——— ПРИБОРЫ ——

УДК 537.32

ТЕРМОЭЛЕКТРИЧЕСКОЕ ОХЛАЖДЕНИЕ ТЕПЛОНАГРУЖЕННЫХ ЭЛЕМЕНТОВ ЭЛЕКТРОНИКИ

© 2020 г. Е. Н. Васильев*

Институт вычислительного моделирования Сибирского отделения Российской АН, Академгородок, 50, стр. 44, г. Красноярск, 660036 Россия *E-mail: ven@icm.krasn.ru

Поступила в редакцию 07.06.2019 г. После доработки 10.10.2019 г. Принята к публикации 15.10.2019 г.

Проведены расчеты характеристик системы охлаждения и терморегулирования в зависимости от параметров термоэлектрического модуля и теплонагруженного элемента. Определены значения температурного перепада в распределителе тепла для термоэлектрического модуля с размерами 30×30 и 40×40 мм². Установлено значительное влияние неоднородности теплового потока и температурного поля поверхности термоэлектрического модуля на величину температурного перепада в распределителе тепле эффективности охлаждения и энергопотребления для разной холодопроизводительности с учетом влияния термического сопротивления теплоотводящей системы. Проведен анализ параметров и факторов, влияющих на выбор термоэлектрического модуля и режимов охлаждения.

DOI: 10.31857/S054412692002009X

ВВЕДЕНИЕ

Полупроводниковые компоненты современной микроэлектроники сочетают в себе миниатюрность и высокий уровень энергопотребления. Пассивные методы охлаждения, основанные на естественных механизмах конвекции, теплопроводности и излучения [1, 2], зачастую не обеспечивают оптимальный температурный режим теплонагруженных элементов. Применение термоэлектрических модулей значительно расширяет возможности охлаждения, управления тепловыми режимами и термостабилизации теплонагруженных элементов, однако при этом эффективность термоэлектрических систем охлажления и терморегулирования недостаточно высока. Одним из путей повышения эффективности термоэлектрических систем охлаждения и терморегулирования является оптимизация конструкции этих систем и режимов работы, позволяющая снизить температурные перепады на термических сопротивлениях в системе охлаждения и максимально использовать потенциал существующих термоэлектрических модулей. В работах [3-5] проведены расчеты и оптимизация режимов работы систем охлаждения и терморегулирования, направленная на достижение максимального охлаждения с учетом влияния рабочих характеристик термоэлектрических модулей, параметров теплонагруженных элементов и систем подвода-отвода теплоты.

Для функционирования электронных устройств во многих случаях важно не максимальное охлаждение, а поддержание рабочей температуры на заданном уровне. Для этого термоэлектрическая система охлаждения и терморегулирования должна работать в режиме терморегулирования, обеспечивая требуемый температурный перепад между теплонагруженным элементом и внешней средой. Эффективность термоэлектрической системы охлаждения и терморегулирования при этом определяется уровнем потребляемой электрической мощности, требуемой на поддержание заданного температурного перепада. Величина энергопотребления зависит от выбора термоэлектрического модуля и режима его работы. В настоящее время производителями выпускается большой ассортимент серийных термоэлектрических модулей различной холодильной мощности (холодопроизводительности) и размеров. Обоснованный выбор термоэлектрического модуля и режима его работы может быть произведен на основе исследования зависимости эффективности системы охлаждения и терморегулирования от рабочих характеристик и параметров модуля с учетом мощности тепловыделения и габаритов теплонагруженных элементов, а также параметров других элементов системы охлаждения. Основное влияние на характеристики охлаждения

Рис. 1. Схема термоэлектрической системы охлаждения и терморегулирования: *1* – ТНЭ; *2* – теплораспределитель; *3* – термоэлектрический модуль; *4* – кулер; *5* – тепловые контакты.

теплонагруженного элемента оказывают поперечные размеры и холодопроизводительность термоэлектрического модуля. Размеры термоэлектрического модуля влияют на конфигурацию и термическое сопротивление теплораспределителя в системе подвода теплоты. Холодильная мощность термоэлектрического модуля определяет, с одной стороны, интенсивность охлаждения теплонагруженного элемента, с другой стороны, сопутствующее собственное тепловыделение термоэлектрического модуля оказывает значительную дополнительную нагрузку на теплоотводящую систему и приводит к соответствующему росту на ней температурного перепада. В настоящей работе исследовано влияние размеров и холодопроизводительности термоэлектрического модуля на характеристики термоэлектрического охлаждения с учетом термического сопротивления систем подвода и отвода теплоты. Анализ направлен на определение критериев, влияющих на выбор термоэлектрического модуля и режимов охлаждения с целью минимизации энергопотребления термоэлектрической системы охлаждения, работающей в режиме терморегулирования.

КОНСТРУКЦИЯ И ХАРАКТЕРИСТИКИ ТЕРМОЭЛЕКТРИЧЕСКИХ СИСТЕМ ОХЛАЖДЕНИЯ И ТЕРМОРЕГУЛИРОВАНИЯ

Конструкция термоэлектрической системы охлаждения и терморегулирования (рис. 1), предназначенная для охлаждения теплонагруженных элементов (1), включает в себя распределитель тепла (2), термоэлектрический модуль (3), теплоотводящую систему (кулер) (4) и тепловые контакты (5). Охлаждение теплонагруженного элемента обеспечивается за счет отрицательного температурного перепада $\Delta T_{\text{ТЭМ}}$, производимого термоэлектрическим модулем. Распределитель тепла, выполненный из материала с высокой теплопро-

водностью, предназначен для согласования размеров теплонагруженного элемента и термоэлектрического модуля и выравнивания теплового потока. Кулер обеспечивает отвод теплоты от термоэлектрического модуля во внешнюю среду. При этом потери температурного перепада на термических сопротивлениях теплораспределителя, кулера и тепловых контактов снижают эффективность охлаждения термоэлектрических систем охлаждения и терморегулирования.

Основная функция системы охлаждения, работающей в режиме терморегулирования, обеспечение оптимальной рабочей температуры T_{opt} на посадочном месте теплонагруженных элементов. Эффективность охлаждения термоэлектрической системы охлаждения и терморегулирования будем характеризовать величиной собственного энергопотребления, необходимой для обеспечения заданной разности температур между посадочным местом теплонагруженного элемента и внешней средой. Снижение энергопотребления термоэлектрическим модулем актуально не только с точки зрения экономии энергии. Из-за относительно низкого холодильного коэффициента термоэлектрический модуль, выполняющий функции теплового насоса, сам является мощным источником теплоты. Это может приводить к значительному дополнительному росту температуры в объеме устройства, содержащего охлаждаемый термоэлектрический модуль, и ухудшать тепловой режим других элементов.

Эффективность термоэлектрического модуля описывается известной характеристикой СОР (соefficient of performance), равной отношению холодопроизводительности термоэлектрического модуля к потребляемой им электрической мощности. Эффективность термоэлектрической системы охлаждения и терморегулирования кроме того зависит в неявном виде от потерь температурного перепада на термических сопротивлениях теплораспределителя, кулера и тепловых контактов. Величина СОР при прочих неизменных условиях снижается с увеличением температурного перепада $\Delta T_{\text{ТЭМ}}$, производимого термоэлектрическим модулем. Поэтому увеличение $\Delta T_{\text{ТЭМ}}$, необходимое для компенсации потерь температурного перепада на термических сопротивлениях, приводит к соответствующему снижению СОР и эффективности термоэлектрической системы охлаждения и терморегулирования в целом.

Анализ влияния размеров и холодопроизводительности термоэлектрического модуля на характеристики системы охлаждения проведен на примере серийных модулей производства НПО "Кристалл" [6]. Данная компания производит широкий ассортимент термоэлектрического модуля, для большинства из которых приведены подробные рабочие характеристики.

ВЛИЯНИЕ РАЗМЕРОВ ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ НА ХАРАКТЕРИСТИКИ ОХЛАЖДЕНИЯ ТЕПЛОНАГРУЖЕННОГО ЭЛЕМЕНТА

Поперечные размеры теплонагруженных элементов влияют на размеры и термическое сопротивление теплораспределителя, а также на холодопроизводительность термоэлектрического модуля, поскольку она при прочих равных условиях прямо пропорциональна площади. Распределитель тепла представляет собой прямоугольную пластину с поперечными размерами, равными габаритам термоэлектрического модуля. Расчеты температурного поля в объеме теплораспределяющей пластины (ТРП) проведены на основе численного решения уравнения теплопроводности вида:

$$c\rho\frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right),\tag{1}$$

где c, ρ , λ – удельная теплоемкость, плотность и коэффициент теплопроводности материала; T – температура; t – время; x, y, z – пространственные координаты. Уравнение (1) дополнено граничными условиями второго рода

$$\left. \lambda \frac{\partial T}{\partial l} \right|_{l=0,L} = q \big|_{l=0,L}, \qquad (2)$$

где l = x, y, z, L — размер ТРП, соответствующий этим координатам. На верхней стороне ТРП по месту контакта с теплонагруженным элементом (ТНЭ) задается однородный тепловой поток q, величина которого определяется отношением тепловой мощности Q, поступающей от теплонагруженного элемента к его посадочной площади. С нижней стороны распределение теплового потока, отводимого от ТРП, рассчитывается исходя из холодопроизводительности термоэлектриче-

МИКРОЭЛЕКТРОНИКА том 49 № 2 2020

ского модуля с учетом его нагрузочной характеристики $Q(\Delta T_{T ext{3M}})$. Теплообмен боковых сторон и части свободной верхней поверхности ТРП с внешней средой не учитывался.

Для решения уравнений (1) и (2) применялся метод суммарной аппроксимации с расщеплением задачи по пространственным координатам [7]. В соответствии с нагрузочной характеристикой $Q(\Delta T_{\text{TPM}})$ изменение холодопроизводительности по площади термоэлектрического модуля взаимосвязано с распределением $\Delta T_{T \supseteq M}(x, y)$, которое в свою очередь зависит от температурного поля холодной стороны термоэлектрического модуля, контактирующей с ТРП. Поэтому распределения температуры в объеме ТРП и плотности теплового потока по площади термоэлектрического модуля оказывают взаимное влияние друг на друга, согласование этих распределений обеспечивается в процессе получения установившегося решения нестационарной задачи.

Анализ влияния размера термоэлектрического модуля на характеристики системы охлаждения и терморегулирования проведен на примере серийных термоэлектрических модулей "S-071-14-11" и "S-127-14-11", соответственно имеющих размеры 30×30 и 40×40 мм², максимальные значения холодопроизводительности $Q_{\text{ТЭМ}} = 44.3$ и 79.3 Вт, а также одинаковые максимальные значения $\Delta T_{\text{ТЭМ}} = 72.5^{\circ}$ С и силы тока $I_{\text{max}} = 7.9$ А. Для расчета использованы нагрузочные характеристики термоэлектрического модуля (ТЭМ) при $I = 0.75 I_{\text{max}}$, для которых $Q_{\text{max}} = 38.2$ и 69 Вт, $\Delta T_{\text{ТЭМ}} = 69.5^{\circ}$ С. Поперечные размеры ТРП заданы равными габаритам термоэлектрического модуля, толщина $\delta = 3$ мм и коэффициент теплопроводности $\lambda = 200 \text{ Вт/(м \cdot K)}$, соответствующий алюминию. Расчеты температурного поля проведены для ТНЭ с квадратной посадочной площадкой со стороной a = 3 - 30 мм и мощностью тепловыделения ТНЭ *Q* = 20 Вт. Теплопередача на границах ТНЭ-ТРП и ТРП-ТЭМ происходит по всей площади контактных поверхностей, поэтому для анализа рассчитывались средние значения по поверхностям контакта.

Результаты расчета показаны на рис. 2 в виде зависимостей температурного перепада $\Delta T_{\text{ТРП}}$, равного разности значений средней температуры посадочного места ТНЭ и холодной стороны термоэлектрического модуля, от величины *a*: кривые *l* и *2* получены для

кривая *3* является разностью между зависимостями *1* и *2*. Как видно из рисунка, температурный перепад для ТРП с размерами 40×40 мм² выше, чем для пластины 30×30 мм², максимальное различие между зависимостями *1* и *2* составляет 1.3° С для a = 3 мм. При этом для всех *а* значения

Рис. 2. Зависимости от величины *a* температурного перепада $\Delta T_{\text{ТРП}}$ для термоэлектрического модуля "S-127-14-11" (кривая *1*) и "S-071-14-11" (кривая *2*), разности между зависимостями *1* и *2* (кривая *3*) и температурного перепада $\Delta T_{\text{ТРП}}$ без учета влияния термоэлектрического модуля (кривая *4*).

средней температуры холодной стороны ТЭМ не меняются и равны -7.9° С для "S-071-14-11" и -24.4° С для "S-127-14-11". Также для сравнения получены аналогичные зависимости температурного перепада для системы ТНЭ–ТРП, когда ТРП прикреплена непосредственно на изотермическую теплоотводящую поверхность. В данном случае, наоборот, значения температурного перепада для ТРП 30 × 30 мм² выше, чем для пластины 40 × 40 мм², но разница значений не превышает 0.1°С, поэтому на графике зависимости отображены единой кривой 4.

Из сравнения зависимостей 1, 2 и 4 следует, что при малых а величина температурного перепада $\Delta T_{\text{ТРП}}$ в системе ТНЭ–ТРП–ТЭМ выше на 5-6°С, чем в системе ТНЭ-ТРП. Эта разница, обусловленная взаимным тепловым влиянием ТРП и термоэлектрического модуля, характеризует погрешность расчетов температурного перепада в ТРП, если в них не учитывается влияние термоэлектрического модуля, как, например, в [8]. Величина такой погрешности является значительной относительно величины $\Delta T_{\text{ТЭМ}}$, которая при рассмотренной тепловой нагрузке 20 Вт составляет примерно 33°С для "S-071-14-11" и 49°С для "S-127-14-11". Увеличение температурного перепада в системе ТНЭ-ТРП-ТЭМ по сравнению с системой ТНЭ-ТРП обусловлено неоднородностью температурного поля на холодной стороне термоэлектрического модуля, к которой крепится ТРП. Преимущественно тепловая мощность от ТНЭ передается к термоэлектрическому модулю через центральную зону ТРП по площади посадочного места ТНЭ, на ее краях плотность теплового потока значительно ниже, а величина $\Delta T_{\text{ТЭМ}}$, соответственно, выше. Максимальная разность температур между посадочным местом ТНЭ и наиболее охлажденными периферийными областями способствует росту теплового потока в этом направлении. В итоге увеличение относительной доли тепловой мощности, передаваемой по этому более длинному пути, приводит к росту суммарного перепада.

Проведенные расчеты показали, что при Q == 20 Вт величина температурного перепада в алюминиевой ТРП для миниатюрных ТНЭ может достигать значительных значений (13-14°С при а = 3 мм), сравнимых с температурной разницей $\Delta T_{\text{ТЭМ}} = 33$ и 49°С между сторонами рассматриваемых термоэлектрическим модулем. При этом с увеличением Q относительная доля потерь температурного перепада растет в большей степени, поскольку в этом случае прямо пропорциональный рост $\Delta T_{\rm TPH}$ сочетается с обратно пропорциональным изменением $\Delta T_{T \ni M}$. Снижение потерь температурного перепада может быть обеспечено путем использования материалов с более высоким коэффициентом теплопроводности или гипертеплопроводных пластин (плоских тепловых труб), в которых высокая эффективная теплопроводность достигается за счет фазовых

превращений теплоносителя при движении в пористой среде [9, 10].

Изменение размера термоэлектрического молуля оказывает два разнонаправленных воздействия на характеристики термоэлектрических систем охлаждения и терморегулирования. С одной стороны, как видно из рис. 2, увеличение размеров термоэлектрического модуля с 30 × 30 до 40×40 мм², приводит к росту потерь температурного перепада в ТРП на величину ~1°С, приводящих к снижению эффективности системы охлаждения. С другой стороны, это снижение эффективности компенсируется значительно большим приростом $\Delta T_{\text{ТЭМ}}$ на 15°C у термоэлектрического модуля с размерами 40×40 мм² за счет более высокой холодопроизводительности. Таким образом, увеличение размеров термоэлектрического модуля в итоге обеспечивает повышение эффективности термоэлектрических систем охлаждения и терморегулирования.

ВЛИЯНИЕ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ НА ХАРАКТЕРИСТИКИ ОХЛАЖДЕНИЯ ТЕПЛОНАГРУЖЕННОГО ЭЛЕМЕНТА

Холодопроизводительность термоэлектрического модуля обеспечивает охлаждение ТНЭ, но при этом собственное тепловыделение модуля увеличивает нагрузку на теплоотводящую систему и приводит к дополнительному росту потерь температурного перепада. Выбор холодопроизводительности термоэлектрического модуля и режима его работы не является однозначной задачей, поскольку зависит от многих параметров: мощности тепловыделения, габаритов и значения рабочей температуры ТНЭ, рабочих характеристик термоэлектрического модуля, термических сопротивлений ТРП и кулера, температуры внешней среды. В то же время одно ограничение является очевидным, при выборе термоэлектрического модуля его максимальная холодопроизводительность $Q_{\text{ТЭМ}}$ должна, как минимум, превышать мощность тепловыделения ТНЭ Q, поскольку только в этом случае возможна отрицательная величина температурного перепада $\Delta T_{\text{ТЭМ}}$ и охлаждение ТНЭ.

В работах [3, 4] проведена оптимизация режимов термоэлектрических систем охлаждения и терморегулирования для обеспечения максимального охлаждения ТНЭ по сравнению с обычной теплоотводящей системой. В настоящей работе проведен анализ влияния холодопроизводительности термоэлектрического модуля на эффективность охлаждения термоэлектрической системы охлаждения и терморегулирования, работающей в режиме обеспечения заданной температуры ТНЭ. Для известных параметров ТРП и мощности тепловыделения ТНЭ Q величина перепада температуры $\Delta T_{\text{ТРП}}$ является фиксированной добавкой к температуре холодной стороны термоэлектрического модуля и не зависит от значения Q_{ТЭМ} и режима работы термоэлектрического модуля. Поэтому при анализе будет исследоваться теплообмен в системе термоэлектрический модуль — кулер. Разность температур ΔT_0 между холодной стороной термоэлектрического модуля и окружающей средой определяется из выражения [4]

$$\Delta T_0 = T_1 - T_0 = R_s(Q + W) - \Delta T_{T \ni M} = R_sQ + R_sU(I,Q)I - \Delta T_{T \ni M}(I,Q).$$

Здесь Т₁, Т₀ – значения температуры холодной стороны термоэлектрического модуля и окружающей среды, R_s – суммарное термическое сопротивление кулера и его теплового контакта с термоэлектрическим модулем, Q, W – мощности тепловыделения ТНЭ и собственного энергопотребления термоэлектрическим модулем, $\Delta T_{\text{T} \ni \text{M}} =$ $= T_2 - T_1 -$ перепад температуры между горячей и холодной сторонами термоэлектрического модуля, U, I – напряжение и сила тока электропитания термоэлектрического модуля. Рабочие характеристики термоэлектрического модуля $Q(\Delta T_{\mathrm{T} \Im \mathrm{M}})$ и $U(\Delta T_{\text{TЭM}})$ являются исходными данными для определения зависимостей U(I, Q) и $\Delta T_{T \ni M}(I, Q)$ и дальнейшего расчета ΔT . Методика расчета этих зависимостей приведена в [3, 4].

Анализ влияния холодопроизводительности термоэлектрического модуля на характеристики

системы охлаждения и терморегулирования проведен для мощности тепловыделения ТНЭ Q = 40 Вт. Для сравнения выбраны серийные термоэлектрические модули "S-127-14-11" и "S-199-14-11", имеющие максимальную холодопроизводительность $Q_{TЭM} = 79.3$ и 124.2 Вт, что примерно в 2 и 3 раза больше заданного тепловыделения ТНЭ. При этом данные ТЭМ имеют одинаковые максимальные значения $\Delta T_{TЭM} = 72.5^{\circ}$ С и $I_{max} = 7.9$ А, параметры ветвей и поперечные габариты 40×40 мм².

Зависимости ΔT_0 от потребляемой мощности W приведены на рис. З для термоэлектрического модуля "S-127-14-11" (сплошные линии) и "S-199-14-11" (пунктир) и значений $R_s = 0.1, 0.3$ и 0.5 K/Bт. Отрицательные значения ΔT_0 соответствуют режимам, в которых температура холодной стороны термоэлектрического модуля ниже температуры внешней среды. Как и следовало

Рис. 3. Зависимости разности температур холодной стороны термоэлектрического модуля и окружающей среды от потребляемой мощности при Q = 40 Вт и $R_s = 0.1, 0.3$ и 0.5 К/Вт для термоэлектрического модуля "S-127-14-11" (сплошные линии) и "S-199-14-11" (пунктир).

Рис. 4. Зависимости максимальной величины разности температур холодной стороны термоэлектрического модуля и окружающей среды от термического сопротивления R_s при Q = 30, 40 и 50 Вт ("S-127-14-11" – сплошные линии 1, 2 и 3, "S-199-14-1" – пунктирные линии 4, 5 и 6).

ожидать, термоэлектрический модуль с большей холодопроизводительностью обеспечивает снижение величины перепада температуры ΔT_0 , разница между графиками для сравниваемых термоэлектри-

ческих модулей при фиксированном значении R_s составляет примерно 6—8°С. Для зависимостей, приведенных на рис. 3, характерно наличие минимумов. Этим минимумам соответствуют оптималь-

Рис. 5. Изолинии разности температур холодной стороны термоэлектрического модуля и окружающей среды при Q = 30 (*a*), 40 (*б*) и 50 Вт (*в*).

ные значения мощности энергопотребления W, при которых достигается максимальное охлаждение ТНЭ. При увеличении R_s от 0.1 до 0.5 К/Вт эти значения W снижаются с 103 до 38 Вт для термоэлектрического модуля "S-127-14-11" и с 120 Вт до 37Вт для термоэлектрического модуля "S-199-14-11".

Помимо увеличения глубины охлаждения более мощный термоэлектрический модуль "S-199-14-11" повышает экономичность системы охлаждения, обеспечивая заданный перепад ΔT_0 при энергопотреблении в 1.5-2 раза ниже, чем у "S-127-14-11". Так при $R_s = 0.1$ К/Вт минимальное значение $\Delta T_0 = -21^{\circ}$ С обеспечивается термо-

МИКРОЭЛЕКТРОНИКА том 49 № 2 2020

Рис. 5. Окончание.

электрическим модулем "S-127-14-11" при мощности W = 103 Вт (I = 7.5 А), а термоэлектрический модуль "S-199-14-11" дает такое же значение ΔT_0 при W = 48 Вт (I = 3.9 А), на рис. 3 указанные уровни отмечены штриховыми линиями. Для достижения необходимого ΔT_0 термоэлектрический модуль с большей величиной $Q_{T \ni M}$ работает в режимах с меньшим значением тока, которым соответствует повышенное значение холодильного коэффициента СОР, что в итоге обусловливает повышение экономичности термоэлектрического модуля с ростом $Q_{T \ni M}$.

Величина температурного перепада ΔT_0 в значительной степени зависит от значения R. На рис. 4 приведены графики минимальных значений ΔT_0 в зависимости от R_s при Q = 30, 40 и 50 Вт ("S-127-14-11" – сплошные линии 1, 2 и 3, "S-199-14-11" – пунктирные линии 4, 5 и 6). Величины ΔT_0 при идеальном теплоотводе ($R_s = 0$) равны значениям температурного перепада, полученным по нагрузочным прямым для соответствующих Q и термоэлектрических модулей. Следует отметить, что величина R_s оказывает сильное влияние на эффективность охлаждения ТНЭ, интервал изменения значений ΔT_0 для фиксированного W в диапазоне $R_s = 0 - 0.5$ K/BT составляет в среднем около 55-60°С. Поэтому на этапе разработки конструкции системы охлаждения необходимо уделять особое внимание минимизации суммарного термического сопротивления теплоотводящей системы и тепловых стыков.

Полная картина режимов термоэлектрического охлаждения ТНЭ с использованием термоэлектрических модулей "S-127-14-11" (тонкие линии) и "S-199-14-11" (жирные линии) приведена на рис. 5, на котором представлены номограммы значений ΔT_0 на плоскости $R_s - W$ для значений Q = 30 (*a*), 40 (б) и 50 Вт (*в*). Кривые на номограммах имеют две ветви, нижние ветви зависимостей соответствуют экономичным режимам термоэлектрического охлаждения. Номограммы позволяют определить затраты энергии, обеспечивающие заданную разность температур ΔT_0 между холодной стороной термоэлектрического модуля и внешней средой в диапазоне значений $R_s = 0 - 0.5$ K/Bt, причем для всех значений R_s более мощный термоэлектрический модуль "S-199-14-11" оказывается экономичнее "S-127-14-11". При анализе режимов охлаждения ТНЭ по изолиниям ΔT_0 также необходимо учитывать потери температурного перепада в ТРП, для компенсации которых температура холодной стороной ТЭМ должна быть ниже заданной температуры T_{орt} посадочного места ТНЭ на величину $\Delta T_{\text{трп}}$.

Результаты расчетов, приведенные на рис. 3-5, показывают безусловную тенденцию повышения эффективности охлаждения термоэлектрической системы охлаждения как при уменьшении суммарного термического сопротивления кулера R_s , так и увеличении холодильной мощности термоэлектрического модуля $Q_{T \ni M}$. Возможности снижения термического сопротивления кулера огра-

ничиваются соответствующим ростом габаритов, веса, стоимости и других параметров устройства (энергопотребление, шумность и пр.). На выбор мощности и размеров термоэлектрического модуля также оказывают влияние разноплановые факторы. С одной стороны, термоэлектрические модули повышенного размера и мощности обеспечивают снижение энергопотребления системы охлаждения. С другой стороны, использованию таких термоэлектрических модулей может пре-

пятствовать недостаток площади для их размещения и их более высокая стоимость. Так стоимость модулей "S-071-14-11", "S-127-14-11" и "S-199-14-11" имеет соотношение 1 : 1.4 : 2.

ЗАКЛЮЧЕНИЕ

Расчетные методики и результаты, представленные в настоящей статье и работах [3-5], позволяют проводить анализ характеристик термоэлектрической системы охлаждения, необходимый для обоснованного выбора ее параметров и конструкции. Проведенный анализ показал, что неоднородность температурного поля термоэлектрического модуля существенно повышает величину температурного перепада в ТРП. Увеличение размеров термоэлектрического модуля приводит к росту потерь температурного перепада в ТРП, которые многократно компенсируются возросшей величиной $\Delta T_{\text{ТЭМ}}$ за счет большей холодопроизводительности. Применение термоэлектрических модулей повышенной холодильной мощности обеспечивает более высокую эффективность охлаждения термоэлектрической системы охлаждения и терморегулирования. Кроме того, имеющийся резерв холодопроизводительности более мощных термоэлектрических модулей расширяет возможности терморегулирования при непредвиденном повышении мощности тепловыделения ТНЭ, ухудшения тепловых контактов или условий теплообмена кулера с внешней средой (появление препятствия при обдуве, повышении температуры и пр.). В конечном в итоге выбор термоэлектрического модуля должен осуществляться на основе компромисса между эффективностью охлаждения, стоимостью и масса-габаритными параметрами с учетом технических условий и назначения термоэлектрической системы охлаждения и терморегулирования.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 18-47-242005: "Создание эффективных распределенных сетей температурных датчиков для бортовой аппаратуры спутников".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мартюшев С.Г., Шеремет М.А.* Два фактора, влияющие на интенсивность охлаждения тепловыделяющих элементов в герметичных блоках // Микроэлектроника. 2014. Т. 43. № 5. С. 390–398.
- 2. Глинский И.А., Зенченко Н.В. Расчет теплораспределяющего элемента конструкции для мощных СВЧ-транзисторов // Микроэлектроника. 2015. Т. 44. № 4. С. 269–274.
- Васильев Е.Н. Расчет и оптимизация режимов термоэлектрического охлаждения теплонагруженных элементов // ЖТФ. 2017. Т. 87. Вып. 1. С. 80–86.
- Васильев Е.Н. Оптимизация режимов термоэлектрического охлаждения теплонагруженных элементов с учетом термического сопротивления теплоотводящей системы // ЖТФ. 2017. Т. 87. Вып. 9. С. 1290–1296.
- Васильев Е.Н. Расчет термического сопротивления теплораспределителя системы охлаждения теплонагруженного элемента // Журн. технической физики. 2018. Т. 88. Вып. 4. С. 487–491.
- 6. НПО "Кристалл". Термоэлектрические модули. Режим доступа: http://www.crystalltherm.com/ru/ production/termoelektricheskie-moduli/.
- 7. *Самарский А.А.* Теория разностных схем. М.: Наука, 1989. 656 с.
- Безверхов Д.Б. // Термоэлектричество. 2000. № 3. С. 64–81. [Bezverkhov D.V. // J. Thermoelectricity. 2000. № 3. Р. 60–75.]
- 9. Васильев Е.Н., Деревянко В.А., Нестеров Д.А., Косенко В.Е., Чеботарев В.Е. Вычислительное моделирование процессов теплообмена в системах терморегулирования космических аппаратов // Вычислительные технологии. 2009. Т. 14. № 6. С. 19–28.
- Васильев Е.Н., Никифорова Е.С. Математическое моделирование теплового режима гипертеплопроводного радиатора мощного радиоэлемента // Вестник Сибир. гос. аэрокосм. ун-та. 2005. Вып. 3. С. 23–26.