МИКРОЭЛЕКТРОНИКА, 2020, том 49, № 6, с. 403-408

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ МИКРО- И НАНОЭЛЕКТРОНИКИ

УДК 537.525

КИНЕТИКА И МЕХАНИЗМЫ РЕАКТИВНО-ИОННОГО ТРАВЛЕНИЯ Si И SiO₂ В ПЛАЗМЕ СМЕСИ HBr + O_2

© 2020 г. А. М. Ефремов^{*a*, *b*, *, В. Б. Бетелин^{*b*}, К.-Н. Кwon^{*c*}}

^aΦГБОУ ВО "Ивановский государственный химико-технологический университет", Шереметевский просп., 7, г. Иваново, 153000 Россия ^bΦГУ ФНЦ НИИСИ Российской АН, Нахимовский просп., 36, корп. 1, г. Москва, 117218 Россия ^cKorea University, Sejong, 339-700 South Korea

> *e-mail: amefremov@mail.ru Поступила в редакцию 19.03.2020 г. После доработки 16.05.2020 г. Принята к публикации 20.05.2020 г.

Проведено исследование кинетики и механизмов реактивно-ионного травления Si и SiO₂ в плазме смеси HBr + O₂ переменного начального состава в условиях индукционного BЧ (13.56 MГц) разряда. При экспериментальном и теоретическом (модельном) исследовании параметров плазмы выявлены ключевые плазмохимические процессы, формирующие стационарный состав газовой фазы, а также определены плотности потоков активных частиц на обрабатываемую поверхность. Установлено, что увеличение доли O₂ в плазмообразующей смеси сопровождается снижением кинетических коэффициентов (эффективной вероятности взаимодействия и выхода травления), характеризующих гетерогенные стадии процесса травления. Предположено, что основным механизмом данного эффекта является окисление продуктов травления SiBr_x в низко летучие соединения вида SiBr_xO_y.

DOI: 10.31857/S0544126920060034

1. ВВЕДЕНИЕ

Плазма галогенсодержащих газов нашла широкое применений в технологии интегральной микро- и нано-электроники для размерного структурирования поверхностей полупроводниковых пластин и функциональных слоев различной природы [1, 2]. В частности, в процессах реактивно-ионного травления кремния и его соединений (SiO₂, Si₃N₄ и SiC) традиционно используется плазма фторуглеродных газов, при этом широкая номенклатура соответствующих соединений (CF₄, C_2F_6, C_4F_8, CHF_3 и др.) позволяет эффективно оптимизировать выходные характеристики процесса – скорость травления, анизотропию и селективность по отношению к над или под-лежащему слою. В то же время, сушественным недостатком фторной химии является возможность спонтанной реакции атомов фтора с кремнием, что обеспечивает близкий к изотропному профиль травления данного материала [2, 3]. Таким образом, поиск альтернативных плазмообразующих сред для реактивно-ионного травления Si и SiO₂ является актуальной задачей, направленной на оптимизацию как технологических, так и функциональных параметров конечных изделий. Неотъемлемой частью такой задачи, на наш взгляд, является изучение взаимосвязей между внешними параметрами плазмы, ее составом и кинетикой процессов на обрабатываемой поверхности.

Это обеспечивает комплексное понимание механизма взаимодействия в системе плазма-поверхность и, как следствие, возможность целенаправленного воздействия на его результат.

В настоящее время существует ряд работ, посвященных исследованием закономерностей травления Si и SiO₂ в плазме на основе HBr [5–12]. Результаты этих работ могут быть обобщены в виде следующих положений:

– Спонтанная химическая реакция в системе SiO_2 + Вг термодинамически невозможна [4, 5] из-за того, что энергия связи Si–O (~800 кДж/моль [6]) значительно выше по сравнению с Si–Br (~358 кДж/моль [6]). Как следствие, травление SiO_2 в плазме HBr следует механизму ионно-стимулированной химической реакции, в которой ионная бомбардировка обеспечивает образование (через разрыв Si–O связей) и очистку (через распыление труднолетучих ненасыщенных продуктов взаимодействия SiBr_x) центров адсорбции для атомов брома [3, 4, 8, 9].

– Вероятность спонтанной химической реакции в системе Si + Br значительно ниже по сравнению с Si + F [5, 7]. Причина такого различия, скорее всего, связана с большим размером атома брома, затрудняющим его внедрение в решетку кремния. Поэтому стационарный режим травления Siв плазме HBr также обеспечивается ионностимулированной химической реакцией [10–12] и отличается значительно более низкими абсолютными значениями скоростей процесса по сравнению с фторной химией.

— Добавка кислорода к НВг снижает скорость травления кремния, но способствует увеличению анизотропии процесса [10, 12]. Экспериментально показано, что последний эффект достигается за счет маскирования боковых стенок формируемого рельефа соединениями вида SiBr_xO_y, которые обладают еще меньшей летучестью (и, следовательно, меньшими коэффициентами распыления) по сравнению с SiBr_x [10].

К сожалению, практически все упомянутые исследования выполнены в рамках чисто экспериментального подхода и не анализируют гетерогенные эффекты на обрабатываемой поверхности во взаимосвязи с параметрами газовой фазы. В такой ситуации, большинство заключений о механизмах травления, в том числе – Si и SiO₂ в плазме смеси HBr + O₂, носят декларативный характер и требуют независимой верификации. В наших предшествующих работах [13, 14] был проведен комплексный (с использованием методов диагностики и моделирования плазмы) анализ кинетики и механизмов травления Si и SiO₂ в плазме трехкомпонентной смеси HBr + Cl_2 + O_2 , отличающейся одновременным действием двух типов химически активных частиц – атомов брома и хлора. Основная идея данной работы заключается в использовании аналогичного подхода для исследования бинарной системы HBr + O₂ с целью определить, как начальный состав смеси влияет на а) кинетику травления Si и SiO₂; б) электрофизические параметры и состав плазмы: и в) механизмы гетерогенного взаимодействия.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

2.1. Оборудование и техника эксперимента

Эксперименты по травлению и исследованию параметров плазмы проводились в реакторе планарного типа [15] с рабочей камерой из нержавеющей стали при возбуждении индукционного ВЧ (13.56 МГц) разряда. В качестве неизменных внешних параметров плазмы выступали общий расход плазмообразующего газа q = 40 станд. см³/мин, его давление p = 6 мтор (~0.8 Па) и вкладываемая мощность W = 700 Вт. Варьируемым параметром являлся начальный состав плазмообразующей смеси HBr + O₂, задаваемый соотношением индивидуальных расходов ее компонентов. В частности, изменение q_{O_2} в диапазоне 0–30 станд. см³/мин обеспечивало долю кислорода в подаваемом газе $y_{O_2} = 0-75\%$. Данные по электрофизическим параметрам плазмы получали с помощью двойного зонда Лангмюра (DLP2000, PlasmartInc., Korea). Обработка измеренных вольт-амперных характеристик (ВАХ) с использованием известных положений теории двойного зонда [16] обеспечивала данные по температуре электронов (T_e) и плотности ионного тока (J_+). Отрицательное смещение на нижнем электроде ($-U_{dc}$), задаваемое независимым ВЧ (12.56 МГц) генератором с постоянной мощностью смещения $W_{dc} = 200$ Вт, измерялось высоковольтным зондом (AMN-CTR, Youngsin Eng, Korea). Эксперименты показали, что варьирование W_{dc} в диапазоне 0–200 Вт не оказывает принципиального влияния на вид зондовых ВАХ и, следовательно, на параметры газовой фазы разряда.

В качестве объектов травления использовались фрагменты не окисленных и окисленных пластин Si(100) со средней площадью ~4 см². Обрабатываемые образцы располагались в центральной части нижнего электрода, температура которого поддерживалась на постоянном уровне с помощью системы водяного охлаждения. Скорость травления определяли как $R = \Delta h/\tau$, где τ – время травления и Δh – высота ступеньки травления на границе маскированной и немаскированной областей поверхности образца. В качестве маскирующего покрытия использовался фоторезист AZ1512. Величина Δh измерялась профилометром (Alpha-step D-500, KLA-Tencor, USA). Предварительные эксперименты показали, что даже пятикратное увеличение площади обрабатываемой поверхности не сопровождается существенными (в пределах погрешности эксперимента) изменениями зондовых ВАХ и не вызывает снижения скоростей травления Si и SiO₂. Таким образом, в исследованном диапазоне условий процесс травления обоих материалов отвечает кинетическому режиму ионно-стимулированной химической реакции и характеризуется пренебрежимо малым влиянием продуктов травления на параметры газовой фазы.

2.2. Моделирование плазмы

Для получения данных по кинетике плазмохимических процессов и составу плазмы HBr + O₂ использовалась 0-мерная кинетическая модель, подробно описанная в наших работах [13, 14]. Базовая кинетическая схема (набор реакций и соответствующих констант скоростей) для смеси HBr + O₂ была позаимствована из работы [14]. Адекватность данной кинетической схемы при описании кинетики плазмохимических процессов в индивидуальных газах-компонентах смеси подтверждена ранее в работах [17, 18] удовлетворительным согласием результатов диагностики и моделирования плазмы. В качестве входных параметров модели выступали данные зондовой диагностики плазмы по Т_е и J₊. Выходные параметрами модели служили усредненными по объему реактора скорости процессов образования и гибели частиц, их концентрации и плотности потоков на поверхность, контактирующую с плазмой.

Рис. 1. Кинетика травления Si и SiO₂ в плазме смеси HBr + O₂ переменного начального состава: a – скорость травления R (сплошные линии) и селективность травления R_{Si}/R_{SiO_2} (пунктир); δ – кинетические коэффициенты $\gamma_R = R/\Gamma_{Br}$ и $Y_R = R/\sqrt{M_i \varepsilon_i} \Gamma_+$, характеризующие химическую и физическую составляющие гетерогенного взаимодействия.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены данные по влиянию начального состава смеси HBr + O₂ на кинетику травления Si и SiO₂. Из рис. 1a можно видеть, что скорости травления обоих материалов монотонно снижаются с ростом *у*_{О2} (27.8–2.7 нм/мин, или в ~10 раз для Si и 8.0-2.1 нм/мин, или в ~4 раза для SiO₂ при 0-75% O₂), при этом характер снижения более резок в области $y_{O_2} < 30\%$. Такое поведение скоростей травления соответствует снижению селективности травления Si/SiO₂ в диапазоне 3.1-1.2 при 0-75% О₂. Таким образом, добавка кислорода к HBr способствует "выравниванию" скоростей травления исследованных материалов, что качественно аналогично эффектам, достигаемым в плазме фторуглеродных газов с высокой полимеризационной способностью [1-3, 19]. Из анализа работ [19-21] можно заключить, что изменение скорости реактивно-ионного процесса при варьировании соотношения компонентов в плазмообразующей смеси может быть вызвано действием нескольких факторов, а именно: а) изменениями концентраций и плотностей потоков активных частиц (атомов брома, положительных ионов) из-за изменений кинетики плазмохимических процессов в газовой фазе; и б) влиянием начального состава смеси на кинетические характеристики (вероятности, константы скоростей) гетерогенного взаимодействия. Поэтому корректная интерпретация данных рис. 1а требует

МИКРОЭЛЕКТРОНИКА том 49 № 6 2020

информации по электрофизическим параметрам и составу плазмы.

При диагностике плазмы было найдено, что разбавление HBr кислородом в условиях p = constвызывает незначительный рост температуры электронов (3.2-3.3 эВ при 0-75% O₂), но более заметное увеличение плотности ионного тока (1.7-2.5 мА/см², или в ~1.5 раза при 0-75% О₂) (рис. 2а). Первый эффект является следствием того, что снижение потерь энергии электронов на возбуждение и ионизацию основных молекулярных компонентов плазмы чистого HBr практически полностью компенсируется аналогичными процессами для О2. В то же время, последние характеризуются меньшими потерями энергии на колебательное возбуждение по сравнению с HBr и H₂ [22], что и обеспечивает слабый рост T_e. Характер изменения J_+ с ростом y_{O_2} ожидаемо следует поведениюсуммарной концентрации положительных ионов (7.5 × 10¹⁰—9.0 × 10¹⁰ см⁻³ при 0–75% О₂, см. рис. 26), при этом формальное различие форм соответствующих кривых обеспечивается уменьшением эффективной массы ионов. Расчеты показали, что основной причиной роста *n*₊ является снижение частоты объемной гибели положительных ионов в процессах вида $A^+ + B^- \rightarrow A + B$ (из-за $n_- = 3.5 \times 10^{10} - 1.9 \times 10^{10}$ см⁻³ при 0–75% O₂) на фоне малых изменений суммарной частоты ионизации. Последнее обеспечивается близкими значениями констант скоростей ионизации

Рис. 2. Электрофизические параметры плазмы смеси HBr + O₂ переменного начального состава: *1* – температура электронов; *2* – плотность ионного тока; *3* – суммарная концентрация положительных ионов; *4* – концентрация электронов; *5* – отрицательное смещение на подложкодержателе; *6* – параметр $\sqrt{M_i \varepsilon_i} \Gamma_+$, характеризующий плотность потока энергии ионов.

Вг (~1.9 × 10⁻¹⁰ см³/с при T_e = 3 эВ) и О₂ (~1.3 × $\times 10^{-10}$ см³/с при $T_e = 3$ эВ), как доминирующих нейтральных компонентов газовой фазы (рис. 3а). Из рис. 26 можно видеть также, что концентрация электронов в условиях $n_{-}/n_{e} < 1$ следует изменению *n*₊. Фактически, это является следствием снижения эффективного коэффициента диффузии и частоты диффузионной гибели электронов при уменьшении электроотрицательности плазмы $(n_{-}/n_{e} = 0.85 - 0.26$ при 0-75% О₂) из-за соответствующих различий констант скоростей процессов R1: HBr + e \rightarrow H + Br⁻ ($k_1 \sim 3.0 \times 10^{-10}$ см³/с при $T_e = 3$ эВ) и R2: O₂ + e \rightarrow O + O⁻ ($k_2 \sim 2.1 \times 10^{-11}$ см³/с при $T_{e} = 3$ эВ). Отметим также, что суммарный эффект от снижения отрицательного смещения на нижнем электроде ($-U_{dc} = 296 - 280$ В при 075% О₂, см. рис. 2*в*) и эффективной массы ионов с избытком компенсируется увеличением плотности потока ионов (рис. 3*б*). В результате, с ростом y_{O_2} имеет место увеличение параметра $\sqrt{M_i \varepsilon_i} \Gamma_+$ (рис. 2*в*), характеризующего интенсивность ионной бомбардировки обрабатываемой поверхности [13, 14].

При анализе кинетики нейтральных частиц было найдено, что в исследованном диапазоне условий плазма HBr сохраняет практически все особенности, отмеченные ранее в работах [17, 23, 24]. В частности, расчеты показали, что реакции R3: HBr + e \rightarrow H + Br + e ($k_3 \sim 1.6 \times 10^{-9}$ см³/с при $T_e =$ = 3 \rightarrow B) и R4: Br₂ + e \rightarrow 2Br + e ($k_4 \sim 1.2 \times 10^{-8}$ см³/с при $T_e = 3 \ \text{эB}$) являются близкими по эффективности источниками атомов брома даже в условиях $n_{\rm Br_2} < n_{\rm HBr}$. В то же время, низкая константа скорости R5: H₂ + e \rightarrow 2H + e ($k_5 \sim 8.1 \times 10^{-10} \text{ см}^3/\text{с}$ при $T_e = 3 \Rightarrow B$) в сочетании с быстрой гибелью атомов водорода в атомно-молекулярных процессах R6: HBr + H \rightarrow H₂ + Br ($k_6 \sim 1.2 \times 10^{-11} \text{ cm}^3/\text{c}$) and R7: Br₂ + H \rightarrow HBr + Br ($k_7 \sim 1.2 \times 10^{-10} \text{ см}^3/\text{с}$) приводят к $n_{\rm H} \ll n_{\rm Br}$. Кроме этого, выполнение условия $k_4 \gg k_6$ и эффективное образование молекул H₂ по R6 обеспечивают $n_{\rm H_2} > n_{\rm Br_2}$ (рис. 3*a*). Разбавление HBr кислородом сопровождается как ростом частот диссоциации молекулярных частиц в процессах электронного удара (например, $k_3 n_e = 72 - 137 \text{ c}^{-1}$ и $k_4 n_e = 512 - 938 \text{ c}^{-1}$ при 0-75% О₂), так и появлением механизмов ступенчатой диссоциации с участием О и ОН. Наиболее эфсреди последних являются фективными $\hat{R}8$: HBr + OH → \hat{H}_2 O + Br ($k_8 \sim 8.0 \times 10^{-12} \text{ cm}^3/\text{c}$), R9: Br₂ + O → BrO + Br ($k_9 \sim 1.3 \times 10^{-11} \text{ cm}^3/\text{c}$) и R10: Br₂ + OH \rightarrow HOBr + Br ($k_{10} \sim 3.1 \times 10^{-11} \text{ cm}^3/\text{c}$). Это приводит к быстрому снижению концентраций HBr и Br₂ (в \sim 4 раза и \sim 7 раз, соответственно, при 0-50% О₂), но к значительно более медленному изменению величины $n_{\rm Br}$ (в ~1.5 раза при 0-50% О₂). Аналогичное поведение характерно и для плотности потока атомов брома на обрабатываемую поверхность Γ_{Br} (рис. 3*б*).

Сравнение данных рис. 1, 2 и 3 позволяет заключить, что монотонное снижение скоростей травления Si и SiO₂ с ростом y_{O_2} противоречит поведению $\sqrt{M_i \varepsilon_i} \Gamma_+$, но качественно согласуется с характером изменения Γ_{Br} . Такая ситуация характерна для ионно-стимулированной химической реакции в режиме лимитирования потоком нейтральных частиц [19, 20], скорость которой может быть представлена как $\gamma_R \Gamma_{Br}$, где γ_R – эффективная вероятность взаимодействия. Из рис. 16. можно видеть, что увеличение доли кислорода в смеси HBr + O₂ вызывает монотонное снижение γ_R для Si и SiO₂, при этом характер снижения су-

Рис. 3. Концентрации (а) и плотности потоков (б) активных частиц в плазме смеси НВг + О2 переменного начального состава.

щественно замедляется в области $y_{O_2} > 30-40\%$. Принимая во внимание, что последний эффект коррелирует с насыщением на соответствующей зависимости плотности потока энергии ионов (рис. 2*в*), механизмы травления Si и SiO₂ в исследованном диапазоне условий могут быть интерпретированы следующим образом. В бескислородной плазме, травление обеспечивается химической реакцией кремния с атомами брома с последующей ионно-стимулированной десорбцией продуктов взаимодействия:

$$Si(s.) + xBr \rightarrow SiBr_{x}(s.),$$
 (R11)

$$\operatorname{SiBr}_{x}(s.) \to \operatorname{SiBr}_{x},$$
 (R12)

где индекс (s.) отвечает состоянию частицы на поверхности. Введение кислорода в плазмообразующий газ инициирует окисление бромидов кремния и, соответственно, добавляет в процесс травления две гетерогенных стации:

$$\operatorname{SiBr}_{x}(s.) + yO \rightarrow \operatorname{SiBr}_{x}O_{y}(s.),$$
 (R13)

$$\operatorname{SiBr}_{x}\operatorname{O}_{v}(s) \to \operatorname{SiBr}_{x}\operatorname{O}_{v}.$$
 (R14)

Очевидно, что увеличение y_{O_2} вызывает аналогичное изменение скорости R13 и, таким образом, способствует увеличению доли SiBr_xO_y среди продуктов взаимодействия. Низкая летучесть SiBr_xO_y по сравнению с SiBr_x обуславливает снижение эффективного выхода ионно-стимулированной десорбции продуктов, которое в области $y_{O_2} < 30-40\%$ с избытком компенсирует рост интенсивности

МИКРОЭЛЕКТРОНИКА том 49 № 6 2020

ионной бомбардировки поверхности. Это вызывает снижение у из-за уменьшения доли свободной поверхности, доступной для адсорбции атомов Br. Можно предположить, что в области y_{0} > > 30-40% доминирующим продуктом взаимодействия становится SiBr_xO_v, при этом эффект R13 на состав продуктов взаимодействия и эффективный выход их ионно-стимулированной десорбции существенно ослабевает. В таких условиях, малые изменения γ_R согласуются с соответствующей зависимостью параметра $\sqrt{M_i \varepsilon_i \Gamma_+}$. Отметим также, что в области $y_{O_2} < 30-40\%$ величина y_{R,SiO_2} характеризуется более слабой зависимостью от содержания кислорода в смеси по сравнению $\gamma_{R, Si}$ (рис. 16). По нашему мнению, это связано с тем, что травление SiO₂ инициируется ионным процессом

$$\operatorname{SiO}_{x}(s.) \to \operatorname{Si}(s.) + xO,$$
 (R15)

эффективность которого не связана с изменением состава продуктов взаимодействия. На рис. 16 также представлены данные по влиянию начального состава смеси HBr + O₂ на эффективный выход травления Y_R , определенный как отношение скорости травления к параметру $\sqrt{M_i\varepsilon_i}\Gamma_+$. Так как последний учитывает непостоянство энергии и эффективной массы ионов, характер зависимости $Y_R = f(y_{O_2})$ отражает лишь изменение свойств распыляемой поверхности. Таким образом, монотонное снижение Y_R с ростом концентрации и плотности потока атомов кислорода подтверждает предположение об окислении продуктов травления в низколетучие соединения вида SiBr_xO_v.

4. ЗАКЛЮЧЕНИЕ

Исследовано влияние начального состава смеси HBr + O₂ на кинетику и механизмы реактивноионного травления Si и SiO₂ в условиях индукционного ВЧ (13.56 МГц) разряда. Найдено, что увеличение доли кислорода в смеси сопровождается монотонным снижением как скоростей травления, так и кинетических коэффициентов характеризующих химическую (эффективная вероятность взаимодействия) и физическую (эффективный выход травления) составляющие гетерогенного взаимодействия. Последнее обеспечивается монотонным, но более медленным по сравнению со скоростью травления, снижение плотности потока атомов брома, а также увеличением плотности потока энергии ионов. Наличие удовлетворительной корреляции изменений гетерогенных кинетических коэффициентов с плотностью потока атомов кислорода позволяет предположить, что имеет место окисление продуктов травления в низколетучие соединения вида SiBr_vO_v. Это сопровождается снижением как коэффициента ионно-стимулированной десорбции (распыления) продуктов травления, так и доли свободной поверхности, доступной для адсорбции атомов брома.

Публикация выполнена в рамках государственного задания ФГУ ФНЦ НИИСИ РАН (проведение фундаментальных научных исследований) по теме № 0065-2019-0006 "Фундаментальные и прикладные исследования в области субволновой голографической литографии, физико-химических процессов травления 3D нанометровых диэлектрических структур для развития критических технологий производства ЭКБ".

СПИСОК ЛИТЕРАТУРЫ

- 1. Advanced plasma processing technology. John Wiley & Sons Inc. N.Y. 2008. 479 p.
- 2. *Wolf S., Tauber R.N.* Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press. N.Y. 2000. 416 p.
- 3. *Nojiri K.* Dry etching technology for semiconductors. Springer International Publishing. Tokyo. 2015. 116 p.
- 4. *Coburn J.W.* Plasma etching and reactive ion etching (AVS Monograph Series). IOP Publishing. N.Y. 1982. 83 p.
- Vitale S.A., Chae H., Sawin H.H. Silicon etching yields in F₂, Cl₂, Br₂, and HBr high density plasmas // J. Vac. Sci. Technol. A. 2001. V. 19(5). P. 2197–2206.
- 6. Handbook of chemistry and physics. CRC Press. N.Y. 2003–2004. 2475 p.
- Belen R.J, Gomez S., Kiehlbauch M., Aydil E.S. Feature scale model of Si etching in SF₆/O₂/HBr plasma and comparison with experiments // J. Vacuum. Sci. Technol. A. 2006. V. 24(2). P. 350–361.
- 8. Tokashiki K., Ikawa E., Hashimoto T., Kikkawa T., Teraoka Y., Nishiyama I. Influence of Halogen Plasma At-

mosphere on SiO₂ Etching Characteristics // Jpn. J. Appl. Phys. 1991. V. 30(11b). P. 3174–3177.

- Donnelly V.M., Klemens F.P., Sorsch T.W., Timp G.L., Baumann F.H. Oxidation of Si beneath thin SiO₂ layers during exposure to HBr/O₂ plasmas, investigated by vacuum transfer x-ray photoelectron spectroscopy // Appl. Phys. Lett. 1999. V. 74(9). P. 1260–1262.
- Cunge G., Kogelschatz M., Joubert O., Sadeghi N. Plasma-wall interactions during silicon etching processes in high-density HBr/Cl₂/O₂ plasmas // Plasma Sources Sci. Technol. 2005. V. 14(2). P. S42–S52.
- Yeom G.Y., Ono Y., Yamaguchi T. Polysilicon Etchback Plasma Process Using HBr, Cl₂, and SF₆ Gas-Mixtures for Deep-Trench Isolation // J. Electrochem. Soc. 1992. V. 139(2). P. 575–579.
- 12. *Kim D.K., Kim Y.K., Lee H.* A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O₂ based high density plasma for advanced DRAMs // Mat. Sci. Semicon. Proc. 2007. V. 10(1). P. 41–48.
- Lee B.J., Efremov A., Kim J., Kim C., Kwon K.-H. Peculiarities of Si and SiO₂ etching kinetics in HBr + Cl₂ + O₂ inductively coupled plasma // Plasma Chem. Plasma Proc. 2019. V. 39(1). P. 339–358.
- Lee B.J., Efremov A., Kwon K.-H. Plasma parameters, gas-phase chemistry and Si/SiO₂ etching mechanisms in HBr + Cl₂ + O₂ gas mixture: Effect of HBr/O₂ mixing ratio // Vacuum. 2019. V. 163. P. 110–118.
- Son J., Efremov A., Yun S.J., Yeom G.Y., Kwon K.-H. Etching Characteristics and Mechanism of SiN_x Films for Nano-Devices in CH₂F₂/O₂/Ar Inductively Coupled Plasma: Effect of O₂ Mixing Ratio // J. Nanosci. Nanotechnol. 2014. V. 14. P. 9534–9540.
- 16. *Shun'ko E.V.* Langmuir probe in theory and practice. Universal Publishers. Boca Raton. 2008. 245 p.
- Kwon K.-H., Efremov A., Kim M., Min N.K., Jeong J., Kim K. A Model-Based Analysis of Plasma Parameters and Composition in HBr/X (X = Ar, He, N₂) Inductively Coupled Plasmas // J. Electrochem. Soc. 2010. V. 157(5). P. H574–H579.
- Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O₂ and Ar/O₂/Cl₂ inductively coupled plasmas // J. Phys. D: Appl. Phys. 2006. V. 39(15). P. 3272–3284.
- 19. *Lieberman M.A., Lichtenberg A.J.* Principles of plasma discharges and materials processing. John Wiley & Sons Inc. N.Y. 2005. 730 p.
- Jin W.D., Vitale S.A., Sawin H.H. Plasma-surface kinetics and simulation of feature profile evolution in Cl₂ + HBr etching of polysilicon // J. Vac. Sci. Technol. A. 2002. V. 20(6). P. 2106–2114.
- Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion-enhanced surface kinetics in fluorine-based plasma-etching // J. Vac. Sci. Technol. B. 1993. V. 11(4). P. 1243–1257.
- 22. *Chistophorou L.G., Olthoff J.K.* Fundamental electron interactions with plasma processing gases. Springer Science + Business Media. N.Y. 2004. 780 p.
- 23. *Efremov A., Kim Y., Lee H.W., Kwon K.-H.* A Comparative Study of HBr-Ar and HBr-Cl2 Plasma Chemistries for Dry Etch Applications // Plasma Chem. Plasma Proc. 2011. V. 31(2). P. 259–271.
- *Efremov A., Lee J., Kwon K.-H.* A comparative study of CF₄, Cl₂ and HBr + Ar inductively coupled plasmas for dry etching applications // Thin Solid Films. 2017. V. 629. P. 39–48.

МИКРОЭЛЕКТРОНИКА том 49 № 6 2020