ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ МИКРО- И НАНОЭЛЕКТРОНИКИ

УДК 537.525

КИНЕТИКА ОБЪЕМНЫХ И ГЕТЕРОГЕННЫХ ПРОЦЕССОВ В ПЛАЗМЕ СМЕСИ $C_4F_8 + O_2 + Ar$

© 2021 г. А. М. Ефремов^{а,} *, Д. Б. Мурин^а, А. М. Соболев^а, К.-Н. Кwon^b

^аФедеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет", кафедра технологии приборов и материалов электронной техники, Шереметевский проспект, 7, Иваново, Россия ^bKorea University, Department of Control and Instrumentation Engineering, Sejong, 339-700 South Korea

**E-mail: amefremov@mail.ru* Поступила в редакцию 25.03.2020 г. После доработки 15.05.2020 г.

Принята к публикации 10.07.2020 г.

Проведено исследование взаимосвязей внешних и внутренних параметров плазмы в смеси $C_4F_8 + O_2 + Ar$ в условиях индукционного BЧ (13.56 МГц) разряда. При совместном использовании диагностики плазмы зондами Лангмюра и 0-мерного (глобального) моделирования плазмы: а) выявлены ключевые плазмохимические процессы, формирующие стационарные электрофизические параметры и состав газовой фазы; б) определены плотности потоков нейтральных и заряженных частиц на поверхность, контактирующую с плазмой; и в) проведен феноменологический (с использованием отслеживающих параметров в виде отношений плотностей потоков частиц) анализ кинетики гетерогенных процессов, имеющих место при травлении SiO₂. Сделаны предположения о механизмах влияния начального состава смеси и давления газа на скорость травления и эффективную вероятность взаимодействия в системе SiO₂ + F.

DOI: 10.31857/S0544126921010051

1. ВВЕДЕНИЕ

Фторуглеродные газы с высокой полимеризационной способностью (с низким отношением F/C в исходной молекуле, например – C_4F_8) активно используются в технологии интегральной микроэлектроники при проведении процессов реактивно-ионного травления кремния и его соединений [1–5]. Основными преимуществами таких газов и смесей на их основе являются: а) анизотропное травление при формировании структур с высоким аспектным соотношением, достигаемое за счет пассивации боковых стенок фторуглеродным полимером [2, 4]; и б) высокая селективность травления в системе SiO₂/Si из-за значительно меньшей толщины фторуглеродной полимерной пленки на кислородсодержащей поверхности [3, 5].

Очевидно, что эти и другие возможные приложения плазмы C₄F₈ требуют понимания взаимосвязей условий обработки с внутренними характеристиками плазмы (электрофизическими параметрами, составом газовой фазы) и кинетикой гетерогенных процессов в системе плазма-обрабатываемая поверхность. Такая ситуация закономерно обуславливает высокий интерес к эксперико-химических свойств плазменных систем на основе C₄F₈. В этом плане необходимо отметить несколько фундаментальных работ [6-10], результаты которых позволили: 1) выявить механизмы процессов, формирующих стационарный состав плазмы C_4F_8 и C_4F_8 + Ar; 2) определить зависимости концентраций нейтральных и заряженных частиц от условий возбуждения разряда; и 3) сформировать наборы реакций, обеспечивающие адекватное (обеспечивающее удовлетворительное согласие с экспериментом) описание кинетики плазмохимических процессов в данной системе. Значительно меньшее внимание было уделено кислородсодержащим смесям, где начальный состав смеси может являться эффективным инструментом оптимизации кинетики и выходных характеристик процесса травленияза счет увеличения скорости генерации атомов фтора, связывания фторуглеродных радикалов в соединения вида CF_xO_v и деструкции фторуглеродной полимерной пленки при взаимодействии с атомами кислорода [4]. Кроме этого, имеет место неоднозначная интерпретация гетерогенных эффектов при травлении SiO_2 в системах C_4F_8 + Ar и

ментальному и теоретическому изучению физи-

 $C_4F_8 + O_2$. В частности, в работах [11, 12] отмечается, что зависимость скорости травления SiO₂ от начального состава данных смесей характеризуется максимумом при ~50% газа-добавки. В качестве причины данного эффекта постулируется изменение толщины фторуглеродной полимерной пленки, которое не согласуется с монотонным изменением стационарной толщины пленки и максимумом на соответствующих зависимостях скоростей полимеризации [11]. Очевидно, что для устранения подобных противоречий необходим анализ взаимосвязей кинетики объемных и гетерогенных процессов в исследуемых системах.

Ранее, в нашей работе [13] было проведено сравнительное исследование электрофизических параметров и стационарного состава плазмы в смесях $CF_4 + O_2 + Ar$ и $C_4F_8 + O_2 + Ar$. Тем не менее, объективный недостаток информации по последней системе обусловлен использованием лишь одного варьируемого параметра и отсутствием анализа взаимосвязей данных по составу плазмы с кинетикой гетерогенных процессов на обрабатываемой поверхности. Цель данной работы - исследование взаимосвязей внешних и внутренних параметров плазмы $C_4F_8 + O_2 + Ar$, а также кинетики гетерогенных процессов в системе плазма-обрабатываемая поверхность при варьировании соотношения O₂/Ar в исходной смеси и давления газа в условиях доминирования одного из газов-добавок. Основное внимание было направлено на 1) выявление механизмов влияния варьируемых параметров на кинетику и концентрации активных частиц; и 2) установление взаимосвязей между характеристиками газовой фазы и кинетикой реактивно-ионного травления SiO₂.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

2.1. Оборудование и техника эксперимента

Эксперименты проводились в реакторе планарного типа [13, 14] в условиях индукционного ВЧ (13.56 МГц) разряда. В качестве постоянных внешних параметров плазмы выступали вкладываемая мощность W = 900 Вт, мощность смещения $W_{dc} = 200$ Вт и общий расход плазмообразую-щего газа q = 40 станд. см³/мин. Варьируемыми параметрами являлись давление газа p = 4 - 10 мторр (0.53-1.33 Па) и начальный состав плазмообразующей смеси, задаваемый соотношением компонентов O₂/Ar при неизменных 50% C₄F₈. Таким образом, увеличение доли O_2 ($y_{O_2} = q_{O_2}/q$) в диапазоне 0-50% соответствовало полному замещению Ar на O_2 (переходу от системы 50% C_4F_8 + + 50% Ar к 50% C₄F₈ + 50% O₂). При исследовании эффекта давления газа объектами служили две смеси фиксированного состава, отвечающие условиям $y_{O_2} < y_{Ar}$ (12% $O_2 + 38\%$ Ar) и $y_{O_2} > y_{Ar}$

(38% O₂ + 12% Ar). Исследования эффекта соотношения O₂/Ar проводились при p = 6 мторр. Предварительные эксперименты и расчеты показали, что изменения электрофизических параметров и состава плазмы в диапазоне p = 4-10 мторр качественно подобны.

Данные по электрофизическим параметрам плазмы получали с помощью двойного зонда Лангмюра DLP2000 (Plasmart Inc., Korea), снабженного системой импульсной очистки зондов ионной бомбардировкой для измерений в полимеробразующих газах. Кроме этого, для минимизации искажений зондовых вольт-амперных характеристик (ВАХ), перед каждым измерением зонды дополнительно очищались в плазме 50% Ar + 50% O_2 в течение ~2 мин. Обработка зондовых ВАХ с использованием известных положений и приемов. изложенных в работах [4, 15], обеспечивала данные по температуре электронов (T_{e}) и плотности ионного тока (J_{+}) . Отрицательное смещение на нижнем электроде ($-U_{dc}$), задаваемое независимым ВЧ (12.56 МГц) генератором с постоянной мощностью смещения W_{dc} , измерялось высоковольтным зондом AMN-CTR (Youngsin Eng, Korea). Эксперименты показали, что варьирование W_{dc} в диапазоне 0–200 Вт не оказывает принципиального влияния на вид зондовых ВАХ и, следовательно, на параметры газовой фазы разряда.

В качестве объектов травления использовались фрагменты пластин Si(100), покрытые слоем низкотемпературного SiO₂ толщиной ~500 нм [16]. Температура подвергаемых травлению образцов поддерживалась на постоянном уровне с помощью системы водяного охлаждения. Скорость травления SiO₂ определяли как $R = \Delta h/\tau$, где τ – время травления и Δh – высота ступеньки травленияна границе маскированной и немаскированной областей обрабатываемой поверхности. В качестве маскирующего покрытия использовался фоторезист AZ1512. Величина ∆*h* измерялась профилометром Alpha-step D-500 (KLA-Tencor, USA). В предварительных экспериментах было найдено, что даже пятикратное увеличение площади обрабатываемой поверхности а) не приводит к снижению скорости травления SiO₂; и б) не сопровождается заметными изменениями зондовых ВАХ. Это позволяет заключить, что в исследуемом диапазоне условий процесс травления SiO₂ протекает в кинетическом режиме при пренебрежимо малом влиянии продуктов травления на параметры газовой фазы. Последний факт позволяет при анализе кинетики гетерогенных процессов рассматривать газовую фазу как стационарный источник активных частиц.

2.2. Моделирование плазмы

Для получения данных по кинетике плазмохимических процессов и составу плазмы $C_4F_8 + O_2 + Ar$ использовалась 0-мерная кинетическая модель, подробно описанная в наших работах [13, 14]. Алгоритм моделирования базировался на совместном решении уравнений химической кинетики нейтральных и заряженных частиц с использованием типовых допущений для области давлений p < 20 мторр [4, 6, 7, 13]:

1) Низкая электроотрицательность галоген- и кислород-содержащей плазмы низкого давления позволяет полагать $n_e \approx n_+$, где $n_+ \approx J_+/0.6 \, \text{lev}_B -$ суммарная концентрация положительных ионов, а $v_B \approx \sqrt{eT_e/m_i}$ – скорость ионов на внешней границе двойного электрического слоя у поверхности зонда. Эффективная масса ионов $m_i = \left(\sum y_{X_i^+}/m_{X_i^+}\right)^{-1}$, где $y_{X_i^+}$ и $m_{X_i^+}$ – мольные доли и массы для каждого типа положительного иона. Для каждого типа положительного иона $y_{X^+} \sim k_{iz}y_X/\sqrt{1/m_{X^+}}$, где k_{iz} и y_X – константа скорости ионизации и мольная доля соответствующей нейтральной частицы.

2) Функция распределения электронов по энергиям (**ФРЭЭ**) в условиях $n_+/N \sim 10^{-4}$, где N – общая концентрация частиц, формируется при существенном вкладе равновесных электронэлектронных соударений. Поэтому максвэлловское приближение **ФРЭЭ** обеспечивает адекватное описание кинетики процессов при электронном ударе.

3) Гетерогенная рекомбинация атомов и радикалов описывается механизмом Или-Ридила. Соответственно, константы скоростей (частоты) рекомбинации могут быть определены как $k \approx \gamma v_T/2r$, где γ вероятность рекомбинации [6–8], r – радиус рабочей камеры реактора, $v_T = (8k_B T_{gas}/\pi m)^{1/2}$ и T_{gas} – температура газ. Величина T_{gas} в первом приближении может быть охарактеризована постоянным значением ~600–700 К [13, 14].

Базовая кинетическая схема (набор реакций и соответствующих констант скоростей) для смеси $C_4F_8 + O_2 + Ar$ была позаимствована из нашей работы [13]. Ранее неоднократно отмечалось, что стационарный состав плазмы в смесях фторуглеродных газов с кислородом в значительной степени определяется объемными процессами вида $CF_x + O/O(^1D) \rightarrow COF_{x-1} + F$ [9, 16, 17]. Для более корректного учета таких процессов кинетическая схема была дополнена реакциями образования и гибели атомов O и O(^1D) с участием метастабильных молекул $O_2(a^1\Delta)$ и $O_2(b^1\Sigma)$ [18]. Выходными параметрами модели служили усредненные по объему реактора скорости процессов образования и гибели частиц, их концентрации и плотности потоков на поверхность, контактирующую с плазмой.

2.3. Анализ кинетики гетерогенных процессов

Анализ взаимосвязей параметров газовой фазы и кинетики гетерогенного взаимодействия активных частиц плазмы с поверхностью SiO_2 базировался на литературных данных по механизмам реактивно-ионных процессов в полимер образующей плазме [4, 19–22], которые были обобщены в наших работах [10, 17, 23]. В частности, полагалось, что:

1) Процессы физического (под действием ионной бомбардировки) взаимодействия плазмы с поверхностью характеризуется скоростью $Y_S\Gamma_+$, где Y_S – выход процесса (атом/ион) и $\Gamma_+ \approx J_+/e$ – плотность потока ионов. Изменение скорости ионного процесса при варьировании условий обработки отслеживается параметром $\sqrt{M_i}\epsilon_i\Gamma_+$, где $M_i = m_iN_A$ эффективная молярная масса ионов, $\epsilon_i = e \left| -U_f - U_{dc} \right|$ – энергия бомбардирующих ионов, U_f – плавающий потенциал.

2) Процессы химического (под действием нейтральных активных частиц) взаимодействия плазмы с поверхностью характеризуется скоростью $\gamma_X \Gamma_X$, где γ_X — эффективная вероятность взаимодействия, а Γ_X — плотность потока соответствующих нейтральных частиц. Изменение скорости химического процесса при варьировании условий обработки в условиях малых изменений температуры поверхности может быть отслежено параметром Γ_X .

3) Образование фторуглеродной полимерной пленки обеспечивается радикалами $CF_x(x = 1, 2)$, при этом вероятность полимеризации увеличивается в условиях дефицита атомов фтора. Поэтому изменение скорости связывания радикалов с поверхностью может быть отслежено отношением Γ_{pol}/Γ_F , где Γ_{pol} — суммарная плотность потока полимеробразующих радикалов, а относительное изменение толщины пленки за счет действия физического и химического факторов характеризуется параметрами $\Gamma_{pol}/\sqrt{M_i \varepsilon_i} \Gamma_+ \Gamma_F$ и $\Gamma_{pol}/\Gamma_O \Gamma_F$, где $\Gamma_O - плотность потока атомов кислорода.$

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены экспериментальные и расчетные данные по электрофизическим параметрам плазмы $C_4F_8 + O_2 + Ar$. Анализ этих результатов позволяет выделить следующие характерные свойства данной системы:

Рис. 1. Температура электронов – *a*; концентрации заряженных частиц – *b*; отрицательное смещение на нижнем электроде при W_{dc} = const *b* и параметр $\sqrt{M_i \varepsilon_i} \Gamma_+$, характеризующий плотность потока энергии ионов *c*: *1* – от содержания кислорода в плазмообразующем газе при *p* = 6 мторр; *2* – от давления при y_{O_2} = 12% O_2 ; 3 – от давления при y_{O_2} = 38% O_2 .

– Температура электронов (рис. 1а) монотонно снижается как с ростом давления газа в смесях фиксированного состава (4.6–4.0 эВ для $y_{O_2} = 12\%$ и 3.6–3.2 эВ для $y_{O_2} = 38\%$ при 4–10 мторр), так и при увеличении содержания кислорода в плазмообразующей смеси (4.8–3.1 эВ при $y_{O_2} = 0-50\%$). Очевидно, что причиной первого эффекта является рост потерь энергии электронов в неупругих процессах из-за увеличения частоты их столкновения с частицами газа. Аналогичное изменение потерь энергии электронов с ростом y_{O_2} в условиях p = const обусловлено, по-видимому, появлением низкопороговых процессов колебательного и электронного возбуждения как самих молекул O₂ (например, $\varepsilon_{th} \sim 0.98$ эВ для O₂(a¹Δ) и ~1.64 эВ для O₂(b¹Σ) [18]), так и молекулярных продуктов плазмохимических реакций – CO, CFO и CF₂O (см. рис. 2).

– Концентрации электронов и положительных ионов (рис. 16) остаются практически неизменными с ростом давления газа (~4.1 × 10¹⁰ см⁻³ для $y_{O_2} = 12\%$ и ~3.8 × 10¹⁰ см⁻³ для $y_{O_2} = 38\%$ при 4–10 мторр), но заметно снижаются при замещении Ar на O₂ (4.2 × 10¹⁰–3.7 × 10¹⁰ см⁻³ при $y_{O_2} = 0$ –50% O₂). Расчеты показали, что эти эффекты определяются, в основном, изменениями кине-

30

МИКРОЭЛЕКТРОНИКА том 50 № 1 2021

Рис. 2. Стационарные концентрации нейтральных частиц: a -от содержания кислорода в плазмообразующем газе при p = 6 мторр $(1 - y_{O_2} = 12\% O_2; 2 - y_{O_2} = 50\% O_2); \delta -$ от давления при $y_{O_2} = 12\% O_2 (1 - p = 4 \text{ мторр}; 2 - p = 10 \text{ мторр}); \delta -$ от давления при $y_{O_2} = 38\% O_2 (1 - p = 4 \text{ мторр}; 2 - p = 10 \text{ мторр}).$

тики процессов образования заряженных частиц. Так, в первом случае имеет место постоянство суммарных частот ионизации $v_{iz} = N \sum k_{iz,i} y_i$ (где $N = p/k_B T_{gas}$, а $k_{iz,i}$ – константа скорости ионизации нейтральной частицы с мольной долей у;) изза формальной компенсации увеличения N и снижения $k_{iz,i}$ (например, $2.2 \times 10^{-9} - 1.1 \times 10^{-9}$ см³/с для R1: Ar + e \rightarrow Ar⁺ + 2е при $y_{0_2} = 12\%$) при изменении Т_е. Во втором случае, увеличение параметра у_{О2} сопровождается снижением констант скоростей ионизации нейтральных частиц в условиях $N \approx \text{const}$ и $k_{iz,O_2} \le k_{iz,Ar}$ [18]. Это приводит к монотонному снижению V_{iz}, обуславливающему аналогичное изменение эффективности образования электронов и положительных ионов в объеме плазмы.

– Отрицательное смещение на нижнем электроде при W_{dc} = const (рис. 1*в*) демонстрирует более слабый рост с давлением газа (220–230 В для $y_{O_2} = 12\%$ и 242–260 В для $y_{O_2} = 38\%$ при 4–10 мторр), но более резкий – с увеличением содержания O_2 в плазмообразующей смеси (212–270 В при $y_{O_2} = 0$ –50%). Тем не менее, этот рост полностью компенсируются противоположными изменениями плотностей потока ионов из-за одновремен-

ного снижения T_e и n_+ . В результате, величина параметра $\sqrt{M_i \varepsilon_i} \Gamma_+$ (рис. 1*г*), характеризующего интенсивность ионной бомбардировки поверхности, монотонно снижается как с ростом давления газа ($8.3 \times 10^{17} - 7.8 \times 10^{17} \Rightarrow B^{1/2} \text{ см}^{-2} \text{ с}^{-1}$ для $y_{O_2} = 12\%$ и 7.1 × $10^{17} - 6.7 \times 10^{17} \Rightarrow B^{1/2} \text{ см}^{-2} \text{ с}^{-1}$ для $y_{O_2} = 38\%$ при 4–10 мторр), так и величины y_{O_2} ($8.6 \times 10^{17} - 6.6 \times 10^{17} \Rightarrow B^{1/2} \text{ см}^{-2} \text{ с}^{-1}$ при $y_{O_2} = 0-50\%$).

Состав плазмы и кинетика плазмохимических процессов в смесях C₄F₈ + Аг переменного начального состава подробно изучались в наших предшествующих работах [10, 24]. Расчеты показали, что исследуемомдиапазоне условий система 50% $C_4F_8 + 50\%$ Ar сохраняет все отмеченные ранее особенности. Так, основными компонентами газовой фазы при $y_{0} = 0$ являются CF_x (x = 1-3) и C_2F_x (x = 3, 4). В этой группе только CF_2 и C_2F_4 образуются в процессах диссоциации исходного фторуглеродного газа по механизмам R2: $C_4F_8 + e \rightarrow$ \rightarrow C₃F₆ + CF₂ + е и R3: C₄F₈ + е \rightarrow 2C₂F₄ + е, при этом условие $n_{\rm CF_2} > n_{\rm C_2F_4}$ (~5.5 × 10¹³ см⁻³ и ~1.9 × $\times 10^{13}$ см⁻³ соответственно, при p = 6 мторр) обеспечивается реакциями R4: $C_2F_4 + e \rightarrow 2CF_2 + e$, R5: $C_2F_4 + e \rightarrow C_2F_3 + F + e$ и R6: $C_2F_4 + F \rightarrow CF_2 +$ $+ CF_3$. Высокое значение $n_{CF} \sim 1.7 \times 10^{13} \text{ см}^{-3} \text{ яв-}$ ляется следствием эффективной генерации этих

частиц в процессах ступенчатой (по отношению к C_4F_8) диссоциации R7: $CF_2 + e \rightarrow CF + F + e$ и R8: $C_2F_3 + e \rightarrow CF_2 + CF + e$. Немногим более низкое значение $n_{CF_3} \sim 1.1 \times 10^{13}$ см⁻³ поддерживается за счет R6 и группы гетерогенных процессов R9: $CF_x + F \rightarrow CF_{x+1}$ для x = 2. Соответственно, основным механизмом образования атомов фтора являются процессы вида R10: $CF_x + e \rightarrow CF_{x-1} +$ + F + e (x = 1-3), при этом в качестве доминирующих каналов гибели этих частиц выступают R6 и R9. Значительный вклад R6 в общую скорость гибели атомов обеспечивает выполнение условия $n_{CF_x} > n_F$.

На рис. 2 представлены данные по стационарному составу плазмы в кислородсодержащих смесях. Расчеты показали, что замещение аргона на кислород при p = const приводит к снижению эффективности R10 (например, $k_{10}n_e = 59-22 \text{ c}^{-1}$ для x = 3 при $y_{0_2} = 0-50\%$) и инициирует новые механизмы превращений фторуглеродных частиц, основными из которых являются R11: $CF_x + O \rightarrow$ \rightarrow CF_{x-1}O + F, R12: CF_x + O(¹D) \rightarrow CF_{x-1}O + F и R13: CF_xO + e \rightarrow CF_{x - 1}O + F + e. В то же время, эффективная гибель молекул O_2 в R14: CF + $O_2 \rightarrow$ \rightarrow CFO + O и R15: C + O₂ \rightarrow CO + O ограничивает скорость образования атомов О и O(1D) по R16: $O_2 + e \rightarrow 2O + e, R17: O_2 + e \rightarrow O + O(^1D) + e и R18:$ $O + e \rightarrow O(^{1}D) + e$. Как следствие, недостаток атомов кислорода в газовой фазе обеспечивает выполнение условия $R_{10} > R_{11} + R_{12} + R_{13}$ вплоть до $y_{O_2} = 50\%$. Поэтому с ростом y_{O_2} концентрации радикалов CF_x и атомов фтора монотонно снижаются при сохранении соотношения $n_{\rm CF_{*}}/n_{\rm F} > 1$ (рис. 2а). Расчеты показали также, что изменения концентраций нейтральных частиц при варьировании давления газа являются качественно однотипным для систем с $y_{Ar} > y_{O_2}$ и $y_{Ar} < y_{O_2}$. Так, переход в область высоких давлений и увеличение концентрации C₄F₈ в исходной смесиспособствуют росту концентраций фторуглеродных частиц в плазме (рис. 26, 2в) из-за аналогичного поведения скоростей R2-R5. В то же время, увеличение концентрации C_2F_4 (в ~3.2 раза для $y_{O_2} = 12\%$ и в ~2.8 раза для y_{O2} = 38% при 4–10 мторр) вызывает аналогичный рост частоты гибели атомов фтора по R6 ($k_6 n_{C_2F_4} = 498 - 1610 \text{ c}^{-1}$ для $y_{O_2} = 12\%$ и 548— 1490 с⁻¹ для $y_{O_2} = 38\%$ при 4—10 мторр). Данный эффект с избытком компенсирует увеличение скорости образования атомов по R10 и обуславливает слабое снижение величины n_E. Аналогичным образом изменяются и плотности потоков нейтральных частиц на обрабатываемую поверхность (рис. 3*a*). На основании данных рис. 3 можно заключить, что замещение аргона на кислород

в смеси C₄F₈ + O₂ + Аг характеризуется близким к постоянному значением скорости поверхностной полимеризации ($\Gamma_{pol}/\Gamma_F = 7.4-8.7$ при $y_{O_2} = 0-50\%$), но сопровождается резким снижением толщины полимерной пленки из-за ее окислительной деструкции ($\Gamma_{pol}/\Gamma_O\Gamma_F = 2.0 \times 10^{-14}-2.1 \times 10^{-15}$ см² с при $y_{O_2} = 0-50\%$). Напротив, рост давления газа способствует увеличению как скорости полимеризации ($\Gamma_{pol}/\Gamma_F = 5.9-16.9$ для $y_{O_2} = 12\%$ и 7.2– 19.3 для $y_{O_2} = 38\%$ при 4–10 мторр), так и толщины пленки. В пользу последнего заключения свидетельствует рост отношений $\Gamma_{pol}/\sqrt{M_i \varepsilon_i} \Gamma_+\Gamma_F$ и $\Gamma_{pol}/\Gamma_O\Gamma_F$ (рис. 3*6*).

Эксперименты по травлению SiO₂ показали, что зависимости скоростей травления от варьируемых параметров немонотонны и имеют вид кривых с максимумом (рис. 4а). Известно, что скорость реактивно-ионного процесса (т.е. процесса, протекающего в условиях, когда энергия ионной бомбардировки превышает пороговую энергию распыления материала) может быть представлена как $R = R_{phys} + R_{chem}$, где R_{phys} – скорость физического распыления, а R_{chem} – скорость ионно-стимулированной химической реакции [22–24]. Эксперименты показали, что в исследованном диапазоне условий скорость травления SiO₂ в плазме чистого Ar составляет ~5 нм/мин. Это позволяет полагать $R_{phys} \ll R_{chem}$ и $R \approx R_{chem} = \gamma_R \Gamma_F$, где γ_R — эффективная вероятность взаимодействия атомов фтора с поверхностью SiO₂. Из рис. 46 можно видеть, что величина γ_R , определенная как отношение измеренной скорости травления к расчетной плотности потока атомов фтора, монотонно увеличивается как с ростом давления газа (0.041-0.065 для $y_{O_2} = 12\%$ и 0.11-0.19 для $y_{O_2} =$ = 38% при 4-10 мторр), так и содержания кислорода в исходной смеси (0.026–0.16 при $y_{0} = 0$ – 50%). Таким образом, немонотонные зависимости скоростей травления в каждом случае являются следствием монотонных, но противоположных изменений плотности потока химически активных частиц и эффективной вероятности их гетерогенноговзаимодействия.

Противоположный характер изменения параметров γ_R и $\sqrt{M_i \varepsilon_i} \Gamma_+$ позволяет заключить, что увеличение эффективной вероятности взаимодействия в системе SiO₂ + F однозначно не связано с интенсификаций ионно-активированных стадий процесса, таких как десорбция продуктов взаимодействия и/или деструкция оксидных связей, обеспечивающая образования центров хемосорбции для атомов фтора. Сравнение данных рис. 36 и 46 показывает, что при варьировании соотношения O₂/Ar в условиях p = const имеет ме-

Рис. 3. Потоки активных частиц на обрабатываемую поверхность (*a*) и отношения потоков, характеризующие баланс процессов образования и деструкции фторуглеродной полимерной пленки (*b*) от содержания кислорода в плазмообразующем газе (сплошные линии) и давления (пунктир). На рис. *a*: атомы фтора (*1–3*) и полимер образующие радикалы CF_x (*4–6*) при p = 6 мторр (*1*, *4*), $y_{O_2} = 12\%$ O₂ (2, 5) и $y_{O_2} = 38\%$ O₂ (3, 6). На рис. *b*: $\Gamma_{pol}/\sqrt{M_i \varepsilon_i} \Gamma_+ \Gamma_F$ (*1*, *3*, *5*) и $\Gamma_{pol}/\Gamma_F \Gamma_O$ (*2*, *4*, *6*) при p = 6 мторр (*1*, *2*), $y_{O_2} = 12\%$ O₂ (3, 4) и $y_{O_2} = 38\%$ O₂ (*5*, *6*).

сто хорошее согласие изменений γ_R и параметра $\Gamma_{\rm pol}/\Gamma_{\rm O}\Gamma_{\rm F}$, отслеживающего толщину фторуглеродной полимерной пленки на обрабатываемой поверхности. Подобные корреляции (чем тоньше пленка, тем выше эффективная вероятность взаимодействия или выход травления) неоднократно отмечались ранее при экспериментальном исследовании кинетики реактивно-ионных процессов в полимеробразующей плазме [19, 21]. Таким образом, увеличение γ_R с ростом y_{O_2} можно уверенно отнести к снижению толщины пленки, способствующему облегчению доступа атомов фтора к обрабатываемой поверхности. Что касается влияния давления газа, ситуация здесь не однозначна. Формально, увеличение γ_R с ростом давления сопровождается снижением интенсивности ионной бомбардировки (рис. 1в) и незначительным ростом толщины пленки, как следует из изменения отношения $\Gamma_{pol}/\Gamma_{O}\Gamma_{F}$ (рис. 36). По нашему мнению, возможными причинами роста γ_R в таких условиях могут служить локальное увеличение температуры обрабатываемой поверхности

МИКРОЭЛЕКТРОНИКА том 50 № 1 2021

иизменение физико-химических свойствпленки, определяющих ее проницаемость для атомов фтора. Механизм увеличения температуры поверхности может быть связан с ростом температуры газа и/или интенсификацией рекомбинационного нагреваиз-запрактически двукратногоувеличения суммарной плотности потока ненасыщенных нейтральных частиц. Увеличение проницаемости пленки для атомов фтора с ростом давявляться ления газа может результатом изменения ее химической структуры из-запеременного соотношения С/F. Последнее, вероятно, обеспечивается тем, что формирование пленки идет в условиях противоположных изменений плотностей потоков атомов фтора и радикалов CF_x. Тем не менее, точное выяснение этих вопросов требует дальнейших исследований.

4. ЗАКЛЮЧЕНИЕ

Исследовано влияние давления газа и соотношения O_2/Ar в смеси $C_4F_8 + O_2 + Ar$ на кинетику плазмохимических процессов и состав плазмы в

Рис. 4. Скорость травления SiO₂ (*a*) и эффективная вероятность взаимодействия (*б*): 1 -от содержания кислорода в плазмообразующем газе при p = 6 мторр; 2 -от давления при $y_{O_2} = 12\%$ O₂; 3 -от давления при $y_{O_2} = 38\%$ O₂.

условиях, характерных для процессов реактивноионного травления. Установлено, что при замещении аргона на кислород и/или увеличении давления газа в смесях с доминированием как аргона, так и кислорода имеют место а) снижение плотностей потоков энергии ионов и атомов фтора; б) противоположные изменения плотностей потоков полимеробразующих радикалов; и в) немонотонные (с максимумом) зависимости для скоростей травления SiO2, обусловленные ростом эффективной вероятности взаимодействия в системе SiO₂ + F. Показано, что при варьировании соотношения O_2/Ar в условиях p = const поведение эффективной вероятности взаимодействия согласуется с изменением параметров газовой фазы, отслеживающих толщину фторуглеродной полимерной пленки. Отсутствие подобной корреляции при варьировании давления может быть обусловлено изменением физико-химических свойств пленки, определяющих ее проницаемость для атомов фтора, и/или локальным увеличением температуры поверхности. В качестве причин последнего эффекта могут выступать увеличение температуры газа и рекомбинационный нагрев из-за увеличения суммарной плотности потока ненасыщенных частиц.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 19-07-00804А.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nojiri K*. Dry etching technology for semiconductors. Springer International Publishing, Tokyo, 2015. 116 p.
- 2. *Wolf S., Tauber R.N.* Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press, New York, 2000. 416 p.
- 3. Advanced plasma processing technology. John Wiley & Sons Inc., New York, 2008. 479 p.
- 4. *Lieberman M.A., Lichtenberg A.J.* Principles of plasma discharges and materials processing. New York, John Wiley & Sons Inc., 2005. 757 p.
- Donnelly V.M., Kornblit A. Plasma etching: Yesterday, today, and tomorrow // J. Vac. Sci. Technol. 2013. V. 31. P. 050825-48.
- 6. *Kokkoris G., Goodyear A., Cooke M., Gogolides E.* A global model for C_4F_8 plasmas coupling gas phase and wall surface reaction kinetics // J. Phys. D: Appl. Phys. 2008. V. 41. P. 195211.
- Rauf S., Ventzek P.L.G. Model for an inductively coupled Ar/c-C₄F₈ plasma discharge // J. Vac. Sci. Technol. A. 2002. V. 20. P. 14–23.

МИКРОЭЛЕКТРОНИКА том 50 № 1 2021

- Font G.I., Morgan W.L., Mennenga G. Cross-section set and chemistry model for the simulation of c-C₄F₈ plasma discharges // J. Appl. Phys. 2002. V. 91. P. 3530– 3538.
- Vasenkov A.V., Li X., Oehrlein G.S., Kushner M.J. Properties of c-C₄F₈ inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Ar/c-C₄F₈/O₂discharges // J. Vac. Sci. Technol. A. 2004. V. 22. P. 511–530.
- Ефремов А.М., Мурин Д.Б., Кwon К.-Н. Особенности кинетики объемных и гетерогенных процессов в плазме смесей СНF₃ + Ar и C₄F₈ + Ar // Микроэлектроника. 2019. Т. 48. № 2. С. 125–133.
- Li X., Ling L., Hua X., Fukasawa M., Oehrlein G.S., Barela M., Anderson H.M. Effects of Ar and O₂ additives on SiO₂ etching in C₄F₈-based plasmas // J. Vac. Sci. Technol. A. 2003. V. 21. P. 284–293.
- Shankaran A., Kushner M.J. Etching of porous and solid SiO₂ in Ar/c-C₄F₈, O₂/c-C₄F₈ and Ar/O₂/c-C₄F₈ plasmas // J. Appl. Phys. 2005. V. 97. P. 023307 (1–10).
- Chun I., Efremov A., Yeom G.Y., Kwon K.-H. A comparative study of CF₄/O₂/Ar and C₄F₈/O₂/Ar plasmas for dry etching applications // Thin Solid Films. 2015. V. 579. P. 136–148.
- Lee J., Efremov A., Yeom G.Y., Lim N., Kwon K.-H. Application of Si and SiO₂ Etching Mechanisms in CF₄/C₄F₈/Ar Inductively Coupled Plasmas for Nanoscale Patterns // J. Nanosci. Nanotechnol. 2015. V. 15. P. 8340-8347.
- 15. *Shun'ko E.V.* Langmuir probe in theory and practice. Universal Publishers. Boca Raton. 2008. 245 p.
- Son J., Efremov A., Chun I., Yeom G.Y., Kwon K.-H. On the LPCVD-Formed SiO₂ Etching Mechanism in CF₄/Ar/O₂ Inductively Coupled Plasmas: Effects of

Gas Mixing Ratios and Gas Pressure // Plasma Chem. Plasma Proc. 2014. V. 34. P. 239-257.

- Efremov A., Lee J., Kim J. On the control of plasma parameters and active species kinetics in CF₄ + O₂ + Ar gas mixture by CF₄/O₂ and O₂/Ar mixing ratios // Plasma Chem. Plasma Process. 2017. V. 37. P. 1445–1462.
- Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O₂ and Ar/O₂/Cl₂ inductively coupled plasmas // J. Phys. D Appl. Phys. 2006. V. 39. № 15. P. 3272–3284.
- Standaert T.E. F.M., Hedlund C., Joseph E.A., Oehrlein G.S. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A. 2004. V. 22. P. 53–60.
- Stoffels W.W., Stoffels E., Tachibana K. Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A. 1998. V. 16. P. 87–95.
- Matsui M., Tatsumi T., Sekine M. Relationship of etch reaction and reactive species flux in C₄F₈-Ar-O₂ plasma for SiO₂ selective etching over Si and Si₃N₄ // J. Vac. Sci. Technol. A. 2001. V. 19. P. 2089–2096.
- Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching // J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243–1257.
- Ефремов А.М., Мурин Д.Б., Кwon К.-Н. О влиянии вида фторуглеродного газа на выходные характеристики процесса реактивно-ионного травления // Микроэлектроника. 2020. Т. 49. № 2. С. 1–9.
- 24. Lim N., Efremov A., Kwon K.-H. Gas-phase chemistry and etching mechanism of SiN_x thin films in $C_4F_8 + Ar$ inductively coupled plasma // Thin Solid Films. 2019. V. 685. P. 97–107.