 и P_0 должны корректироваться в зависимости от значения начальной толщины d_0 слоя диоксида титана.

ЗАКЛЮЧЕНИЕ

В дополнение к ранее опубликованным экспериментальным результатам исследования процесса окисления TiN в кислородсодержащей плазме с применением ВИМС получены данные для зависимости толщины образующегося слоя диоксида титана от парциального давления (потока) кислорода. Приведена простая феноменологическая модель,

объясняющая характер наблюдающихся зависимостей. Показано, что в исследованном диапазоне температур отжига происходит смена кинетического режима процесса окисления, что обуславливает необходимость уточнения ранее использовавшейся модели и значений ее параметров. Получено общее выражение для зависимости толщины TiO₂ от времени и температуры отжига, а также от парциального давления кислорода в условиях вакуумной установки SCR-650. Результаты могут быть использованы для контролируемого получения на поверхности нитрида титана окисного слоя заданной нанометровой толщины.

ВИМС-исследования проводились на установке TOF.SIMS⁵ Центра коллективного пользования "Диагностика микро- и наноструктур".

Работа выполнена в рамках Государственного задания Ярославского филиала Федерального государственного бюджетного учреждения науки Физико-технологического института имени К.А. Валиева Российской академии наук Министерства образования и науки Российской Федерации по теме № 0066-2019-0003.

СПИСОК ЛИТЕРАТУРЫ

- 1. Suni I., Sigurd D., Ho K.T., Nicolet M-A. Thermal oxidation of reactively sputtered titanium nitride and hafnium nitride films // J. Electrochem. Soc.: Solid-state science and technology. 1983. V. 130. № 5. P. 1210–1214.
- 2. Wittmer M., Noser J., Melchior H. Oxidation kinetics of TiN thin films // J. Appl. Phys. 1981. V. 52. № 11. P. 6659–6664.
- 3. Groenland A.W., Brunets I., Boogaard A., Aarnink A.A.I., Kovalgin A.Y., Schmitz J. Thermal and plasma-enhanced oxidation of ALD TiN // Proceeding of 11-th annual workshop on semiconductor advances for future electronics and sensors. Veldhaven. Netherlands. 2008. P. 468–471.
- 4. *Мордвинцев В.М., Наумов В.В., Симакин С.Г.* Исследование процесса образования окисной пленки нанометровой толщины на поверхности нитрида титана методом вторично-ионной масс-спектрометрии // Микроэлектроника. 2016. Т. 45. № 4. С. 258–272.
- Мордвинцев В.М., Кудрявцев С.Е. Исследование электрических характеристик элементов памяти на самоформирующихся проводящих наноструктурах в виде открытой "сэндвич"-структуры TiN—SiO₂—W // Микроэлектроника. 2013. Т. 42. № 2. С. 92—104.
- 6. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. Электроформовка как процесс самоформирования проводящих наноструктур для элементов энергонезависимой электрически перепрограммируемой памяти // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 174–182.
- 7. *Барре П*. Кинетика гетерогенных процессов. М.: Мир, 1976. 399 с.