_____ ПЛАЗМЕННЫЕ ТЕХНОЛОГИИ

УДК 537.525

ЭМИССИОННАЯ СПЕКТРОСКОПИЯ КАК МЕТОД ИССЛЕДОВАНИЯ ВЗАИМОДЕЙСТВИЯ СИСТЕМЫ ПЛАЗМА-ТВЕРДОЕ ТЕЛО

© 2022 г. А. В. Дунаев^{а, *}, Т. А. Жукова^а

 ^aΦГБОУ ВО "Ивановская государственная сельскохозяйственная академия имени Д.К. Беляева", ул. Советская, 35, Иваново, 153012 Россия *E-mail: dunaev-80@mail.ru Поступила в редакцию 21.04.2021 г. После доработки 15.06.2021 г.

Принята к публикации 30.06.2021 г.

В качестве системы плазма-твердое тело, использовались полупроводниковые пластины арсенида галлия, помещенные в плазменную среду галогенсодержащих газов. В полупроводниковой промышленности, технике и технологии формирование топологии на поверхности полупроводников является одной из основных операций. Вследствие высокой интегральной плотности современных изделий электроники требования, к качеству топологических слоев формируемых плазмой очень высоки. В настоящее время в качестве плазмообразующей среды чаще всего используются галогенсодержащие газы, в частности смеси на основе Cl₂, и спектральный контроль процесса травления является актуальной методикой в современной электронике. В работе изучены обзорные спектры излучения плазмообразующих газов хлора, хлороводорода, аргона и водорода, а также спектральный состав данных газов в присутствии полупроводниковой пластины арсенида галлия. Выбраны линии и полосы для спектрального контроля скорости процесса травления. Показано, что связь между интенсивностью излучения продуктов взаимодействия и скоростью травления описывается прямо пропорциональной зависимостью, что дает возможность сделать предположение о возможности контроля процесса методом эмиссионной спектроскопии.

DOI: 10.31857/S0544126922010057

1. ВВЕДЕНИЕ

Технологический процесс производства современной электроники требует размерного структурирования поверхности подложек для получения заданного топологического рельефа высокого разрешения. Решение этой задачи возможно лишь методами плазменного травления. Неравновесная низкотемпературная плазма хлора и хлороводорода применяется в технологии современной электроники для очистки и "сухого" травления поверхности полупроводниковых пластин и функциональных слоев интегральных микросхем. Одним из основных процессов здесь является формирование топологического рельефа на поверхности полупроводников. Большое внимание специалистов в области плазмохимического травления (ПТ) уделяется галогеноводородам, в том числе – HCl. Достоинствами HCl являются низкие (по сравнению с плазмой Cl₂) степени лиссоциации [1]. обеспечивающие преимущество в анизотропии и селективности процесса, а также лучшую равномерность и чистоту обработки поверхности, достигаемые за счет химических реакций атомов водорода [2].

Вследствие высокой интегральной плотности современных изделий электроники, где требования к качеству поверхности после обработки в плазме очень высоки, на практике в качестве плазмообразующей травящей среды редко используют "чистый" хлор. Обычно это многокомпонентные смеси [3, 4], обеспечивающие преимущество в анизотропии и селективности процесса, а также лучшую равномерность и чистоту обработки поверхности. В технологии широкое распространение получили как смеси хлорсодержащих газов друг с другом, так и их смеси с инертными (He, Ar) и молекулярными (O_2 , H_2) газами. В частности инертные газы могут выступать как в качестве просто газов-разбавителей, так и источников ионов для ионной бомбардировки поверхности в целях дополнительной ионной стимуляции десорбции продуктов взаимодействия.

Выбор в качестве, полупроводниковой структуры, арсенида галлия обусловлен следующими соображениями: арсенид галлия (GaAs) находит широкое применение в приборах современной микро- и наноэлектроники. Сочетание прямозонной энергетической структуры, большой ширины запрещенной зоны (1.44, по сравнению с 1.12 эВ для Si) и высокой подвижности электронов (~8500, по сравнению с ~1200–1450 см²/Вс для Si) позволяет реализовывать на основе GaAs широкий спектр высокочастотных быстродействующих [5] и фотоэлектронных [5, 6] полупроводниковых устройств.

Очевидно, что успешная технологическая реализация ПТ с использованием галогенсодержащих газов в качестве плазмообразующих, невозможна без простого и надежного метода контроля таких процессов, позволяющего получать информацию о скорости целевого процесса в режиме реального времени. В настоящее время, одним из самых распространенных методов исследования гетерогенных плазменных процессов является эмиссионный спектральный анализ.

Исследование возможностей этого метода применительно к ПТ в гетерогенной системе плазма твердое тело, в среде хлора, хлороводорода и их смесей с аргоном, и водородом являлось целью настоящей работы.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

Для экспериментального исследования в условиях тлеющего разряда постоянного тока использовался цилиндрический проточный плазмохимический реактор (внутренний диаметр d = 3.4 см, длина зоны разряда *l* = 40 см). В качестве внешних параметров разряда выступали ток разряда (*i* = 10-60 мА), давление (*p* = 20-100 Па) и расход $(q = 2 - 8 \text{ см}^3/\text{с}$ при нормальных условиях) плазмообразующего газа. Хлор получали термическим разложением хлорной меди в вакууме [7]. Для получения HCl был использован химический метод, основанный на реакции между хлористым натрием и серной кислотой [8]. В качестве компонента газовой смеси в работе использовался аргон и водород. Аргон брали из баллонов с маркой "чистый" (МРТУ 51-77-66), содержание основного газа не менее 99.985%. Для получения водорода использовался метод, в основе которого лежит химическая реакция между Zn и HCl, реакция проводилась в аппарате Кипа [8]. Измерение давления и расхода газа проводили U-образным масляным манометром и капиллярным реометром соответственно. Подвергаемые травлению образцы представляли собой фрагменты полированных пластин GaAs (толщина 400 мкм).

Запись спектров излучения плазмы хлора и хлороводорода осуществлялась с помощью оптоволоконных спектрометров Ava Spec—3648 и Ava Spec—2048—2 с фотоэлектрической системой регистрации сигнала и накоплением данных на ЭВМ. Рабочий диапазон длин волн составлял 200—1000 нм. При расшифровке спектров использовались справочники [9, 10].

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Оптическая эмиссионная спектроскопия – один из основных методов исследования, как состава газовой фазы разряда, так и кинетики плазмохимических процессов. Для его полноценного использования необходимо точно идентифицировать спектр газовой фазы, поэтому, необходимо проанализированы спектры чистых газов, используемых в процессе плазмохимического травления [11].

Рассмотрим спектр чистого хлора, который представлен на (рис. 1) в диапазоне длин волн 200-1000 нм. Данный спектр излучения изучен достаточно хорошо [12, 13], поэтому идентификация максимумов излучения не вызвала затруднений. Излучение разряда в чистом Cl₂ в общем случае, представлено молекулярными полосами с максимумами при 256.4 и 307.4 нм, а также двумя группами линий атомарного хлора: в сине-зеленой части спектра (432.3, 436.3, 437.2, 438.0, 439.0 и 452.6 нм, $\varepsilon_{th} = 11.8 - 11.9$ эВ) и в красной области (725.6, 741.4, 754.7 нм с ε_{th} = 10.6 эВ и 822.1, 837.6, 858.6 нм с ε_{th} = 10.4 эВ). Все указанные линии и полосы отчетливо выделяются на зарегистрированном спектре. Для дальнейшего анализа наиболее удобно выделить полосу молекулярного Cl₂ 256.4 нм и линии атомарного Cl 725.6 нм (4 p^4 S⁰ – 4s4P, $\varepsilon_{th} = 10.6$ эВ) и Cl 837.6 нм (4p⁴D⁰ – 4s4P, $\varepsilon_{th} =$ = 10.4 эВ) [11]. Наиболее интенсивными и стабильно проявляющимися во всем диапазоне параметров разряда являются линии Cl 725.6 нм $(4p^4S^0 - 4s^4P, \epsilon_{th} = 10.6 \text{ эВ})$ и Cl 837.6 нм $(4p^4D^0 - 4s^4P, \epsilon_{th} = 10.4 \text{ эB})$, причем последняя из них обеспечивается переходом в основное состояние и часто используется в аналитических целях.

Эмиссионные спектры излучения плазмы чистого HCl качественно весьма близки к спектрам излучения плазмы Cl₂ (рис. 2). В спектре можно выделить две группы излучающих компонентов полосы молекул и линии атомов хлора и водорода, которые являются продуктами диссоциации молекул HCl под действием электронного удара. Излучение хлора представлено двумя группами линий атомарного хлора в сине-зеленой части/красной областях спектра и полосами излучения молекул Cl₂ с длинами волн 256.4 и 307.4 нм. Излучение водорода представлено в основном атомарными линиями Η_α, Η_β и Η_γ серии Бальмера с длинами волн 656.3, 486.1 и 434.0 нм, соответственно; излучение молекулярного водорода в области 580-620 нм достаточно слабое, но можно отчетливо выделить отдельные полосы, например, 613.6 нм. Излучение молекул HCl зафиксировать не удалось, из-за расположения в области глубокого ультрафиолета.

Спектр чистого водорода представлен линями Бальмеровской серии атома водорода и системой

Рис. 1. Спектр излучения плазмы чистого Cl_2 при p = 100 Па, $i_p = 40$ мА.

Рис. 2. Спектр излучения плазмы чистого HCl при $p = 100 \text{ Па}, i_p = 40 \text{ мA}.$

полос молекулярного водорода (система Фулхера). Этот спектр в полной мере проявляется в спектре излучения хлористого водорода.

Спектр аргона (рис. 3) представлен большим количеством очень интенсивных линий в красной и ближней инфракрасной областях спектра. Наиболее удобны для анализа линии с длинами волн 811.76 ($3p^54s \rightarrow 3p^54p$, $\varepsilon_{th} = 13.08 \ B$) и 912.26 ($3p^54s \rightarrow 3p^54p$, $\varepsilon_{th} = 12.91 \ B$) нм. Обычно используемая в актинометрии линия с длиной волны 750 нм частично перекрывается с одной из линий атомарного хлора, поэтому она не может быть использована для дальнейшего исследования. В присутствии образца GaAs в реакторе в спектре излучения плазмы появляются максимумы излучения продуктов травления – системы полос GaCl (325.5, 334.7, 341.8, 352.7 нм с $\varepsilon_{th} = 3.70 \Rightarrow B$) и резонансных линий Ga (403.3 и 417.3 нм с $\varepsilon_{th} = 3.07 \Rightarrow B$), возбуждающихся прямым электронным ударом с последующим переходом в основное состояние. Проявляются также и линии As 234 и 278 нм ($\varepsilon_{th} = 6.59$ и 6.77 \Rightarrow B соответственно), однако для анализа они не могут быть использованы, т.к. перекрываются широкой полосой молекулярного Cl₂.

Рис. 3. Общий вид спектра излучения плазмы Ar при $p = 100 \text{ Па}, i_p = 40 \text{ мA}.$

На рис. 4 изображен общий вид спектра излучения плазмы HCl при травлении арсенида галлия. При помещении в реактор образца GaAs спектр излучения плазмы изменяется за счет появления максимумов излучения продуктов взаимодействия — полос GaCl (330.4, 352.7 нм с ε_{th} = = 3.70 эВ) [14]. Резонансные линии Ga (403.3 и 417.3 нм с ε_{th} = 3.07 эВ), имеющие высокую интенсивность при травлении арсенида галлия в плазме хлора [2], в наших экспериментах менее интенсивны по сравнению с полосами монохлорида галлия, но могут быть использованы для анализа кинетических закономерностей травления. Можно полагать, что интенсивности излучения полос монохлорида галлия с длинами волн 330.4 и 352.7 нм и резонансных линий галлия (403.3 и 417.3 нм) пропорциональны концентрации соответствующих частиц в газовой фазе, а, следовательно, и скорости плазмохимического травления.

В работах [2, 15] было проведено сравнительное исследование кинетики и механизмов плазмохимического травления GaAs в Cl_2 и HCl при одинаковых внешних параметрах разряда. Установлено, что в обеих системах характер изменения скорости травления при варьировании тока разряда и давления газа согласуется с изменением плотности потока атомов хлора на обрабатываемую поверхность. Плазма HCl характеризуется более низкими скоростями травления GaAs, но обеспечивает значительно меньшую шероховатость поверхности после обработки [16, 17]. Последнее может быть отнесено к реакциям атомов водорода. Так же в [17] было показано, что оптимальное сочетание скорости травления и шероховатости поверхности достигается в смеси хлористого водорода с аргоном. В смесях с водородом скорости травления слишком малы при хорошем качестве поверхности, а в смесях с хлором из-за

Рис. 4. Общий вид спектра излучения плазмы HCl при травлении GaAs $p = 100 \text{ Па}, i_p = 40 \text{ мA}.$

больших скоростей травления шероховатость поверхности превышает допустимые в технологии значения при частичном разрушении поверхности полупроводника.

На рис. 5 приведены примеры спектров смесей HCl/Ar, HCl/Cl₂, HCl/H₂ соответственно. Их качественный состав отвечает суперпозиции спектров излучения чистых газов-компонентов смеси.

Внешние (управляемые) параметры разряда оказывают существенное влияние на интенсивность излучения линий и полос. В общем случае интенсивность излучения линий или полос описывается выражением:

$$\mathbf{I} = h \mathbf{v} K n_e N, \tag{1}$$

где I — интенсивность излучения; n_e — концентрация электронов; N — концентрация атомов или молекул газа; K — коэффициент скорости процесса.

Выражение для нахождения коэффициента скорости процесса имеет вид:

$$K = \int_{E_a} \sigma(E) f(E) \sqrt{E} dE,$$
 (2)

где f(E) — функция распределения электронов по энергиям; $\sigma(E)$ — зависимость сечения процесса от энергии электронов; E — энергия электронов; E_a — пороговая энергия возбуждения.

Рассмотрим, как пример, изменение интенсивности вышеуказанных линий и полос в зависимости от внешних параметров разряда в смесях HCl/Ar и HCl/Cl₂. Влияние электрофизических параметров плазмы на интенсивность излучения линий или полос определяется изменением концентраций частиц и коэффициента скорости процесса.

Так, увеличение давления газа не оказывает (в пределах погрешности эксперимента) влияния на

Рис. 5. Спектры излучения плазмы разрядов смесей HCl в условиях плазмохимического травления арсенида галлия $p = 100 \text{ Па}, i_p = 40 \text{ мA}: a - 50\% \text{ HCl/50\% Ar}; b - 40\% \text{ HCl/60\% Cl}_2; b - 60\% \text{ HCl/40\% H}_2.$

интенсивность излучения линий и полос, что, связано с увеличением концентрации излучающих частиц наблюдается уменьшение коэффициента скорости возбуждения из-за уменьшения приведенной напряженности электрического поля и доли быстрых электронов в функции распре-

Рис. 6. Изменение интенсивности излучения контрольных линий и полос в зависимости от тока разряда, p = 100 Пa, 50% HCl/50% Ar.

Рис. 7. Зависимости интенсивности излучения линии Ga 417 нм от скорости травления в плазме HCl–Ar при $i_p = 20 \text{ мA} - (a)$, в плазме HCl–Cl₂ при $i_p = 20 \text{ мA} - (b)$.

деления электронов по энергиям. Однако есть и исключения — полоса молекулярного хлора с длиной волны 256 нм. Из-за меньшего по сравнению с атомами потенциала возбуждения она име-

МИКРОЭЛЕКТРОНИКА том 51 № 2 2022

ет вид кривой с насыщением. На начальном участке (40-80 Па) зависимость линейна, так как уменьшение коэффициента скорости процесса не компенсирует рост концентраций электронов и молекул. При более высоких давлениях уменьшение коэффициента скорости возбуждения становится более существенным, и интенсивность излучения молекулярного хлора стремится к насыщению [18].

На рис. 6 представлены зависимости интенсивности излучения некоторых атомарных линий от тока разряда. Наблюдается линейное увеличение интенсивности излучения всех рассматриваемых линий. Увеличение тока разряда приводит к уменьшению приведенной напряженности поля, а, следовательно, и к уменьшению доли быстрых электронов в функции распределения электронов по энергиям. Одновременно с этим растет концентрация продуктов диссоциации молекул хлороводорода. Эти два фактора приводят к практически прямо пропорциональной зависимости. Такое поведение подтверждает, что основным каналом возбуждения атомов в разряде является прямой электронный удар. Прямолинейная зависимость отмечается во всех смесях. включая смесь с аргоном, что дополнительно свидетельствует о малой роли вторичных процессов с участием метастабильных атомов аргона.

В [14, 18] отмечалось, что наблюдаемая прямая корреляция между скоростью взаимодействия и интенсивностью свечения продуктов может быть использована для контроля скорости процесса в реальном масштабе времени. В данной работе корреляции между интенсивностью излучения галлия и скоростью травления арсенида галлия получены для смеси HCl/Ar (рис. 7*a*), для которой данная зависимость прямопропорциональна во всем диапазоне состава смеси. На (рис. 76) представлена зависимость для смеси HCl-Cl₂. Скорость взаимодействия GaAs с плазмой проявляет экстремальный характер, поэтому и изменение интенсивности излучения продуктов (и в частности, линии Ga с λ 417 нм) также нелинейно. Это приводит к тому, что точная корреляция соблюдается только для составов с долей хлора от 0 до 80% (максимума скорости).

В случае смеси HCl/H_2 интенсивность излучения галлия при содержании водорода более 40% мала (находится на уровне фона) и не пригодна для количественной обработки.

ЗАКЛЮЧЕНИЕ

1. Получены и детально разобраны обзорные спектры излучения плазмообразующих газов Cl₂, HCl, Ar, H₂, а также спектральный состав данных газов и их смесей в присутствии полупроводни-ковой пластины арсенида галлия. Выбраны кон-

трольные линии и полосы для дальнейшего спектрального контроля скорости процесса травления полупроводников по интенсивности излучения линий и полос продуктов взаимодействия плазма твердое тело. Сделано предположение, что связь между интенсивностью излучения продуктов травления GaAs и скоростью травления в плазме хлора, хлороводорода и их смесей с аргоном и водородом описывается прямо пропорциональной зависимостью, что указывает на возможность контроля целевого процесса в реальном времени.

2. Детально разобраны спектры излучения смесей хлороводорода с аргоном, хлором и водородом, при травлении арсенида галлия. Выбраны контрольные линии и полосы для дальнейшего спектрального наблюдения скорости процесса травления полупроводников по интенсивности излучения линий и полос продуктов взаимодействия. Показано, что в смесях хлористого водорода с аргоном и хлором интенсивность излучения резонансной линии галлия прямо пропорциональна скорости травления арсенида галлия, что может быть использовано практически, для контроля процесса травления в реальном масштабе времени. В смеси хлористого водорода с водородом интенсивности излучения резонансных линий галлия находятся на уровне фона (при данных внешних параметрах) и не могут быть использованы для анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ситанов Д.В., Ефремов А.М., Светцов В.И. Параметры плазмы и кинетика образования и гибели активных частиц в разряде в хлоре // Теплофизика высоких температур. 2008. Т. 46. № 1. С. 15–22.
- Дунаев А.В., Пивоваренок С.А., Капинос С.П., Семенова О.А., Ефремов А.М., Светцов В.И. Кинетика и механизмы плазмохимического травления GaAs в хлоре и хлороводороде // Физика и химия обработки материалов. 2010. № 6. С. 42–46.
- Дунаев А.В., Пивоваренок С.А., Ефремов А.М., Светцов В.И. Кинетика травления GaAs в хлорной плазме // Изв. ВУЗов. Химия и хим. технология. 2010. Т. 53. Вып. 5. С. 53–56.

- 5. Пасынков В.В., Сорокин В.С. Материалы электронной техники: уч. для студ. вузов по спец. электронной техники. СПб.: Лань. 2001, 368 с.
- Martínez-Duart J.M., Martín-Palma R.J., Agulló-Rueda F. Nanotechnology formicro electronics andopto electronics, London: Elsevier Ltd. 2006, 279 p.
- Пивоваренок С.А., Дунаев А.В., Ефремов А.М., Светцов В.И. Кинетика и механизмы плазмохимического травления алюминия в хлоре // Изв. ВУЗов. Химия и хим. технология. 2008. Т. 51. Вып. 6. С. 70–73.
- 8. *Корякин Ю.В., Ангелов И.И*. Чистые химические вещества. М.: Химия. 1974, 408 с.
- 9. *Pearse R.W.B., Gaydon A.G.* The identification of molecular spectra. Fourth edition. New York: John Wiley & Sons, inc. 1976, 407 p.
- Стриганов А.Р., Свентицкий Н.С. Таблицы спектральных линий нейтральных ионизированных атомов. М.: Атомиздат. 1966, 899 с.
- 11. Дунаев А.В., Пивоваренок С.А., Капинос С.П. Спектральное исследование кинетики травления арсенида галлия в плазме хлора и хлороводорода // Микроэлектроника. 2013. Т. 42. № 1. С. 19–22.
- Куприяновская А.П. Светцов В.И. Механизмы образования и разрушения активных частиц в галогенной плазме // Изв. ВУЗов. Химия и хим. технология. 1983. Т. 26. Вып. 12. С. 140–145.
- 13. Ефремов А.М., Юдина А.В., Светцов В.И. Электрофизические параметры плазмы тлеющего разряда постоянного тока в смеси HCl/Ar // Изв. ВУЗов. Химия и хим. технология. 2011. Т. 54. № 3. С. 15–18.
- Дунаев А.В., Капинос С.П., Пивоваренок С.А., Ефремов А.М., Светцов В.И. Спектральный контроль процесса травления арсенида галлия в плазме хлороводорода // Нанотехника. 2012. № 1 (29). С. 93–95.
- 15. Дунаев А.В., Пивоваренок С.А., Ефремов А.М., Светцов В.И. Спектральное исследование травления арсенида галлия в плазме HCl // Микроэлектроника. 2011. Т. 40. № 6. С. 413–417.
- 16. Дунаев А.В., Пивоваренок С.А., Капинос С.П. Исследование методом атомно-силовой микроскопии поверхности полупроводников после травления в плазме хлорсодержащих газов // Физика и химия обработки материалов. 2013. № 1. С. 44–46.
- 17. Дунаев А.В. Исследование поверхности GaAs после травления в плазме смесей HCl/Ar, HCl/Cl₂, HCl/H₂, методом атомно-силовой микроскопии // Микроэлектроника. 2014. Т. 43. № 1. С. 17–22.
- Пивоваренок С.А., Мурин Д.Б., Дунаев А.В., Ефремов А.В., Светцов В.И. Влияние состава смеси на электрофизические параметры и спектры излучения плазмы HCl-O₂ и HCl-Ar // ТВТ. 2011. Т. 49. № 4. С. 509-512.

МИКРОЭЛЕКТРОНИКА том 51 № 2 2022